Online Resource 1

Article title: Artificial intelligence in the practice of forensic medicine: a scoping review

Journal name: International Journal of Legal Medicine

Author names: Laurent Tournois, Victor Trousset, Didier Hatsch, Tania Delabarde, Bertrand Ludes, Thomas Lefèvre

<u>Corresponding author</u>: Laurent Tournois Université de Paris Cité, CNRS UMR 8045, F-75006 Paris, France BioSilicium, Riom, France. Mail: <u>laurent.tournois@biosilicium.fr</u>

Full results of sources of evidence. AI: artificial intelligence, ANN: artificial neural network, AUC; area under the curve, BA: biological age, CA: chronological age, CNN: convolutional neural network, CV: cross validation, FN: false negative, FNR: false negative rate, FP: false positive, FPR: false positive rate, HP: hyperparameter, IoU: intersection over union, KCRD: Kütahya Child Radiology Dataset, kNN: k-nearest neighbors, LR: likelihood ratio, MAE: mean absolute error, MLP: multilayer perceptron, MRI: magnetic resonance imaging, OPG: orthopantomogram, PMCT: postmortem computed tomography, PMI: postmortem interval, RBFN: radial basis function network, RMSE: root mean square error, SEE: standard error estimate, TN: true negative, TNR, true negative rate, TP: true positive, TPR: true positive rate, t-SNE: t-distributed stochastic neighbor embedding.

Reference	Publication	Publication	Outcome	Data	Population /	Input data	Model	Performance	Model evaluation	Real application	aTRL
	type	reliability		sources	sample study		development	metrics			
Karasik et al.,	Original	Peer-	Chronological age	Real	Population from	Only a training set	Multilinear	R ² and	SEE ranges between	No use reported in	2
1999 [12]	article	reviewed	(in years)	data,	Chuvasha	(no validation or	regression.	standard error	4.9 to 6.25 years for	real case	
		article		living	(Russia, 293	test set).	Equations are	estimate (SEE)	the best models,		
		published		human	males and 254	Features:	given.		R ² between ground		
		in 1999		subjects	females) and	osseographic			truth and estimated		
				-	Turkmenia (257	score,			values range is 0.818		
					males and 386	osteoarthritis			to 0.901		
					females).	(OA) score and					
					Subjects' age	osteoporosis (OP)					
					ranging from 17	score.					
					to 86 years old.	No OA score for 7					
					Exclusion criteria:	Russian subjects					
					bone disease,	(instances					
					steroid medicine	removed					
					use, post-	depending on the					
					traumatic,	AI model)					

					rheumatoid, psoriatic osteoarthrisis or contractures due to tenosynovitis of the palmar flexors						
Karasik et al., 2000 [13]	Original article	Peer- reviewed article published in 2000	Chronological age (in years)	Real data, living human subjects	5 756 living individuals (2683 males and 3073 females) belonging to 9 ethnic groups (mostly rural autochthonous populations) Subjects' age ranging from 17 to 96 years old. Exclusion criteria: bone disease, steroid medicine use, post- traumatic, rheumatoid, psoriatic osteoarthrisis or contractures of the palmar flexors	Only a training set (no validation or test set). Feature: osseographic score. Missing 6 females, no information about how missing data is handled. Possible sampling bias due to population characteristics (declared by authors)	Logistic regression. Equations are given.	R ² and standard error of estimate (SEE) for each ethnic group and each sex group	SEE ranges between 4.22 to 6.64 years for the best models, R ² between ground truth and estimated values range is 0.671 to 0.901. Weak extrapolation ability of logistic formula from one ethnic group to another one.	No use reported in real case	2
Bocaz- Beneventi et al., 2002 [14]	Original article	Peer- reviewed article published in 2002	PMI in hours	Real data, deceased human subjects	61 cases. PMI between 7 and 144 hours	Train set (51 cases) and validation set (10 cases). No external validation. 8 features corresponding to NH_4^+ , K^+ , Na^+ and Ba^{2+} peak area and heights.	ANN and linear least squares regression. ANN Architecture and regression equation are given. Overfitting reduced by assessing the model performance with the validation set every 100 or 1000 epochs.	HP tuning assessed with RMSE. Performance on the validation set assessed by the correlation coefficient between predicted and ground truth PMI values.	Correlation coefficient between predicted and real values is 0.9810	No use reported in real case	2

				1							
Constantinou	Original	Peer-	Risk of violence	Real	953 cases (778	Only 1 dataset	Bayesian	AUC	Best AUC is 0.78 (10-	No use reported in	2
et al., 2015	article	reviewed	(yes, no) revised	data,	males and 175	used for 10-fold	network with		fold CV).	real case	
[15]		article	from 5 variables	living	females).	CV.	binary		Performance too		
		published	(acquisitive crime	human	Prisoners serving	No external	predictions.		low for a use in		
		in 2015	convictions, age,	subjects	sentences (for	validation.	Architecture of		medicolegal practice		
			gender, violent		sexual or violent	All features are	network is				
			convictions and		offences) for at	explicit (n = 89)	given.				
			PCLR score)		least 2 years.		Overfitting is				
					informed from		comparing				
					evidence		ALC with and				
					provided from		without 10-				
					other factors		fold CV				
					within the model						
					and linked to the						
					missing data.						
Simmons et	Original	Peer-	Human or non-	Real	6 bones from	Only a training set	Decision tree,	Accuracy	Accuracy is 1	No use reported in	2
al., 2016 [16]	article	reviewed	human bone	data,	humans, 7 bones	(no validation or	architecture is			real case	
		article		deceased	from animals	test set).	described.				
		published		human		Features: tissue					
		in 2016		and		classification					
				animal		system used by					
				subjects		Cuijpers [55].					
Stern et al.,	Conference	Not peer-	BA in years	Real	Male Caucasian	240 hand MRI	Deep CNN.	MAE for BA	Best MAE is 0.36 ±	No use reported in	2
2016 [17]	paper	reviewed		data,	aged between 13	images splited	Architecture is	estimation and	0.3 years with	real case	
		article and		living	and 25 years old.	into 8-fold CV	described. Loss	TPR, FPR, TNR,	training with BA and		
		published		human		with 30 subjects	function takes	FNR for	0.56 ± 0.44 years		
		IN 2016		subjects		for model		majority	compared with		
						validation and the	BA OF CA.		training with CA.		
						subjects (data	bandlod by	(abuve 10	and ENP obtained		
						augmentation up	dropout	years oluj	with training with		
						to 1050 images)	regularization		CA for $CA > 18$ years		
						for model	(dropout ratio		old are respectively		
						training.	is 0.5)		98.7. 3.6. 96.4. 1.3.		
						Images are	10 0107		For classification		
						directly used as			with BA > 18 and		
						inputs.			training with BA,		
									those values are		
									respectively 100, 0,		
									100, 0		
Yilmaz et al.,	Technical	Peer-	Live or stillbirth	Real	44 cases (24 live	Training set (77%	MLP, logistic	Specificity,	ANN and RBFN are	No use in real case	2
2017 [18]	note	reviewed		data,	and 20 stillbirth).	of data) and test	regression and	sensitivity, F-	the best models.	is reported	
		article		deceased		set (23% of data).	RBFN	score,	Best specificity is		
		published		human		Features are	(Architectures	accuracy. MAE	0.833, sensitivity is		
		in 2016		subjects		explicit (n = 10).	are given).	and RMSE are	1, F-score is 0.9091,		
1			1	1	1	Missing data is	1	used to assess	accuracy is 0.9, MAE		1

						removed		the model performance on the test set but the computation of the type of error is not clear.	is 0.1149 and RMSE is 0.3060.		
Ebert et al., 2017 [19]	Original article	Peer- reviewed article published in 2017	Presence of hemopericardium and localization of blood within the pericardium	Real data, deceased human subjects	52 subjects (34 males and 18 females). Exclusion criteria: advanced decomposition, thoracic trauma, evidence of blunt or sharp force injury, presence of cardiac medical devices, hemothorax	Train set (50 % of data) and test set (50% of data) generated 20 times using a different randomization approach. No external validation. Data unbalanced in gender. Feature: PMCT images	ANN (architecture is not given)	Precision, recall and F- score. The meaning of those metrics for the localization task is not clear.	Presence of hemopericardium: average precision, recall and F-score are respectively 0.85 ± 0.11, 0.77 ± 0.26, 0.77 ± 0.16. For the localization task, those values are respectively 0.79 ± 0.05, 0.78 ± 0.05, 0.78 ± 0.0003	No use in real case is reported. AI models must be further validated (the article only deals with a feasibility study). Full integration of the AI models in the picture archiving and communication system is required for a use in daily routine. No challenge for the forensic pathologist to detect hemopericardium in PMCT images.	2
Spampinato et al., 2017 [20]	Original article	Peer- reviewed article published in 2017	Bone age in years	Real data, living human subjects	1391 cases from the Digital Hand Atlas Database System [56]. Subjects' age is lower than or equal to 18 years old.	Train and validation sets created by 5-fold CV. No external validation. Data is balanced in gender and race (Asian, black, Caucasian and Hispanic) but unbalanced in age. Feature: left hand X-ray image	CNN with regression network. A bias towards age is highlighted.	MAE	Best MAE is 0.79 years (mean of 2 readings as ground truth). MAE varies between 0.35 years (for Asians males between 0 and 9 years old) and 1.16 years (for Caucasian males between 0 and 9 years old)	No use in real case is reported.	2
Stern et al., 2017 [21]	Conference paper	Peer- reviewed	CA in years	Real data,	103 Caucasian male volunteers	Train and validation sets (4-	Random forest and CNN	Matrix confusion (TP,	Best accuracy is 91.3%, sensibility is	No use in real case is reported	2

		article published in 2017		living human subjects	aged between 13 and 25 years old. 309 3D MRI images	fold CV). No external validation. Uniform distribution in age.	(architectures are given but not detailed)	TN, FP, FN), Accuracy, Sensibility, Specificity (for the classification in terms of majority age), MAE for CA estimation)	0.886, specificity is 1, MAE is 1.14 years. Best performance with CNN but authors declared to be careful with distinction between majority and minority age		
Zhang et al., 2018 [22]	Original article	Peer- reviewed article published in 2017	Skeletal age in years	Real data, living human subjects	562 Chinese subjects without history of chronic illness, trauma, physical deformity, surgical procedure that might affect stature or sternum dimensions. Subjects' age ranging from 20 to 90 years old.	512 cases in the training set and 50 in the test set. Data is balanced in gender, unbalanced in age. Features: average radiation density of upper, medial, lower of the first costal cartilage and stages of ossification of costal cartilage from left and right sides.	Linear regression (simple and multiple), SVM, decision tree, gradient boosting Architecture and equations are given.	MAE, error range, least absolute error, proportion of correct predictions within 5 years and within 10 years	MAE is 5.31 years for males and 6.72 years for females.	No use in real case is reported	2
Canturk et. al., 2018 [23]	Original article	Peer- reviewed article published in 2018	PMI interval (20, 40, 60, 80 and 100 min intervals)	Real data, deceased human subjects	10 subjects from Istanbul (1 female, 9 males) aged between 30 and 70 years old without corneal opacity affected by cause of death or prone position, no head or cervical trauma or edema. 450 images of the eye (45 images per subject)	Train and validation sets (10-fold CV) or 9 subjects in the train set and 1 in the test set. No external validation. Balanced data. Features are explicit (n = 61)	Linear and radial basis function (SVM) and kNN	Accuracy	Best performance for SVM. Accuracy ranges from 0.715 to 0.89 (depending on the time interval)	No use in real case is reported	2
Heimer et al., 2018 [24]	original article	reviewed	Presence of fracture or intact	кеа data,	75 cases with skull fractures	validation sets (2-	Deep neural network (the	AUC, sensitivity,	Best AUC 0.965, sensitivity 0.914,	No use in real case is reported	2

		article	skull	deceased	and 75 cases	fold CV)	architectures	specificity	specificity 0.875		
		published		human	without fracture.	generated 100	are not		(classification		
		in 2018		subjects	Subjects' age	times with	described).		threshold is 0.79)		
				-	ranging from	random sampling.					
					18.96 years old	No external					
					to 95.6 years old.	validation.					
					Fractures come	Data imbalance in					
					from accidents,	gender (male-to-					
					suicides,	female ratio is					
					unknown	70/30) and					
					manner of death,	manner of death					
					one criminal	(number of					
					offense. Controls	instances varies					
					come from	between 1 and 55					
					natural death	depending on the					
					followed or not	manner of death).					
					by accidents and	Feature: Head					
					unknown.	PMCT image.					
					Exclusion criteria:						
					age < 18 years						
					old, shattered						
					resemblance to						
					residues from						
					surgical						
					intervention						
Koterova et	Original	Peer-	Age at death in	Real	941 samples.	Train and	ANN, decision	MAF. RMSF	Best performance	No use in real case	2
al., 2018 [25]	article	reviewed	vears (no detail	data.	Subjects' age	validation sets (5-	tree. M5 tree		for M5 tree and	is reported	
, []		article	about BA or CA)	deceased	ranging from 19	fold CV).	(decision tree		multilinear		
		published	,	human	to 100 years old.	Data unbalanced	with linear		regression (MAE is		
		in 2018		subjects	,	in race	regression		9.7 years and RMSE		
						(Caucasian,	function at the		13.3 years).		
						Afroamerican,	leaves), kNN,		The performance is		
						African and Asian)	multilinear		similar between		
						and balanced in	regression,		males and females.		
						gender.	collapsed				
						Features:	regression				
						measurement	model.				
						from the pubic	Architectures				
						symphysis and	are not always				
						the sacro-pelvic	given.				
						surface					
Matoba et al.,	Original	Peer-	Lung weight in	Real	111 deceased	No information	Multivariate	R ² between	R ² is 0.89.	No use in real case	2
2018 [26]	article	reviewed	grams	data,	subjects (222	about the	linear	lung weight	The model is not	is reported	
		article	1	deceased	samples, 2	datasets used.	regression (the	measured	applicable if lung		1

		published in 2018		human subjects	samples per subject). Exclusion criteria: severely corrupted, unconfirmed lung weight, more than 6h between PMCT and autopsy, severe putrefaction. Subjects' age ranging from 18 to 95 years old, PMI ranging from 0.3 to 60 days.	Unbalanced data in cause of death. Features: 6 variables corresponding to interval of HU volume in mL	equation is given).	during autopsy and predicted lung weight.	weight < 300 g		
Stern et al., 2019 [27]	Original article	Peer- reviewed article published in 2019	Biological age (BA) or chronological age (CA)	Real data, living human subjects	328 3D hand MRI or 835 2D x-ray images. 3D MRI dataset: Caucasian male volunteers (aged between 18 and 25 years old), 141 males are under 18 years old, no history of endocrinal, metabolic, genetic or developmental disease 2D X-ray dataset: subjects from the Digital Hand Atlas Database [57] aged between 10 and 19 years old	Train and validation sets (4- fold CV). Uniform distribution in age for 2D dataset. No external validation. Features: 13 cropped bone images.	CNN. The architecture is described. Overfitting is reduced by transfer learning.	MAE and AUC	3D dataset: MAE is 0.2 ± 0.42 years (for BA estimation), 0.82 ± 0.65 years (for CA estimation), AUC 0.9567 (for the distinction between the majority and minority age). 2D dataset: MAE 0.58 ± 0.61 years (for BA estimation), 0.83 ± 0.66 years (for CA estimation)	No use in real case is reported	2
Andersson et al., 2019 [28]	Original article	Peer- reviewed article published in 2019	LR between PMI intervals.	Real data, deceased human subjects	101 cases. Swedish indoor settings. Subjects without presence of insect activity, no major traumatic	Train set (93 cases) and test set (8 cases). Features: partial body scores for head, trunk and limbs.	Bayesian network (architecture is given).	LR	LR < 1	No use in real case is reported	2

					damage, no submersion, no burn.	Missing values or values deemed potentially biases are assigned a null value.					
Avuclu et al., 2019 [29]	Original article	Peer- reviewed article published in 2019	Tooth age in year intervals (4-9, 10- 14, 15-22, 23-63 years old) and gender (male, female)	Real data, human subjects	162 different age groups from 4 to 63 years old.	1 315 teeth images. Train set (size is not given) and test set (size < 12 images). Features: mean of pixels values (pixel value - mean of image pixel value) for each sub-segment of an image	MLP. The architecture is given.	Difference between predicted and true age for age estimation and classification success for gender determination	Age estimation: difference between 0 and 6 years. Gender determination: success rate between 2.5% and 100%	No use in real case is reported	2
De Back et .al, 2019 [30]	Conference paper	Peer- reviewed article published in 2019	CA in months	Real data, living human subjects	Subjects' age ranging from 5 to 25 years old.	More than 12 000 OPG. Train set (75% of data) and validation set (25% of data). Small dataset sizes. No external validation and no mention of HP tuning. Feature: OPG (image).	Bayesian CNN (architecture is given)	MAE and concordance correlation coefficient between true and predicted CA	Overall MAE is 21 months, concordance correlation coefficient between true and predicted CA is 0.910 on 2400 images (validation set). Lowest MAE is 12.8 months for 50 to 75 months old and highest MAE is 28.6 months for 275 to 300 months old.	No use in real case is reported	2
Li et al., 2019 [31]	Original article	Peer- reviewed article published in 2019	CA	Real data, living human subjects	1 875 participants from the West China Han group and aged between 10 and 25 years old. Exclusion criteria: evident deformities or disease in the pelvic region	1498 images for training and 377 for test. Balanced data in gender. Age groups of 1- year intervals. Slight imbalance in age (more than twice as much as individuals in certain age groups than others for train and test datasets except test	CNN (architecture is described). Overfitting is handled by freezing the convolutional layers of the model.	MAE and RMSE.	Mean MAE is 0.94 years, mean RMSE is 1.30 years. No statistical difference between males and females. Highest MAE is obtained for 24-25 years old subjects and best MAE is obtained for 10-11 years old subjects. MAE ranges between 0.11 and 2.71 years. RMSE ranges	No use in real case is reported	2

						females). Images with superposition abdominal organs over the iliac crest removed from train set but kept in test set. No external validation. Feature: pelvis X-			between 0.15 and 2.57 years. Those range limits are obtained for females (males are in between).		
Milosevic et al., 2019 [32]	Conference paper	Peer- reviewed article published in 2019	Male or female	Real data, living human subjects	European (Caucasian) subjects aged between 19 and 85 years old (female-to-male ratio: 58.8/41.2)	4 000 OPGs (number of subjects not given), images may come from the same subject. Train and validation sets (77% of data) and test set (23% of data). 10-fold CV for performance evaluation on all the images (train, validation and test datasets gathered). Data unbalanced in age. Feature : OPG (image)	CNN (architecture is given)	Accuracy	Accuracy is 0.9687 ± 0.0096	No use in real case is reported	2
Turan et al., 2019 [33]	Original article	Peer- reviewed article published in 2019	Male or female	Real data, living human subjects	284 subjects aged between 24 and 60 years old, without operation, subluxation, bone fracture or deformities.	Train set (80% of data) and validation set (20% of data) shuffled at each iteration. No external validation. Features: 8 anthropometric measurements of bone length of the first and fifth phalanges and	MLP (architecture is given)	Sensibility, specificity, accuracy, Matthews Correlation Coefficient (MCC)	Best accuracy is 0.965, specificity is 0.973, sensitivity is 0.956 and MCC is 0.929. Variance is high suggesting a probable overfitting	No use in real case is reported	2

						metarsals measured times and averaged per subject (mean and standard deviation of each feature is provided). Data is balanced in gender.					
Abderrahmane et al., 2020 [34]	Conference paper	Peer- reviewed article published in 2020	CA in years	Real data, living human subjects	190 subjects aged between 18 and 75 years old.	11 076 hand photographs. Train set (70% of data) and validation set (30% of data). Data is balanced towards age after balancing (ages are 18 to 26, 28 to 30, 36, 43, 54, 70, 75 years old). About 710 images per age subset. No external validation. Data imbalance in age, gender, skin triplet. Feature: hand photograph.	CNN combined with gated recurrent units (architecture is given). Overfitting is handled by balancing data with data augmentation and by using batch normalization and dropout layers.	MAE	Learning curve highlights underfitting (validation loss is under lower than the training loss). MAE is 2.373 years. With skin color and gender adjustment, MAE is 1.9266 years.	No use in real case is reported	2
Garland et al., 2020 [35]	Original paper	Peer- reviewed article published in 2020	Presence of fatal head injury (yes, no)	Real data, deceased human subjects	50 subjects (25 cases with fatal head injuries, 25 suicide hanging deaths). Transport related and accidental fatal deaths for cases with fatal head injuries. Exclusion criteria: suspicious, homicidal and deaths of children aged less than 10	Train set (40 cases: 20 cases with fatal head injuries and 20 controls) and test set (10 cases: 5 cases with fatal head injuries and 5 controls). Validation on 20% of the training set. Data unbalanced in gender (male- to-female ratio is 19/6 for cases	CNN (architecture is not given)	Accuracy	Accuracy is 0.7	No use in real case is reported	2

					years old due to potential legal issues, signs of decomposition, cases with neurosurgical procedures.	with fatal head injuries, 22/3 for controls). Feature: head PMCT images					
Homma et al., 2020 [36]	Conference paper	Peer- reviewed article published in 2020	Drowning or non- drowning death	Real data, deceased human subjects	280 cases: 140 drowning (3 784 images) and 140 non drowning (3 863 images) cases	Train and validation sets (10-fold CV with balanced data in drowning distinction and same size for each fold). Feature: lung PMCT image.	CNN (architecture is given)	AUC	AUC is 0.879	No use in real case is reported	2
Peleg et al., 2020 [37]	Original article	Peer- reviewed article published in 2019	Male or female	Real data, living human subjects	461 subjects. No subject with more than 2 absent ribs, no measurements from broken or deformed ribs (train dataset)	Train set (413 subjects, European Americans and African American, aged between 20 and 87 years old, unbalanced data in gender), leave- one-out CV set (33 adults aged between 10 and 60 years old, race is not provided, balanced data in gender), 15 adult for validation of virtual measures (race is not given). Features: anthropometric measures of the ribs and the sternum. Instances with missing data are kept if ribs are missing (models are applicable for	Multivariate linear regression (equations are given)	Success rate (not clearly defined)	Success rate ranges from 0.667 to 0.89	No use in real case is reported	2

						individual ribs)					
Pena- Solorzano et al., 2020 [38]	Original article	Peer- reviewed article published in 2020	Localization of the femur and classification of orthopedic implants in the femur	Real data, deceased human subjects	450 subjects aged between 20 and 90 years old. Inclusion criteria: only males, cause of death due to a natural disease or drug overdose (to avoid physical trauma cases but there are some)	Train set (70% of data), validation set (15% of data) and test set (15% of data) with 5- times random subsampling for the localization task and 8 times for the classification task. Imbalance in class sizes for the classification task. Feature: PMCT image (with the subject's age for the classification task)	Residual networks (presence or absence of femur). Hybrid convolutional autoencoder (feature extraction) + kNN for t-SNE classification of absence of implant, nail, hip replacement and knee replacement. Architectures are described.	Localization of the femur (test): MAE, Jaccard similarity coefficient (= IoU), Dice score (= F1 score). Classification task: accuracy, precision, recall, F1 score	Best results for femur localization: MAE between 0 and 13.1 mm, Dice between 1 and 0.93, IoU between 0.91 and 1 depending on the CT plane. Depending on the class to predict for the classification task: accuracy between 0.97 and 1, precision between 0.91 and 0.99, recall between 0.65 and 1, F1 score between 0.76 and 0.98	No use in real case is reported	2
Tirado et al., 2020 [39]	Technical note	Peer- reviewed article published in 2020	Bruise date estimate in time intervals	Real data, living human subjects	11 subjects (4 females and 7 males) age between 22 and 68 years old. Bruises result from paintball impacts.	Train set (1 712 instances), validation set (215 instances) and test (213 instances). 10- fold CV is used on train. Data unbalanced in bruise location and age. Data balanced between validation and test set but unbalanced for each class (including the train dataset) Feature: bruise photograph	CNN (architecture is not given). Early stopping on validation accuracy with patience 3, overfitting is evaluated by the validation precision metric calculated at the end of training (the use of accuracy and precision is not clear)	Sensitivity, specificity, precision, confusion matrix	Best sensitivity and precision are 0.97 and specificity is 0.995.	No use in real case is reported	2
Vila-Blanco et al., 2020 [40]	Original article	Peer- reviewed article published in 2020	CA in days	Real data, living human subjects	2 289 Spanish Caucasian subjects aged between 4.5 and 89.2 years old.	8-fold CV with test as held-out set and train and validation sets as the 7 other sets (train 80%, val	CNN (architecture is described)	Age estimation: R ² between estimated and ground truth age, median	Best R ² is 0.9 on the whole dataset and on age < 25 years old, however R ² is 0.53 for ages between 14 and 21	No use in real case is reported. The AI model performance is similar or lower than the	2

-											1
						20%). Unbalanced		error and	years old. Best	performance of	
						data in age (963		absolute error.	accuracy is 0.854	non-AI models.	
						cases for 10-19		Sex	(whole dataset),		
						years old and 31		classification:	sensitivity is 0.878		
						cases for 70-89.5		accuracy,	(whole dataset),		
						years old). More		sensitivity,	specificity is 0.845		
						females than		specificity and	(age < 40 years old)		
						males (> 20%).		AUC.	but 0.823 for the		
						Feature: OPG		Performance	whole dataset, AUC		
						image		measured on	is 0.926 (age < 40		
								the test set and	years old) but 0.925		
								on ages < 15,	for the whole		
								20, 25, 30, 40	dataset. For age <		
								years old.	20 years old: the		
								-	best R ² is 0.89,		
									accuracy is 0.8,		
									sensitivity is 0.8,		
									specificity is 0.801		
									and AUC is 0.888.		
Mauer et al.,	Original	Peer-	CA in years	Real	Caucasian males	Coronal dataset:	CNN + tree-	MAE (age	MAE is 0.71 ± 0.55	No use in real case	2
2021 [41]	article	reviewed	,	data.	with middle to	2 220 images	based machine	estimation).	vears for the coronal	is reported	
		article		living	high socio-	splitted into train	learning	sensitivity.	and 0.81 ± 0.62		
		published		human	economic status.	(66%), validation	algorithm	specificity.	vears for the sagittal		
		in 2021		subjects	raised in	(18%) and test	(architecture is	accuracy and	dataset.		
				subjects	Hamburg	sets (19%	given)		Best accuracy		
					(Germany) or	stratified 5-fold	Overfitting is	(distinction of	sensitivity		
					surroundings		assessed by a	the majority	specificity and ALIC		
					aged between 13	Sagittal dataset:	learning curve		are respectively		
					aged between 15		(training ond	age).			
					and no chronic	404 Illiages.	(training and		0.873, 0.884, 0.880,		
							valuation loss		0.943 for the sagittal		
					diseases or	In age (age-	values along		and 0.857, 0.864,		
					severe bone	stratified data	epochs)		0.846, 0.908 for the		
					Injuries.	augmentation).			coronal dataset.		
					Coronal dataset:	Missing data us					
					79 male	removed if bone					
					Caucasian	into < 2%.					
					subjects aged	Feature: MRI					
					between 14.41	images (for					
					and 21.66 years	feature extraction					
					old.	and age					
					Sagittal dataset:	estimation) with					
					297 male	ossification					
					Caucasians	maturity stages					
					subjects aged	and					
					between 13 and	anthropometric					
					21.83 years old.	data (when used).					
Ozdemir et al.,	Original	Peer-	Bone age in	Real	KCRD dataset:	Datasets split into	CNN	MAE, RMSE, R ²	KCRD Dataset: best	No use in real case	2
,	Ĭ	1	i v	1	1		1		1		1

2021 [42]	article	reviewed article published in 2021	months or year (not clear)	data, living human subjects	5305 hand-wrist radiographs from hospitals in Kütahya of people between 0 and 18 years old (mean 140.33 months). Exclusion of 0-7 month old subjects RSNA dataset: 12611 radiographs of individuals with mean age 127.32 months	training, validation and test sets with proportion 0.7/0.15/0.15 respectively. Data unbalanced in age. Feature: hand- wrist radiogaphs	(architecture is given). Overfitting is handled by transfer learning		MAE, RMSE and R ² are 4.3, 5.76 and 0.99 respectively. RSNA dataset: best MAE, RMSE and R ² are 5.75, 7.42 and 0.96 respectively. The units of are not clear.	is reported	
Oura et al., 2021[43]	Original article	Peer- reviewed article published in 2021	Gunshot distance (categories: control, contact, close range and distant)	Real data, dead piglet subjects	Piglet weights range from 2.05 to 4.76kg, piglets died from natural death and are stored 5 days maximum. No overlap of gunshot wounds. Exclusion criteria: external deformability and abnormal or blotchy skin pigmentation	Dataset is composed of 60 negative controls, 50 contact shots, 49 close-range shots and 45 distant shots images. Dataset split into training, validation and test sets with proportion 0.6/0.2/0.2 respectively. No external validation. Feature: photographs of gunshot wounds	MLP (architecture is given). Overfitting not studied but authors assert that applicability to human is likely to be poor	Accuracy, recall, precision, F1 score, AUC	Testing accuracy and F1 range from 0.94 to 1, recall from 0.89 to 1, precision from 0.92 to 1 and AUC from 0.99 to 1. Averaged test accuracy is 0.98	No use in real case is reported	2
Garland et al., 2021 [44]	Original article	Peer- reviewed article published in 2021	Classification of heart histology slides into normal heart, old myocardial or acute myocardial infarction	Real data, dead human subjects	Number of cases is not provided. Exclusion criteria: autolysis, marked decomposition, postmortem bacterial overgrowth, processing artifacts, fading	50 images of normal heart slides, 50 images of old myocardial infarction slides and 50 images of acute myocardial infarction slides. Train, validation and test sets with	CNN (architecture is given). Overfitting is not explicitly handled.	F1-score by class to predict and accuracy	Accuracy and F1- scores are equal to 1	No use in real case is reported	2

Li et al., 2022 [46]	Original article	Peer- reviewed article published	Gender (male or female)	Real data, living human	under investigation 1226 males and 896 females Chinese Han individuals from	2326 pelvic anteroposterior radiographs Train/validation	CNN (architecture is given). Overfitting	Average Accuracy	Average Accuracy is 0.946 in Chinese Han population and 0.829 in the	No use in real case is reported	2
				Subjects	years old. Exclusion criteria: signs of advanced decomposition, organ explantation, severe trauma with extensive damage to the corpse such as amputation or exenteration, deviating scanning protocol, no PMCT data, rib fracture present in the volumetric CT data and the autopsy but not visible in the rib unfolding tool or in which the rib defect was in the cartilaginous part	times split into 2 sets (train/validation and test sets) then 5-fold stratified CV on the train/validation set (85% of all data) split into 344/86 images then test on 77 images (15% of all data). No external validation. Feature: PMCT images	adjusting the weights only on the batch normalization layers		0.91±0.04		
Ibanez et al., 2022 [45]	Original article	Peer- reviewed article published in 2022	Presence of fracture or not	Real data, dead human subjects	of stains, early acute myocardial infarction (1 day old), healing myocardial infarction and other causes of myocardial scarring 55 females with median age of 64 years old and 140 males with median age of 54	108, 15 and 30 images respectively. No label imbalance. No external validation. 585 images (255 with rib fractures, 252 without fracture, 78 with old fractures) 5-	CNN (architecture is given). Overfitting bandled by	Mean Recall, mean precision, mean F1 score	Recall, precision and F1 (means) are respectively 0.93±0.05, 0.89±0.03	No use in real case is reported	2

in 2022	subjects	the West China	(1915 images)	handled by	Caucasian	
		Han group	and test (207	transfer	population	
		without showing	images) sets.	learning.		
		any deformity or	2 test datasets:			
		diseases in the	361 pelvic			
		femur region,	radiographs from			
		and aged	Han pop (207			
		between 18 and	from 18 to 26			
		26 years old.	years old			
		Caucasian	individuals and			
		population.	154 from 27 to 80			
			years old			
			individuals) and			
			50 pelvic			
			radiographs from			
			Caucasian pop (23			
			from 18 to 26			
			years old			
			individuals and 27			
			from 27 to 80			
			years old			
			individuals).			
			Data unbalanced			
			in age.			
			Feature: pelvic			
			anteroposterior			
			radiographs			