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Supplementary Information

Supplementary Tables

Supplementary Table 1. Public datasets used in this study.

Datasets GEO Accession Number/databases Usage

TF activity inference,

Microarray gene differential expressed gene
. GSE6891'7 ) .
expression data analysis, gene set enrichment,

network construction

ATAC q GSE74912° Context-specific TF-target gene
-seq data

relationships
TRRUST*, RegNet’, and TFactS®, TRED’,
TF-target General databases for TF-target
FANTOMS®, ChEA’, TRANSFAC'", S
databases gene relationships

JASPAER'!, ENCODE'", and RcisTarget"’

Supplementary Table 2. The choice of optimization hyperparameters.

Parameters Values

TF binding probability (ATAC-seq) 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.12, 0.14, 0.16,
0.18, and 0.20 (11 values)

Number of TFs per method (NetAct, VIPER, RI) 4 to 60 at an interval of 4 (15 values)

TF activity correlation cutoff 0.0 to 0.95 at an interval of 0.05 (20 values)
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Supplementary Figures
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Supplementary Fig. 1. (related to Fig. 1) Inferred putative GRNs. (a) Initial network with 52 nodes and
122 interactions. (b) Left plot shows 13 GRNs obtained at different TF activity correlation threshold from
the initial network shown on panel a. Right plot shows, from the 13 GRNSs, the largest subnetworks, each
of which have more than 80 percent of the nodes of the corresponding sampled network.
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Supplementary Fig. 2. (related to Fig. 4) Coupling of biological pathways associated with the optimal
GRN. Nodes represent pathways as labeled. The two numbers within each node represent the number of
transcription factors (TFs) corresponding to that pathway and the total number of genes targeted by those
TFs, respectively. The two numbers on each edge label represent number of links between the two TF
groups and the number of common target genes targeted by the TF groups. Thicker edges indicate
comparatively more TF links between the two groups. Dotted edge indicates no links found between the
two TF groups. Target gene names by each TF in the optimal GRN are listed in Supplementary Table 4.
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Supplementary Fig. 3. (related to Fig. 6a) Gene perturbation simulations on the optimal GRN.
RACIPE model proportions (ordered) for (a) single knockdown and (b) double knockdown simulations.
Blue proportions represent RACIPE models mapped to the samples of the normal control. The red
proportions represent RACIPE models mapped to the samples of the AML patients.
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Supplementary Fig. 4. (related to Fig. 6¢) Examples of changes in gene expression profiles upon single
knockdown perturbations. Left: Perturbations that increase AML proportions. Right: Perturbations that
decrease AML proportions.
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Supplementary Fig. 5. (related to Fig. 7) Additional results for patient survival analysis. Kaplan-Meier
curves for event free survival for individual TFs on the AML GRN using all 119 AML patients with p-
value <= 0.05. (a) RARA, (b) USF2, (c) POU2F1, and (d) GATAL.
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