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Methods 
 

Data preparation 

Private data preparation 

 

Full details can be retrieved from the data preparation manual which is made available as supporting 

information together with this manuscript. During the project, the manual served as guideline to the 

private data preparation at the different pharma partners. The end result of that data preparation is a set 

of files that can serve as input to the machine learning with SparseChem.1 

Public data preparation 
 

The public data were extracted from ChEMBL (version 25)2 which provides a curated database of 1.8M 

drug-like molecules measured on 1.1M assays. Three different assay categories were extracted: ADME 

and toxicity assays, physical-chemistry assays, and binding and functional assays. Given that the ChEMBL 

dataset is very heterogeneous, some filters were applied to extract only clean and relevant data. All the 

following samples were removed: assays without pchembl value, assays with less than 50 points, assays 

with type not in ['IC50', 'EC50', 'Ki', 'Kd', 'Potency', 'AC50']. The unit was standardized to nM. Then, the 

physical-chemistry assays have been manually merged when experimental protocols (pH, solvent, etc.) 

are similar to each other. A cutoff of 8 has been applied on the confidence score provided by ChEMBL 

which evaluates the relationship between the target and the assay for the binding/functional assays to 

keep only homologous or direct single protein target. 

Compared to private data, public data are a collection of assays measured on a relatively small number of 

compounds – often from the same chemical series. These data are usually generated and shared by 

different contributors; therefore, the same assay can be measured differently. To maintain a reasonable 

number of assays (given the number of compounds) and to keep them ‘predictable’ i.e. with a sufficient 

number of measured compounds, a merging strategy has been developed and applied on functional 

assays similar to each other if they had the same units of measurement and comparable value 

distributions. The DBScan clustering algorithm was used using the Kolmogorov-Smirnov statistic as 

distance. Two value distributions have been considered comparable if belonging to the same cluster, the 

outliers being left alone by the algorithm as expected. This method led to a diminution of approximately 

20% of the total number of assays in the output public dataset. The code to generate this data has been 

made available on GitHub.3  

 

High-content-data-based pseudolabels 
 

In the context of modelling pharmacological assays, previous work has pointed towards the value of high 

content data such as those resulting from cellular imaging experiments.4,5 Such data can serve as a data 

source complementary to chemistry-based features such as molecular fingerprints. Federated modelling 

directly on the cell morphological features extracted from the images was infeasible due to the 

discrepancies between approaches of the different pharma partners. Instead, high-content-based (image-



4 
 

based) predictions were generated and transformed into auxiliary tasks which could flexibly be included 

into the Y matrix without the need to reveal any potentially sensitive information. More concretely, we 

built a predictive model for all targets in the partner’s dataset using the image-based descriptors, and 

used the predictions (after quality and confidence filtering) as pseudolabels in a set of auxiliary tasks (see 

Figure S1).  The introduction of this type of image data was optional, and one of the advantages of the 

approach was that partners had the option not to reveal the inclusion of such auxiliary tasks if desired.  

 

 Figure S1. Scheme of the core of the pipeline to generate pseudolabel data. Xi: high content feature input matrix. Ŷi: high-
content-based prediction matrix, Y’i: high-content-based pseudolabel matrix, Y: original label matrix.  

The pipeline consisted of three main steps:  

1) Training of a model based on high content data 

2) Transformation of that model’s predictions to binary pseudolabels as auxiliary tasks (Figure S1) 

3) Concatenation of the new auxiliary tasks to the MELLODDY dataset 

The pseudolabel approach was limited to the classification setting and the resulting AUX_PL tasks served 

as complement to the AUX_HTS tasks.  

The reliability of the predictions from the high content data model were enforced in two ways. As a 

selection on the columns, an overall task performance of 0.8 negative and positive predictive value 

(NPV/PPV) was recommended in order for the task to be considered as candidate (quality filtering). As a 

selection on the rows, only the singleton predictions from the conformal prediction framework were 

considered, constituting the predictions where the model can confidently assign a single class (confidence 

filtering). The conformal prediction code from previous work was used,6 setting the error rate to 0.05. 

Enforcing the quality and confidence of the pseudolabels was important since analysis showed that 

information transfer from the auxiliary tasks to the main tasks would happen even when the quality of 

the pseudolabels degraded, hereby degrading the predictive performance of the main tasks.  

Pseudolabel auxiliary tasks hence mirrored the corresponding main tasks of interest through the lens of 

the used high content data source. If a main task is predicted effectively by the high content data source, 

the auxiliary task will consist of a large number of data points, and extensive information transfer to the 
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main task can be expected (Figure S2). More specifically, this information transfer would especially be 

expected in unlabeled space since the auxiliary task predictions would inform compounds where the 

labels are unknown. Established performance metrics such as AUC-ROC or AUC-PR are unsensitive to such 

changes, therefore the cross-AUC metric is considered, which captures such changes by comparing the 

auxiliary task pseudolabels with the main task predictions. The cross-AUC-ROC is defined as the AUC-ROC 

calculated by comparing the compound predictive probabilities for the main task with the ‘labels’ from 

the image-based auxiliary task, i.e. the pseudolabels derived from image model predictions. In other 

words, the cross-AUC can be seen as a measure for how well a main task is predicting its corresponding 

pseudolabels. So, the AUC is calculated over two tasks, hence its prefix ‘cross’. Figure S3 demonstrates 

two main points: 1) the variation along the x-axis (AUC-ROC) is much smaller than the variation along the 

y-axis (cross-AUC-ROC), and 2) There is a positive effect upon inclusion of the pseudolabel-based auxiliary 

tasks.  

The full pipeline to generate pseudolabel data has been made available on GitHub.7  

 

 

Figure S2 Illustration of information transfer upon inclusion of pseudolabels.In the left pane, the situation without pseudolabels 
and the performance evaluation through a held-out test set.  In the right pane, the performance in unlabeled space underlies the 
cross-AUC metric. It can be seen as a measure for how well a main task is predicting its corresponding pseudolabels.  
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Figure S3. Comparison between the performance on a held-out test set (x-axis, delta AUC-ROC), and the performance in 
unlabeled space (y-axis, delta cross-AUC-ROC). Blue dots represent task performances.  

 

Figure S4. Out of three partners, two report gains in AUC-PR and AUC-ROC upon inclusion of image-based auxiliary tasks. A set of 
models with different hyperparameters (line plots) or identical hyperparameters (blue envelop) are shown. Results show that 
intermediate values of quality admission criteria tend to be most favorable, possibly illustrating a trade-off between data volume 
and conflicting signal.  

 

MELLODDY-TUNER 
 

Following defining the data entry criteria and its subsequent data extraction, a data preparation workflow 

has been developed and executed on each partners’ own environment to ensure consistent 

standardization of chemical structures and bioactivity across consortium members. An associated open-

source python package called MELLODDY-TUNER8 has been implemented covering chemical structure 

processing, descriptor calculation, fold assignment, replicate aggregation, and several data quality 

assessments and filtering (see the data preparation manual for full details). All operations related to 
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chemical structure processing are built on the open-source cheminformatic software package RDKit.9 

Structure processing includes structure sanity checks, tautomer standardization and calculation of ML-

suitable molecular representations, in this case chemical fingerprints (Extended Connectivity Fingerprints 

(ECFP),10 implemented as Morgan fingerprints in RDKit), which serve as input features for training a ML 

model. To obtain uniform assignment of training, validation and test fold across partners without sharing 

sensitive compound information, a scaffold-based approach has been integrated into the data 

preparation tool.11,12 After replicate aggregation, an automated thresholding procedure generates 

classification tasks and their task weights. Training and evaluation data volume quorum checks are applied 

to filter both classification and regression tasks. These quora vary given the assay type. Exact configuration 

settings can be found in the data preparation manual. Finally, matrix representations of the input features 

(X) and the output tasks (Y) are stored in a format suitable for modelling. 

 

Evaluation 

 

Assay types 
 

Full details on the assignment of assays to assay types can be retrieved from the data preparation manual, 

particularly in section 3.2. Here we limit ourselves to extending on the manual’s contents.  

In the manuscript, one subcategory of assays are the alive assays. Alive assays are defined as assays  

characterized by having at least one datapoint between April  2021 – December 2021, while also meeting 

the training quora with data prior to April  2021. The period from April  2021 – December 2021 

corresponds to the time interval between the two last federated runs, and was chosen for practical 

reasons.  

Another subcategory is the first line safety panel assays. This is the general panel of safety pharmacology 

assays, that compounds typically get submitted to first before submission to more comprehensive panels 

at a later stage of the discovery project. Typically, submissions are made jointly to all assays of that panel, 

resulting in a densely populated block of the Y matrix for these assays. An example is a panel of ~40 assays 

described in Bowes et al..13 25 assays were posed as the minimum volume for the analysis. This panel may 

show significantly overlap with the assays used in catalogue fusion. Not all partners designated this assay 

type in their datasets.  

While the data preparation manual distinguishes between catalog and non-catalog panel assays, both 

assay types have been combined in the manuscript, and any aggregations treat both types separately and 

with equal weight.  

 

 

Non-evaluated tasks and datapoints  
 

Table S1. Data volume quora which classification (CLS) and regression (REG) tasks had to fulfill to be considered as endpoint, in 
training, and in evaluation. Only tasks that passed the classification training quorum were considered for regression models. 
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Assay type  Quorum Type  Classification  Regression 

Primary Prediction endpoints  

 

NON-CATALOG 

PANEL  

OTHER  

ADME 

Training 25 observations per class 

label (active/inactive) in 

whole dataset 

50 observations in whole 

dataset  

 

25 observations without 

qualifier in whole dataset 

Evaluation 25 observations per class 

label (active/inactive) in 

each fold 

50 observations in each fold 

 

25 observations without 

qualifier in each fold  

 

For non-ADME: Standard 

deviation > 0.5 in all folds 

Primary Prediction endpoints  

 

CATALOG-PANEL 

Training 400 observations in total Not applicable (catalogue 

fusion is not used for 

regression) CATALOG-PANEL 

tasks are treated as NON-

CATALOG-PANEL tasks 

Evaluation 25 observations per class 

label (active/inactive) in 

each fold 

Not applicable (catalogue 

fusion is not used for 

regression) CATALOG-PANEL 

tasks are treated as NON-

CATALOG-PANEL tasks. 

AUX_HTS  

AUX_PL 

Training 10,000 measurements 

10 actives 

Not applicable (no auxiliary 

data in regression for year 3) 

Evaluation Not applicable Not applicable 

 

 

Applicability domain  

The conformal efficiency as a metric for a classifier’s applicability domain (AD) was calculated by the 

Mondrian Inductive Conformal Predictor approach,23,26,41 with the non-conformity function based on the 

predictive probabilities and an error rate (ε) set to 0.05. Only non-auxiliary tasks of sufficient size, class 

balance, and predictive quality were considered. Concretely, 25 actives and 25 inactives, and an AUC-ROC 

of 0.6 was required on the calibration set, which was formed by splitting the original test set in 

approximately half. Unless stated otherwise, the reported conformal efficiency was calculated on an 

unlabeled dataset with compounds from an undisclosed commercial catalog, due to its relevance to the 

use case of finding new hit material with the federated models. This is a dataset consisting of 10,000 

randomly sampled compounds from an external commercial, small-molecule drug discovery catalog 

(commercial catalog 2).23 

 

Training details  
 

Phased approach 
 

The training process was organized using the standard training/validation/testing split in the compound 
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space.14 More specifically, in Phase 1 hyperparameter tuning of the model was performed using 60% of 

the data (i.e. 3 out 5 folds) for training and 1 fold for evaluation. In Phase 2 models were trained on 80% 

of the data (3 training folds from Phase 1 + the validation fold) based on the best hyperparameters 

identified in Phase 1 and evaluated on the remaining (fifth) test fold. These results are reported in this 

manuscript. Phase 3 models were trained on all data, and were of practical relevance through internal use 

by the pharma partners. Due to the lack of data for testing, the performance of the latter models cannot 

be evaluated within the scope of this project. More details on the procedure and implementation can be 

found in Oldenhof et al..15  

 

Optimal hyperparameters  
 

Table S2. Specifications and ranges of optimal architectures in single-partner models. ‘N/A’ indicates that the corresponding 
parameter was not used. Square brackets indicate multi-value hyperparameters. Semicolons separate discrete hyperparameter 
sets for partners.  

 
 

CLS CLSAUX REG HYB 

Number of layers 1;2 1;2 1;2 2 
Number of epochs 20 20 20 20 
Learning rate steps 10 10 [2 5]; [2 10]; [2 15] [2 5]; [2 10]; [2 15] 
Regression weight N/A  N/A  N/A 0.5;0.75 
Dropout rate trunk 0.6 - 0.8 0.4 - 0.8 0.8 0.8 
Dropout rate head REG  N/A  N/A N/A; 0.4 0.4 

Dropout rate head CLS N/A;  0.6 N/A; 0.4 - 0.6 N/A N/A 

Trunk layer size 2000 - 5000 1600 - 12000 1000 - 3000 1000 - 3000 

Head layer size REG  N/A N/A N/A; 3000 - 5000 1000 - 5000 

Head layer size CLS N/A; 2000 N/A; 4000 - 6000  N/A N/A 

 
Table S3. specifications and ranges of optimal architectures in multi-partner models. ‘N/A’ indicates that the corresponding 

parameter was not used. Square brackets indicate multi-value hyperparameters. Semicolons separate discrete hyperparameter 

sets for partners. 

 
 

CLS CLSAUX REG HYB 

Number of layers 1-2 2-3 2 2 

Number of epochs 30 50 30; 50 50 
Learning rate steps [10] [10 30]; [20 30]; [30 40] [2 10]; [2 8 14] [2 10] 
Regression weight N/A N/A N/A 0.5; 0.75 

Dropout rate trunk 0.8 0.6; 0.8 0.8 0.8 

Dropout rate head REG N/A N/A 0.4; 0.6 0.4; 0.6 

Dropout rate head CLS N/A; 0.4 0.4 N/A N/A 

Trunk layer size 8000;11000 8000; 11000 2000; 6000 2000; 4000; 6000 
Head layer size REG N/A N/A 8000 6000; 8000 

Head layer size CLS 8000; N/A 8000; 11000; [11000, 8000] N/A N/A 

Number of minibatches 50 80 50 50 

Maximum size of internal batch 1000 1000 1000 1000 
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Hybrid models 
 

The current section discusses the impact of classification auxiliary tasks on regression models and vice 

versa. The joint modelling of classification and regression tasks results in hybrid models. Here, three hybrid 

model setups with a different emphasis on regression and classification tasks, were evaluated. 

In Figure S5, panel a shows Pareto frontiers of performance differences for the regression and 

classification metrics between the results of a set of hybrid models and optimal baseline models purely 

trained on regression and classification tasks, respectively. The contributions of regression and 

classification tasks during model training were balanced by the regression weight parameter, wREG, which 

linearly scaled the loss function impact from a pure classification model (wREG=0.0), to a CLS-emphasized 

hybrid (wREG=0.25), to a balanced hybrid (wREG=0.5), to a REG-emphasized hybrid (wREG=0.75), to a pure 

regression model (wREG=1.0).  

For each value of wREG, Pareto frontiers were extracted from a set of 25 hybrid models trained in Phase 1 

on the single-partner level. Panel b shows an identical analysis for another regression metric (correlation 

coefficient). Results are illustratively shown for one pharma partner. Trends were found to be consistent 

across multiple partners participating in the investigation. The results of this analysis demonstrate that 

only regression models benefited from a hybrid model setup which was the motivation for taking a 

regression-focused hybrid setup to the federated platform in which classification tasks were considered 

purely as auxiliary data. 

 

Figure S5. Pareto-plot showing classification and regression model performance vs. the baseline. Three regression weights (wREG) 
were investigated for a single partner on a full scale multitask dataset, with hyperparameter optimization. 

 

 

Privacy attacks 
 

Since the code of the clients and the server of the MELLODDY platform is audited and verified,15 the 
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privacy analysis only considered passive attacks, specifically membership inference attacks, which infer if 

a specific record was part of the target model's training dataset.16 A comprehensive list of other attacks is 

provided in Liu et al..17 Within MELLODDY, secure aggregation is applied to prevent attribution, which 

restricts the access to individual model updates.18 

 

Relation to existing work 

 

MELLODDY applied a federated multitask learning conceptually similar to the approach of Smith et al..19 

An example from the latter work, is the modelling of sitting behavior (binary classification of whether or 

not the user is sitting down) for mobile phone users with features obtained from the phone’s 

accelerometer and gyroscope. Here, a single task was modelled for each user, and the multitask aspect 

applied to the federated setting where the modelling of the users was done jointly. In this case, multitask 

learning exploited commonalities between users for predictive performance improvements.  

This maps to the MELLODDY case since a partner’s tasks (assays) were individual, but related tasks would 

be present across partners. For all partners, most assays would measure either the binding interaction of 

small molecules with large target biomolecules, especially proteins, either directly or by detecting 

downstream effects resulting from such an interaction. To some extent these targets were expected to 

overlap exactly between partners,20 although no explicit target mapping has been performed in 

MELLODDY and the modelling was unaware of the targets associated with the assays.  In addition, the 

partners also shared common pharmacokinetic and physical properties as modelling tasks.  Just as 

modelling sitting behavior for two different people could benefit from joint modelling, modelling the 

activity on common pharmacological target types or physical properties could similarly benefit across 

pharma partners. 

In the classification framework of Yang et al.,21 the modelling of sitting behavior corresponds to horizontal 

federated learning since Xi = Xj , Yi = Yj , Ii  ≠ Ij, with feature space X, label space Y, sample ID space I and i,j 

indexing different partners. Even though one could argue that the label space is different since we are 

dealing with individual models, sitting conceptually means the same across users and the users could also 

be modelled together. Therefore, the label space can be considered the same. Since this is not a priori the 

case in MELLODDY, we classify MELLODDY as Xi = Xj , Yi ≠ Yj , Ii  ≠ Ij.22 It can be remarked that the catalog 

assay fusion approach described in this work can be classified as horizontal federated learning, i.e. X i = Xj 

, Yi = Yj , Ii  ≠ Ij. 

 

Safety comment 

 

Since the study was limited to computational work, and did not involve lab activities or experiments, no 

unexpected or unusually high safety hazards were encountered.  
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Released software 
 

The following software packages have been made available:  

- MELLODDY-TUNER 

https://github.com/melloddy/MELLODDY-TUNER 

- Model predictive performance evaluation 

https://github.com/melloddy/performance_evaluation 

- Pseudolabel data preparation 

https://github.com/melloddy/pseudolabel_auxdata 

- Scaffold-based multi-party simulation split 

https://github.com/melloddy/simulated-multi-partner-splits 

- Public data preparation 

https://github.com/melloddy/public_data_extraction 

- Model manipulation software 

https://github.com/melloddy/MELLODDY-Predictor 

 

Avenues to explore 
 

Model fusion 
 

Given the wealth of obtained models (e.g., arising from different architectures or auxiliary data), 

exploration of model ensembles as sources of performance gains becomes possible. Such approaches 

have been shown successful23 and make particular sense for MELLODDY which optimizes average 

performance, potentially disregarding optimal models for specific tasks or groups. Still, care is needed to 

avoid overfitting given the number of available models. To this end, rigorous selection of models for each 

task based on the validation sets and confirming the benefit on held-out test sets is performed. This also 

allows evaluating combinations of single- and multi-partner models. Preliminary results obtained from 

several companies indicated that per-task selection can favor models different than the average top-

performers. Limited project time and complexity of designing model groups prevented finding ensembles 

that would consistently outperform top multi-partner models on test sets but, given the post-processing 

nature of the analyzes, further selection schemes can still be explored. 

 

Catalog assay fusion  
 

Catalog assay fusion consists of cross-compound federation through assay reconciliation. On the 

federated platform, this is achieved through a shared catalogue head (Figure S6).  The reconcilable 

CATALOG-PANEL assays were derived from list of safety panel assays, based on identical protocols since 

they were outsourced to contract research organizations.  

To explore the impact of catalog assay fusion on the model performance, an experiment was set up with 

three virtual partners using public dummy data. The virtual partners were created with the splitting code 

(ref), based on a random selection of assays from the public dataset (15 assays resulting in 39 tasks). Three 

https://github.com/melloddy/MELLODDY-TUNER
https://github.com/melloddy/performance_evaluation
https://github.com/melloddy/MELLODDY-TUNER
https://github.com/melloddy/simulated-multi-partner-splits
https://github.com/melloddy/MELLODDY-Predictor
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setup were explored: ‘fusion’ (local, single-partner catalog assay fusion), ‘no fusion’ (local, single-partner 

catalog assay fusion disabled) and ‘MELLODDY’ (federated, multi-partner catalog assay fusion for the tasks 

of assay type ‘CATALOG-PANEL’).  

A performance increase was observed for the virtual partners comparing catalog fusion enabled (‘Fusion’) 

compared to catalog fusion disabled (‘No fusion’), both relative to the respective single partner 

performance (median RIPtoP: Fusion= 22.7% > No fusion = 17.4%). Unfortunately, the promising single-

partner results upon cross-compound federation did not materialize on the federated platform (median 

RIPtoP: MELLODDY = -12.6%) (Figure S6).  

 

Figure S6. (Left) Catalog fusion scheme. Besides the private head containing all classification tasks, a shared catalogue head is 
built by mapping common assays across partners to the respective shared tasks. This shared head enables a cross-compound 
federation of these assays. (Right) Relative improvement of proximity to perfection (RIPtoP, %) for three different settings, showing 
that the promising single-partner results upon vertical federation (fusion vs. no fusion) did not materialize on the federated 
platform (MELLODDY).  

 

Local trunk  

 

Another aspect of the implemented algorithm is that it allows for practical postprocessing of the models 

to allow transfer learning.24–26 Indeed, the shared trunk of the federated models embeds a unique latent 

representation as it has absorbed the data of multiple companies. As such, this fixed shared trunk could 

be used as a molecular representation tool (SMILES-to-MELLODDY embeddings) and further employed in 

data science applications as input descriptor for other ML tools, that may ingest any other type of 

potentially complementary compound descriptors, like CDDD.27 Hereby, the knowledge transfer benefits 

from the federated learning can be combined with the flexibility of a partner-specific data representation 

accounting for specifics of a pharma partner’s assays and compounds. This approach allows leveraging 

federated information when locally modelling novel or enlarged assays. The shared trunk brings the 

benefit of information transfer between partners, but it might overly restrict the learned data 

representation. This possibility was assessed by complementing the fixed multi-partner trunk with a 

partner-specific, local trunk, trained on a partner’s data. However, experimental results (Figure S7) based 

on per-partner best multi-partner and single-partner classification models did not demonstrate consistent 

performance gains. 
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Training details:  

The hyperparameters of the local trunk were selected using the trunk from a multi-partner Phase 1 model, 

i.e., the best multi-partner model trained on 3 out of 5 folds (i.e. excluding the validation and the test 

folds). The size of the local trunk size was varied (single-layer options are [200, 400, 800, 1200, 1600, 2000, 

2500, 3000], double-layer – [(1200,1200), (1600,1600)]). For dropout, the following search space was used 

[0.4, 0.5, 0.6, 0.7, 0.8]. The size of the hidden layer in the head was set to 8000.  

Based on AUC PR of the validation fold, the best hyperparameter configuration, as well as the best epoch 

were selected and applied to training a Phase 2 local trunk model using 4 out of 5 folds (excluding the test 

one) using shared trunk from a multi-partner Phase 2 model trained on the same 4 folds.  

 

 

Figure S7. Left: Delta in performance measured by AUC-PR on the test fold for Local Trunk (LT) and multi-partner (MP) 
classification models, with respect to single-partner (SP) models, demonstrated per pharma partner.  Right: schematic 
illustration of local trunk architecture. 

 

 

Time-dependent applicability domain 

 
One consequence of an applicability domain extension for the multi-partner models would be a more 

stable prediction reliability over time compared to single-partner models. Generally, a decline of reliability 

over time is expected because with more time having passed since training, new compounds are assumed 

to be more distant to the training data (a similar motivation is given by Sheridan et al.28 for time-split 

cross-validation and the over-time-decline observation is also discussed in Davis et al.29). This led to the 

idea for evaluating the applicability domain difference between single- and multi-partner models by 

quantifying their difference in performance decay over time. For this purpose, a new evaluation metric 

and algorithm was developed. Unfortunately, the nature of this idea requires having a sufficient 

timeframe after training passed over which the performance decay can be evaluated and compared. This 

makes such an evaluation for the final models built with this collaboration infeasible at the time of writing 

because not enough time has passed since their training data was compiled.   
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Preliminary experiments run by some partners using models and data from the previous run revealed 

cases where, depending on a given task, either single- or multi-partner models showed a slower decline, 

but also indicated challenges for reporting quantitative results. These are mainly due to two limitations: 

first, the comparatively small amount of data (a specific, limited timeframe and additionally partitioned 

into time bins) limits the expressiveness of statistical analyses of high-level aggregations.  Second, the 

possibility to report details is very restricted due to the sensitivity of the data, which could indicate assay 

usage rates over time if shown in detail.  

Concluding, while such an analysis provides some interesting insights to the participating companies, 

based on the currently available data it would be premature to draw conclusions. Consequently, sharing 

conclusions, results and more details about this approach has to be referred to future work hoping that 

more available prospective data will allow for that. 

 

 

Results 

 

Alternative visualizations 

 
In this section some alternative visualizations of the main results are presented, using RIPtoP, which 

allows for direct comparison with the manuscript. 

Figure S8 shows plots which outline the performance delta effects for both inclusion of auxiliary and other 

partners’ data. Performance deltas are presented on a per-partner basis as a function of the performance 

improvement relative to the single-partner, no auxiliary data, baseline. These plots can be seen as an 

alternative visualization for the Figures 3A, 4A, 5A in the manuscript. They aim to demonstrate whether 

the large volume of auxiliary data models increases overlap between the partners and allows the 

federated learning to extend its gains relative to not using auxiliary data. This would be the case when the 

SP*/MP* slope in green is larger than the SP/MP slope in blue. This does not consistently seem to be the 

case. 
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Figure S8. Plots outlining the performance delta effects for both inclusion of auxiliary (*) and other partners’ data (MP). 

 

Figure S9, Figure S10 and Figure S11 provide more detail to the ECDF Figures 3C-F, 4C-F and 5C-F in the 

main paper. Specifically, the maximum slope and the y=0.5 intersection point in the figures indicate that 

the SP baseline AUC-PR values typically ranged between 0.6 and 0.8 on a scale of 0.0 to 1.0, while average 

R2 values were at lower values (around 0.3 to 0.4).  

The CDF expresses the fraction of the population with a value lower than the threshold. For example, at 

AUC ROC = 0.8 the SP curve is somewhat higher than the MP curve. This indicates that there is a higher 

proportion of SP tasks that have an AUC ROC value lower than 0.8 compared to the MP tasks. Hence, MP 

is outperforming SP. At AUC ROC = 0.5 there are (close to) zero tasks that have an even lower AUC ROC 

value. On the other hand, no tasks can exceed the theoretical maximum of AUC ROC = 1. The curves 

actually split the full set of tasks into two parts at every possible threshold value: one passing the threshold 

(success, high performance, area above the curve), one not passing the threshold (failure, low 

performance, area below the curve). 
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Figure S9. Empirical cumulative distribution plots (CDF) for multi-partner and single-partner models for RIPtoP(AUC-ROC) (top), 

and the difference between both (bottom). The error bars indicate the interquartile ranges over partners.  
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Figure S10. Empirical cumulative distribution plots (CDF) for multi-partner and single-partner models for RIPtoP(CE) (top), and 
the difference between both (bottom). The error bars indicate the interquartile ranges over partners. 
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Figure S11. Empirical cumulative distribution plots (CDF) for multi-partner and single-partner models for RIPtoP(R2) (top), and 
the difference between both (bottom). The error bars indicate the interquartile ranges over partners. 

 

Applicability domain 
 

The dependency of the ΔCE on the type of unlabeled dataset was explored previously.6 In this work, 

summarizing, similar trends between datasets for the final MELLODDY models are found, e.g. DrugSpaceX 

having the lowest median for 10/10 partners (Figure S12). 

 

Figure S12. Partner-level predictive confidence analysis via the task-distribution of conformal efficiency difference (ΔCE, MP*-SP*) 
considering several datasets.  Lighter shades represent the unlabeled datasets, darker shades the labeled datasets. The different 
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datasetes are indexed by integers on the x-axis. DrugSpaceX is indexed by 15. See Heyndrickx et al.6 for full details on the datasets). 
Letters A-J correspond to partners and do not necessarily match previous assignment.  

 

 

Alternative delta modalities  
 

In this section, figures on alternative delta modalities (i.e. alternatives to the RIPtoP) such as relative 

improvement (RI) and the absolute delta (Δ) are explored, for classification (including the applicability 

domain) and regression. These describe task-level performance by comparing  the model of interest 

(MoI) with the baseline. 

 

𝑅𝐼(𝑚𝑒𝑡𝑟𝑖𝑐) =
𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑜𝐼 −𝑚𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑚𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

(1) 

𝛥(𝑚𝑒𝑡𝑟𝑖𝑐) = 𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑜𝐼 −𝑚𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 
 

(2) 

 

 

Figure S13, can be seen as equivalent to the Figure 3 in the main paper. Figure S14, Figure S15, Figure S16 

and Figure S17 can be seen as equivalents to the Figures 4A-B, 5A-B and 6A-B in the main paper. They aim 

to provide more insight into the effect of swapping RIPtoP with another delta modality such as RI or Δ. 
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Figure S13. Performance deltas (between multi-and single-partner runs) across-companies for their respective optimal model 
(i.e., with/without auxiliary data). 

 

Figure S14. The effect of multi-partner (MP) and auxiliary data (*) on the median task performance, for 5 smaller (dashed lines) 
and 5 larger (solid lines) partners, for the absolute delta (Δ).   

 

 

Figure S15. Distribution of median task performance (Δ) over partners.   

 

 



22 
 

  

Figure S16. The effect of multi-partner (MP) and auxiliary data (*) on the median task performance, for 5 smaller (dashed lines) 
and 5 larger (solid lines) partners, for the relative improvement (RI).   

 

 

Figure S17. Distribution of median task performance (RI) over partners.   
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Figure S18: Multi-partner gains averaged over all partners for different absolute and relative delta modalities, i.e., from left to 
right, relative improvement (RI), absolute delta (Δ), and relative improvement of proximity to perfection (RIPtoP). The top pane 
shows the median delta modality, the bottom pane the 90th percentile delta modality. The error bars indicate the interquartile 
ranges over partners.  

  
 

 

Figure S19 shows the dependency of the RIPtoP and the RI on the SP baseline. Lower values of the SP 

baseline lead to higher RI values upon MP improvement (left), while higher values of the SP baseline lead 

to lower RI values upon MP improvement (right). In other words, relative performance improvements 

closer to the end of the scale are emphasized by the RIPtoP metric, hereby reflecting the increasing 

difficulty to improve an already good baseline, which was of higher interest than increasing a poor 

baseline by a modest margin.  

 

Figure S19: Comparison of two approaches for measuring relative performance improvements, proximity-to-perfection (RIPtoP) 
(red line) and relative improvement (RI) (blue line), and their dependence on the position of the single-partner baseline value 
(green bar). 
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Alternative performance metrics 

 
A commonly used metric as alternative to R2 for regression is the correlation coefficient. From Figure 

S20 it can be seen that gains on the correlation coefficient regression metric are positive for all partners. 

 

 

Figure S20. TOC-like figure for showing that the correlation coefficient regression metric are positive for all partners 
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Figure S21.  Regression performance results from the federated run. (A) The effect of multi-partner (MP) and auxiliary data (*) on 
the median task performance, for 5 smaller (dashed lines) and 5 larger (solid lines) partners. (B) Distribution of median task 
performance RIPtoP(Correlation Coefficient)) over partners. (C-F) Difference between the empirical cumulative distribution 
functions (CDF) from single and multi-partner models for different assay types based on Correlation Coefficient. The y-axis 
represents the difference between the proportion of tasks in the multi- versus single-partner models, as a function of a given 
cumulative performance on the x-axis. The line plots indicate the median probability difference for a bin over partners. The 
interquartile ranges are indicated with the shaded envelope. 

 

Task size effect  
 

 

Figure S22 and Figure S23 show the relationship between the task size and the change in task’s 

performance for three partners. The fitted second-order polynomial is shown in black, indicating that 

there is no strong relationship between the task size and the observed task performance change. For 

classification, an upward trend can be seen towards larger task sizes, especially for the RIPtoP(AUC-PR). 

This indicates that the largest tasks benefit the most from federated learning. However, it should be noted 
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that the relative density of tasks in these large size regions is lower than average, and as such, the upwards 

trend was caused by a relatively small number of tasks. No such trend could be observed for regression.  

 

  

  

  
Figure S22. Effect of task size on the absolute (left) and RIPtoP (right) task performance for classification. Each row corresponds 
to a pharma partner. The black curve is a fitted second-order polynomial to all tasks, ignoring outliers for RIPtoP(AUC-PR). The 
density of tasks (kernel density estimation) is shown. Outliers for RIPtoP(AUC-PR) between -0.5 and 0.5 were removed from the 
analysis.  
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Regression  

  

  

  
Figure S23. Effect of task size on the absolute (left) and RIPtoP (right) task performance for regression. Each row corresponds to 
a pharma partner. The black curve is a fitted second-order polynomial to all tasks. The density of tasks (kernel density 
estimation) is shown. 
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