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Materials and Methods 
Sample acquisition and selection 

Samples were acquired from three different sources. 1) De-identified second-trimester 
tissue samples were collected at the Zuckerberg San Francisco General Hospital with 
previous patient consent in strict observance of the legal and institutional ethical 
regulations. Protocols were approved by the Human Gamete, Embryo, and Stem Cell 
Research Committee (institutional review board) at the University of California, San 
Francisco. These fresh tissue samples were dissected and snap-frozen in isopentane on dry 
ice. 2) De-identified second-trimester, third trimester and early postnatal tissue samples 
were obtained at the UCSF Pediatric Neuropathology Research Laboratory led by Dr. Eric 
Huang. These samples were acquired with patient consent in strict observance of the legal 
and institutional ethical regulations and in accordance to research protocols approved by 
the UCSF IRB committee. These samples were dissected and snap-frozen either on a cold 
plate placed on a slab of dry ice or in isopentane on dry ice. 3) Banked de-identified second-
trimester, third trimester, early postnatal and adult tissue samples were obtained from the 
University of Maryland Brain and Tissue Bank through the NIH NeuroBioBank. 

For postnatal ages, samples from individuals with known history of brain disorders or brain 
trauma were excluded from downstream analyses. For prenatal samples, samples with 
unusual neuropathology following pathological examination, as well as samples positive for 
commonly tested chromosomal aberrations, were excluded. Prior to performing nuclei 
isolation and single-nucleus RNA sequencing, samples were screened for RNA quality by 
collecting 100um-thick cryosections, isolating total RNA and measuring RNA Integrity 
Number (RIN) using the Agilent 2100 Bioanalyzer instrument. Only samples with RIN >= 6.5 
were included in the study. 

Nuclei isolation and generation of single-nucleus RNA-seq data using 10x Genomics platform 

40 mg of sectioned brain tissue was homogenized in 5 mL of RNAase-free lysis buffer (0.32M 
sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10 mM Tris-HCl, 1 mM DTT, 0.1% Triton 
X-100 in DEPC-treated water) using glass dounce homogenizer (Thomas Scientific, Cat # 
3431D76) on ice. The homogenate was loaded into a 30 mL thick polycarbonate 
ultracentrifuge tube (Beckman Coulter, Cat # 355631). 9 mL of sucrose solution (1.8 M 
sucrose, 3 mM MgAc2, 1 mM DTT, 10 mM Tris-HCl in DEPC-treated water) was added to the 
bottom of the tube with the homogenate and centrifuged at 107,000 g for 2.5 hours at 4°C. 
Supernatant was aspirated, and the nuclei containing pellet was incubated in 250 uL of 
DEPC-treated water-based PBS for 20 min on ice before resuspending the pellet. The nuclear 
suspension was filtered twice through a 30 um cell strainer. Nuclei were counted using a 
hemocytometer and diluted to 2,000 nuclei/uL before performing single-nuclei capture on 
the 10X Genomics Single-Cell 3’ system. Usually, the target capture of 3,000 nuclei per sample 
was used; the 10x capture and library preparation protocol was used without modification. 
Single-nucleus libraries from individual samples were pooled and sequenced on the NovaSeq 
6000 machine (average depth 60,000 reads/nucleus). 

snRNA-seq data processing with 10X Genomics CellRanger software and data filtering 

For library demultiplexing, fastq file generation and read alignment and UMI quantification, 
CellRanger software v 1.3.1 was used. CellRanger was used with default parameters, except 



for using pre-mRNA reference file (ENSEMBL GRCh38) to insure capturing intronic reads 
originating from pre-mRNA transcripts abundant in the nuclear fraction.  

Individual expression matrices containing numbers of Unique molecular identifiers (UMIs) 
per nucleus per gene were filtered to retain nuclei with at least 400 genes expressed and less 
than 10% of total UMIs originating from mitochondrial and ribosomal RNAs. Individual 
matrices were combined prior to pre-processing and clustering with Seurat. 

snRNA-seq dataset integration, dimensionality reduction, UMAP embedding, clustering and 
cell type identification 

All of the following bioinformatics analysis steps are documented in an R script available at 
https://doi.org/10.5281/zenodo.7245297. 

In order to integrate snRNA-seq datasets, we utilized Harmony (1) integration using the 10x 
Genomics chemistry version as the grouping variable. Downstream data preprocessing, 
normalization, variable feature selection and PCA was performed using the standard Seurat 
pipeline (2). Selection of significant principal components was done using the elbow method. 
The selected components were used to perform UMAP embedding and clustering using the 
Louvain method. The identity of specific lineages and cell types was determined based on 
expression of known marker genes, as is shown in Figure 1 and Figure S1. 

Sex determination 

To determine the sex of individuals for which sex information was not available, we 
aggregated gene expression of all nuclei by individual and plotted individual-wise 
expression of the following genes: XIST, DDX3Y, KDM5D, USP9Y, ZFY, EIF1AY, UTY. 

Trajectory reconstruction and isolation of individual lineages 

Seurat UMAP coordinates were imported into monocle3 (3) for trajectory reconstruction. 
learn_graph function with custom graph_control options was used to construct the trajectory 
graph. We noticed that while the original trajectory graph generated by monocle3 
corresponded to the major cell lineages, it failed to connect some nodes that passed through 
populations of cells expressing shared lineage markers. Moreover, some trajectory branches 
did not correspond to biologically interpretable lineage progression, specifically the 
branches connecting two mature neuronal cell types containing only adult cells. We 
corrected these issues by modifying the trajectory according to the following principles: 1) 
if two terminal nodes failed to be connected but were passing through populations of cells 
expressing known lineage-specific markers (such as RORB for layer 4, TLE4/SEMA4A for 
layer 6b, CUX2 for layer 2-3 and CUX1 for layer 5-6-IT), we connected these nodes 2) if a 
branch connected nodes located in two mature cell types, we omitted this branch and 3) 
based on the first two principles, we isolated the shortest path between the node in the 
neural progenitor/radial glia cluster and the node in the mature cell type cluster.  

Identification of lineage-specific dynamically expressed genes 

First, we selected trajectory branches corresponding to specific lineages, as well as the cells 
along the branches. For the interneuron trajectory analysis, we only selected MGE or CGE 
cells from the GE progenitors cluster to analyze MGE and CGE-derived INs, respectively. 
Then, monocle3’s Moran's test (graph_test function) was used to identify genes that are 
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dynamically expressed in each lineage. We modified graph_test function to utilize Moran’s 
test with covariates to ensure that our results are not affected by uneven contribution of cells 
from male and female subjects, different brain regions, as well as cells postmortem interval 
and 10x chemistry. We selected genes with adjusted p value < 0.05 as statistically significant 
dynamically expressed genes. To identify lineage-specific genes, we first compressed the 
single-cell expression data along each lineage by using a sliding window along pseudotime 
and averaging expression of neighboring cells for each gene. We generated 500 meta-cells in 
each lineage using this approach. Then, we fit the expression of each gene using a generalized 
linear model and the following formula: expression ~ splines::ns(pseudotime, df=3). Then, 
we calculated the area under the curve for the smoothed expression/pseudotime plot for 
each gene in each lineage across intervals of the sliding window. The difference of under the 
curve between the lineage of interest and all other lineages was used to rank genes according 
to their lineage specificity. Moran’s p value < 0.05 and an expression difference of at least 
20% in one section of the sliding window was used to define lineage-specific genes. 

Analysis of single-cell ATAC-seq data and snRNA-seq/scATAC-seq integration 

Four scATAC-seq datasets were first remapped to the same hg38 genome reference. Then, a 
minimal non-overlapping consensus peak set was created based on the peaks from all 
datasets, and ATAC-seq counts were mapped on this set of peaks using Signac (4), and the 
datasets were combined. Then, gene activity matrix for the combined dataset was generated 
by counting ATAC peaks in the promoter region and the gene body, using the same 
parameters as used by the Signac package. For mapping scATAC-seq data on the snRNA-seq 
dataset, we first integrated the two modalities using Seurat’s FindTransferAnchors and the 
canonical correlation analysis (cca). We used the expression and gene activity of genes 
variable in the snRNA-seq datasets to perform cca and then used the TransferData function 
to map the scATAC-seq data on the snRNA-seq space followed by Harmony processing to 
regress the effect of different scATAC-seq and snRNA-seq chemistries. To map scATAC-seq 
profiles to the UMAP space and clusters we generated using snRNA-seq data, we identified 
100 nearest neighbors for each scATAC-seq cell in the combined snRNA-seq/scATAC-seq 
space and then calculated the UMAP coordinates and cluster membership in the snRNA-seq 
space. To validate the accuracy of this procedure, we checked for the specificity of gene 
activity of cell type markers, as well as for age distribution. This integration and mapping 
procedure was repeated for the three major lineage classes (excitatory neurons, 
interneurons and macroglial cells). 

SCENIC+ analysis 

SCENIC+ requires single-cell transcriptomic and scATAC-seq data mapped to the same 
category (e.g. cluster) and also recommends generating pseudobulk scATAC-seq profiles 
prior to the analysis. In order to prepare our data for SCENIC+ analysis, we first selected 
ATAC-seq cells along the lineage trajectories using a sliding window approach and keeping 
the cells in cell type-specific clusters. Then, we generated 2500 meta-cell pseudobulk ATAC-
seq profiles using the sliding window along each trajectory and summing all ATAC counts. 
We also generated 2500 meta-cells for the corresponding lineage-specific snRNA-seq 
profiles and restricted the analysis to lineage and branch-specific genes relevant to each 
lineage. In order to generate pseudo-multiome profiles from separate snRNA-seq and 
scATAC-seq datasets, we sorted cells into 10 bins based on the pseudotime progression. 



These pseudotime bins were also used to identify differentially accessible regions of 
chromatin and cis-regulatory topics using cisTopic (5), which was used with default settings, 
except for setting the differential features threshold to 25%. After generating pseudo-
multiome profiles, we performed SCENIC+ analysis as described in the tutorial. Significant 
enhancer-transcription factor-gene relationships in each lineage were exported as the final 
result. 

Identification of sex and region-enriched dynamically expressed genes 

To identify male and female-enriched genes in each lineage, we selected cells from only 
males or females within each lineage and first performed Moran’s I test separately for male 
and female data. Then, we compressed the data and calculated area under the curve for male 
and female gene expression. Genes with Moran’s I statistic >= 0.1, adjusted Moran’s p 
value<0.05 and the area under curve difference between male and female expression >= 50 
were considered sex-specific in each given lineage. 

Gene ontology analysis 

We used ShinyGO (6) to perform gene ontology analysis using genes expressed in each 
lineage as the background gene list. In order to reduce redundancy of the identified GO terms, 
all significant (adjusted p value < 0.05) terms were used as input to Revigo (7) in case more 
than 10 pathways were identified. The value of the resulting gene list of 0.4 was used. The -
log10(p value) and fold enrichment for the resulting non-redundant GO processes were 
reported. 

Analysis of enrichment of disease risk genes 

We intersected disease risk gene lists with our list of lineage-specific genes, as well as genes 
enriched in male and female developmental lineages. We calculated hypergeometric p values 
for each overlap, using genes expressed in each lineage as the background. 

Data visualization 

Cell type, gene expression and lineage trajectories for each lineage can be visualized at 
https://pre-postnatal-cortex.cells.ucsc.edu. 

MERSCOPE spatial transcriptomics  

Sample preparation was performed according to manufacturer’s instructions (MERSCOPE 
Fresh and Fixed Frozen Tissue Sample Preparation User Guide, Doc. number 91600002). 
Briefly, fresh snap frozen tissue with a high RNA integrity number (RIN>8) were sectioned 
(10um thick) using a cryostat and mounted on MERSCOPE functional slides. Sections where 
then fixed and stored at 70% ethanol for up to two weeks. Sections went through 
autofluorescence quenching under UV light for 3 hours using the MERSCOPE Photo-bleacher 
instrument. A Pre-designed panel mix (140 genes) focused on early emerging excitatory 
lineage-specific genes based on the single-nuclei analysis were used for probe hybridization. 
Hybridizations were performed at 37°C for up to 48 hours in a humid environment. Post 
prob hybridization, sections were fixed using formamide and embedded in gel. After gel 
embedding, tissue samples were cleared using a clearing mix solution supplemented with 
proteinase K for 24-48 hours at 37°C until no visible tissue was evident in the gel. After 
clearing was completed, sections were stained for DAPI and PolyT and fixed with formamide 
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prior to imaging. No additional cell boundary stainings were used. The MERSOPE imaging 
process was done according to the MERSCOPE Instrument Site Preparation Guide (Doc. 
Number 91500001). Briefly, an imaging kit was thawed at 37°C for 45 minutes, activated and 
loaded into the MERSCOPE instrument. The flow chamber was then assembled, fluidics were 
primed, flow chamber filled with liquid and a low-resolution image was taken. Based on DAPI 
staining, an ROI was chosen for the full imaging experiment. After imaging was complete, 
data was processed using MERSCOPE proprietary software. Further analysis, visualization, 
and integration of spatial data, was done using Seurat v5 (Source: 
vignettes/spatial_vignette_2.Rmd). Putative neuronal layer localization was predicted from 
co-localization with referenced markers at relevant developmental stages. 

 

 
Fig. S1. Technical and biological characteristics of the combined snRNA-seq dataset. 
A) Identification of the clusters containing neuronal debris. B) Integration of the current 
dataset with previously published datasets. C) Gene and UMI counts per nucleus, as well as 
mitochondrial reads ratio across all samples. D) Gene and UMI counts per nucleus across all 
cell types. E-F) Distribution of nuclei from different samples and regions. FC-
frontal/prefrontal cortex, CC-cingulate cortex, TC-temporal cortex, IC-insular cortex, MC-
motor cortex, CTX-cortex. G) Expression of sex-specific genes used to determine sex of 
samples with unknown status. 

 
  



 
Fig. S2. Excitatory neuron and interneuron lineage analysis. A) Expression of cortical 
excitatory neuron marker genes used to determine excitatory neuron lineages. B) Isolated 
lineages trajectories for excitatory neuron subtypes. C) Markers of interneuron subtypes. D) 
Isolated interneuron trajectories. E) Examples of biphasic, plateau, steady and drop 
expression of lineage and branch-specific genes. F) GO pathways enriched for burst and 
transient neuronal genes. G) Top subplate-specific dynamically expressed genes. 

 
  



 
Fig. S3. Spatial transcriptomic analysis of lineage-specific genes across development. 
A) UMAP embedding of annotated clusters. B) Spatial localization patterns of individual 
clusters (cluster colors and spatial location correspond with Fig. 2g). C) Spatiotemporal 
expression of layer-specific markers. 

 
  



 

 
Fig. S4. Analysis of glial and vascular lineages. A) Markers of OPCs, oligodendrocytes, 
fibrous and protoplasmic astrocytes B) Slingshot analysis of microglial lineage trajectories. 
C) Gene ontology analysis developmental microglia genes. D) Analysis of vascular cell types. 
E-F) Trajectory analysis of endothelial cells and pericytes. 

  



 
Fig. S5. Mapping developmental scATAC-seq to specific lineage trajectories. A) Gene 
activities of cell type-specific marker genes. B-D) Age distribution and selection of ATAC-seq 
cells for specific lineages of excitatory neurons (B), interneurons (C) and macroglial cells 
(D). 

  



 
Fig. S6. Frontal cortex-specific developmental programs. A) Cells from the 
frontal/prefrontal cortex and other cortical regions in the excitatory neuron, interneuron, 
macroglial and microglial lineages. B) Number of PFC-specific genes in neuronal and glial 
lineages relative to the total number of genes expressed in each lineage. C-D) Gene ontology 
analysis of PFC-specific genes in neuronal and glial lineages. E) Examples of top genes 
enriched in the PFC in specific lineages. 

 

 



 
Fig. S7. Analysis of sex and region-enriched genes during microglia and endothelial 
cell development. A) Female and male microglia and endothelial cell trajectories. B) 
relative number of sex-specific genes per chromosome. C) Examples of top male-enriched 
genes. D) Female and male trajectories in microglia and endothelial cells. E) Top female-
enriched genes expressed in microglia and endothelial cells. 
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