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Supporting Information Available

Methods

Deep Learning model architectures and implementation details

Figure S1: Convolutional neural network (CNN), GCN, and binding affinity prediction modules
for studying the impact of 1D protein encodings and ligand graphs. The neural network layers in
both the modules are shown along with their input and output channel sizes, i.e., (input channel
size, output channel size). The GCN module and prediction module architecture is the same
as Figure S2. 1D protein representations (in is 1785 for KLIFS and 1280 for ESM) and ligand
graphs are passed through the CNN module and GCN module respectively. For the proteins,
features are first extracted from three 1D CNN layers with stride as 1, and increasing kernel sizes
[4, 8, 12]. The output from the 1D CNN layers is then passed through the pooling layer and the
pooling output is passed through two fully connected (FC) layers. The flattened feature vector
of 128 dimensions is given as input to the first FC1 layer in CNN module with 1024 neurons and
outputs a feature vector of 1 × 1024 dimension. A dropout layer is added after the FC layer
with a dropout rate of 0.2. The output from FC1 layer is passed to FC2 layer with 128 neurons.
We obtain 128-dimensional protein and ligand encodings which are then combined to form a 256-
dimensional embedding. We implement the 1D-CNN layer with torch.nn.Conv1d(), pooling layer
with torch.nn.AdaptiveMaxPool1d(), FC and output layers with torch.nn.Linear() and the
dropout layer with torch.nn.Dropout() class.
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Figure S2: Graph convolutional network (GCN) and binding affinity prediction modules for study-
ing the impact of protein and ligand graphs. The neural network layers in both the modules are
shown along with their input and output channel sizes, i.e., (input channel size, output channel
size). Protein and ligand graphs are passed through the GCN module, here features are first ex-
tracted from 3 GCN layers and then passed through the pooling layer to get a single column vector
of dimension g (g is 216 and 312 for protein and ligand graphs, respectively). These vectors from
the pooling layer are then passed through two fully connected (FC) layers. The flattened feature
vector of dimension g is given as input to the first FC1 layer with 1024 neurons and outputs a
feature vector of 1× 1024 dimension. A dropout layer is added after the FC layer with a dropout
rate of 0.2 to avoid overfitting and co-adaptation issues. The output from FC1 layer is passed to
FC2 layer with 128 neurons. We obtain 128-dimensional protein and ligand encodings which are
then combined to form a 256-dimensional embedding. We pass the 256-dimensional embedding into
the prediction module with two FC layers and one output layer. The FC3 and FC4 layers have 1024
and 512 neurons, respectively, and a dropout layer is added after them. The output layer is similar
to an FC layer with one neuron, and it takes 512-dimensional embedding to predict the binding
affinity score. We implemented GCN layer with torch geometric.nn.GCNConv(), pooling layer
with torch geometric.nn.global mean pool(), FC and output layers with torch.nn.Linear()

and the dropout layer with torch.nn.Dropout() class. For studying element-wise product, we
take an element-wise product of the 128-dimensional protein and ligand encoding to obtain the a
128-dimensional vector which is fed to the FC3 layer instead of 256-dimensional vector in the case
of concatenation. Similarly, for combined concatenation and element-wise product vector, the FC3

layer will get an input vector of 384 dimensions.

Node features in a protein graph

Position-Specific Scoring Matrix (PSSM) provides the per-residue evolution patterns in the

sequence profile [1]. By first counting the instances of each residue at each position, a position
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frequency matrix MPFM is generated using the equation below [2]

MPFM
k,j =

Z∑
i=1

I (Si,j = k) , (1)

where S is a set of Z aligned sequences for a protein sequence with length of Lp, k belongs to

residue symbols set, i = (1, 2, . . .,Z), j = (1, . . . , Lp) and I(x) is an indicator function when

the condition x is satisfied and 0 otherwise. A position probability matrix MPPM is then

computed from the MPFM matrix using the following equation

MPPM
k,j =

MPFM
k,j + c

4

Z + c
, (2)

where c is the added pseudo count that is empirically set to 0.8 similar to [2] to avoid matrix

entries with a value of 0 [3]. TheMPPM matrix is then utilized to compute 21 PSSM features.

For computing PSSM features, we need an aligned protein sequence in PSICOV [4] format.

We used the aligned protein sequences in PSICOV format provided by Jiang et al. [2]. Table

S1 below contains information about the rest of the node features.

Ligand randomizations

In the point randomization process, we enumerate the presence of certain atoms (such as Cl,

F, Br, and (−−O)) within the string, and selectively modify up to four atoms. This can involve

substituting one halogen atom with another or removing a (−−O) atom. In cases where none

of the enumerated atoms exist, a Cl atom is appended at the beginning of the SMILES

string. The appending of chlorine was influenced by its prevalent incorporation in drug-

like molecules due to its effects on lipophilicity, electronic distribution, and steric hindrance,

impacting binding affinity and pharmacokinetics [5]. While chlorine’ capability to expand its

octet is noteworthy [5], its frequent representation in medicinal chemistry primarily drove its

selection. This variation helps us ascertain if small changes in ligand structure can influence

binding affinity prediction and identify if the model accurately captures these structural
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Table S1: Residue node features in a protein graph

Node Features Dimensions

One-hot encoding of the residue symbol 21
Position-specific scoring matrix 21
Whether the residue is aromatic 1
Whether the residue is aliphatic 1

Whether the residue is polar neutral 1
Whether the residue is acidic charged 1

Whether the residue is basically charged 1
Residue weight 1

Negative of the logarithm of the dissociation
constant for the −COOH group

1

Negative of the logarithm of the dissociation
constant for the −NH group

1

Negative of the logarithm of the dissociation
constant for any other group in the molecule

1

pH at the isoelectric point 1
Hydrophobicity of residue (pH = 2) 1
Hydrophobicity of residue (pH = 7) 1

Total 54

alterations.

KIBA metric

Kinase inhibitor bioactivity (KIBA) score is a continuous value of binding affinity developed

by Jing et al. [6] integrating the information from biological activity of kinase inhibitors

from Ki, IC50, and Kd into a single bioactivity score [6]. Lower KIBA score denotes higher

binding affinity. The KIBA score can be defined based on Kd or Ki, or the average of them,

depending on the availability of the bioactivity types [6] using the equation below

KIBA =
IC50

1 +Hi (IC50/Ki)
if Ki and IC50 are present

=
IC50

1 +Hd (IC50/Kd)
if Kd and IC50 are present

=

(
IC50

1 +Hi (IC50/Ki)
+

IC50

1 +Hd (IC50/Kd)

)
/2 if Ki, Kd and IC50 are present,

(3)
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Algorithm 1: Point Randomization of Ligands

Input : SMILES string, Si

Initialization: Get the count of Cl, F, Br, C and (−−O) atoms from the input Si

and set to #Cl, #F, #Br, #C and #(−−O) respectively.
N ← #Cl + #F + #Br + #(−−O);
if N > 0 and N ≤ 4 then

Randomly select n changes to be made from the range of 1 to N possible
changes;
while n ̸= 0 do

Randomly select an atom from Cl, F, Br, and (−−O) which are present in Si;
if Halogen (i.e., Cl) is selected then

Replace selected halogen (Cl) from Si with one of other halogens (F or
Br) randomly to obtain an updated SMILES string Si ;
#Cl← #Cl− 1 ; /* Update the Halogen count */

n← n− 1;
continue

end
if (=O) is selected then

Remove one (−−O) from Si to obtain an updated SMILES string Si ;
#(−−O)← #(−−O)− 1;
n← n− 1;
continue

end

end

else
Si ← Cl+ Si ;

end
Output: Updated SMILES string, So

where Hi and Hd are the parameters that determine the weights of IC50 in the model-based

adjustments for Ki and Kd.
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Table S2: Overview of various experiments performed in our study

Protein encoding Ligand encoding Combining method

To study the impact of 1D and 2D protein encodings

Pconcs4 Original ligand graph Concatenation
Alphafold2 Original ligand graph Concatentation
ESM Original ligand graph Concatentation
Random Original ligand graph Concatentation
KLIFS (1D) Original ligand graph Concatentation
ESM (1D) Original ligand graph Concatentation

To study the impact of ligand encodings

Pconcs4 Point randomisation Concatentation
Pconcs4 Random node features Concatentation
Pconcs4 Random sampling Concatentation

Assessing the impact of combining methods

Pconcs4 Original ligand graph Element-wise product

Pconcs4 Original ligand graph
Concatenation +
Element-wise product
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Figure S3: Mean squared error (MSE) curves on validation data during the training of DL
models using various protein and ligand encodings. A, C MSE curves for protein encodings
on the KIBA and Davis dataset. B, D MSE curves for ligand encodings on the KIBA and
Davis dataset.

Results

Contact map evaluation

The Matthews Correlation Coefficient (MCC) [7] is a widely used metric to assess the quality

of binary classifiers, including those used in protein contact prediction. In this context, MCC

measures the agreement between predicted and true contact maps, which are binary matrices
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indicating the presence or absence of contact between pairs of residues in a protein. MCC can

be calculated from a confusion matrix that summarizes the number of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN) obtained by comparing

the predicted contact map to the true contact map. The MCC is given by

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

MCC values range from -1 to 1 , with 1 indicating perfect agreement, 0 indicating random

prediction, and -1 indicating complete disagreement between predicted and true contact

maps. One advantage of using MCC in cases with imbalanced datasets is that it takes into

account both true positives and true negatives, as well as false positives and false negatives,

to provide a balanced assessment of the performance of the classifier. This is particularly

important when the positive and negative classes are not balanced in the dataset, as metrics

such as accuracy can be misleading. In the context of contact map prediction, the true

contacts (positive class) are typically much rarer than the non-contacts (negative class),

resulting in an imbalanced dataset.
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Figure S4: Visual illustration of contact maps obtained from various kinases present in
KIBA and Davis datasets as compared to the contact maps obtained from PDB structures
of kinases. The true contacts, false contact and contacts lost are highlighted.
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Figure S5: Correlation between binding affinity predictions given by the graph-DL model
with different protein encoding methods- A, B, and C: KIBA and D, E, and F: Davis.
The protein encoding based on random contact map is also strongly correlated with Pconsc4
methods. All these scatter plots show that the BA predictions are not impacted by the
protein encodings obtained from various contact map methods and function in the same way
on both the datasets.
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Figure S6: Experimental vs. predicted binding affinities of DL model trained using four
different 2D encodings generated from contact maps on A: KIBA and B: Davis datasets.
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Figure S7: Euclidean distance between the ESM embeddings of proteins in the Davis and
KIBA datasets. These embeddings capture 95% variance among the kinases in the Davis and
KIBA datasets, and from the heatmap we can see that the Euclidean distance between the
ESM embeddings of kinases is considerable, indicating a substantial distance between them
in the Euclidean space. A: ESM embeddings from 188 KIBA proteins. B: ESM embeddings
from 334 Davis proteins.
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Figure S8: Experimental vs. predicted binding affinities of DL model trained using various
perturbations of ligand graph encodings on both A: KIBA and B: Davis datasets.
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Figure S9: Comparing contact maps obtained from different x-ray structures- A: AAK1 and
B: TYK2 kinases. For AAK1, we have used 5LQ4 as reference PDB structure and compared
it with 5TE0 and 4WSQ PDBs. Similarly, in the case of TYK2, we have used 3LXP as
reference PDB structure and compared it with 4GIH and 4GVJ PDBs. We have also shared
MCC values comparing each PDB with the reference PDB.
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