
8 Supplementary Video Captions

Supplementary Video 1 DeepLabCut model predictions (631 labeled frames), mirror-mouse dataset, cor-
responding to traces in Fig. 1B. See Supplementary Fig. 5 for a detailed caption of Supplementary Videos
1, 5-7. [link]

Supplementary Video 2 Selected frames with high Pose PCA errors, mirror-mouse dataset. DLC model
trained with 631 labeled frames. See Supplementary Fig. 6 for a detailed caption of Supplementary Videos
2-4. [link]

Supplementary Video 3 Selected frames with high Pose PCA errors, mirror-fish dataset. DLC model
trained with 354 labeled frames. [link]

Supplementary Video 4 Selected frames with high Pose PCA errors, CRIM13 dataset. DLC model
trained with 800 labeled frames. [link]

Supplementary Video 5 Baseline vs semi-supervised TCN model predictions (75 labeled frames), mirror-
mouse dataset, corresponding to traces in Fig. 4A. [link]

Supplementary Video 6 Baseline vs semi-supervised TCN model predictions (75 labeled frames), mirror-
fish dataset, corresponding to traces in Extended Data Fig. 4A. [link]

Supplementary Video 7 Baseline vs semi-supervised TCN model predictions (800 labeled frames), CRIM13
dataset, corresponding to traces in Extended Data Fig. 5A. [link]

Supplementary Video 8 Ensemble Kalman Smoother predictions (multi-view PCA), mirror-mouse dataset,
corresponding to the session in Supplementary Fig. 2. See Supplementary Fig. 7 for a detailed caption of
Supplementary Videos 8-12. [link]

Supplementary Video 9 Ensemble Kalman Smoother predictions (Pose PCA), IBL-pupil dataset, corre-
sponding to the session in Supplementary Fig. 3. [link]

Supplementary Video 10 Ensemble Kalman Smoother predictions (multi-view PCA), IBL-paw dataset,
corresponding to the session in Supplementary Fig. 4. [link]

Supplementary Video 11 Ensemble Kalman Smoother predictions (multi-view PCA), mirror-fish dataset.
[link]
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Supplementary Video 12 Ensemble Kalman Smoother predictions (temporal), CRIM13 dataset. [link]

Supplementary Video 13 Trial-by-trial markers and traces for IBL-pupil dataset, corresponding to the
example session in Fig. 6. See Supplementary Fig. 8 for a detailed caption of Supplementary Videos 13-14.
[link]

Supplementary Video 14 Trial-by-trial markers and traces for IBL-paw dataset, corresponding to the
example session in Extended Data Fig. 7. [link]
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Lightning Pose: Supplementary Information

1 Supplementary Methods

1.1 Runtime benchmarking

We used the mirror-mouse dataset (two views, 17 total keypoints) and measured training and inference
time. We compared each of our model variants – supervised baseline, TCN, semi-supervised (combining
the three losses presented in the main text), semi-supervised TCN model – and DeepLabCut (Mathis et al.
[1]; version 2.3.5). For all models, we used a ResNet-50 backbone. All experiments ran on an NVIDIA A10
GPU (using 16 CPU threads and 24 GB GPU memory, costing 1.624 USD per hour on-demand on Amazon
Web Services as of September 2023).

1.1.1 Training time

We measured the time it takes to load a batch of data from disk and complete a stochastic gradient descent
step, an operation that forms the building block of neural network training. We varied two parameters: im-
age resizing dimensions (128 × 128 and 256 × 256; images are read and resized “on the fly”), and labeled
batch size B (16 and 32 images). We timed 100 training batches after discarding the first 15 “warmup”
training batches. For DeepLabCut, we used the Tensorpack accelerated data loading package (henceforth
DLC+tensorpack). As expected, the supervised model’s training time is on par with DLC+tensorpack (Sup-
plementary Fig. 9). All other models train on a significant number of additional unlabeled frames and are
therefore slower to train. The TCN (with J = 5 context frames) operates on a total of 5B frames and is 2x-
5x slower; the semi-supervised model appends an additional unlabeled video clip of length 2B frames (for
a total of 3B frames) and is 2x-4x slower; their combination operates on 7B frames and is 3x-5x slower. To
put these estimates in perspective, a typical network will perform at minimum 300 passes over the entire la-
beled dataset (a.k.a. “epochs”). With 631 labeled InD images of the mirror-mouse dataset (each 256×256),
and a batch size of 32, each epoch will include d631/32e = 20 batches. Throughout training, the semi-
supervised model will ingest additional 20 batches × 64 video frames × 300 epochs = 384K unlabeled
video frames, and will train in approximately (0.44s × 20 × 300)/60s = 44 minutes on a single NVIDIA
A10 GPU (excluding logging operations) which will cost approximately 1.2 USD.

1.1.2 Inference time

Next, we calculate the speed at which a trained network predicts a video (in frames-per-second, FPS). We
compare three models: Lightning Pose without context (LP; either supervised or semi-supervised, since
the training strategy does not affect inference time), LP with context (LP+TCN), and DLC. We calculate
FPS for increasing image sizes (128x128, 256x256, 384x384, 512x512) and sequence lengths (16, 32, 64,
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128, 256, 512). LP and LP+TCN use NVIDIA-DALI video loading which includes an additional resizing
operation “on the fly,” which is not done by DeepLabCut.

Supplementary Fig. 10 summarizes the results. LP (orange) tends to have the highest throughput, with DLC
(blue) 5% slower, and LP+TCN (green) 50% slower when averaged across all sequence lengths and frame
sizes. LP speedups become more pronounced with longer sequence lengths and larger frame sizes, where
GPU utilization increases. For smaller image sizes and sequence lengths, LP and LP+TCN are slower due
to a paradoxical “data bottleneck”: since NVIDIA-DALI decodes and augments the videos entirely on the
GPU, using very small batch sizes is inefficient as it “seeks” the entire video to find each batch. The seeking
operation occupies the GPU instead of performing backward and forward passes through the network. In
this unconventional regime, and with many CPUs available, standard CPU dataloaders like DeepLabCut’s
are preferable. To summarize, when GPUs are properly utilized, LP’s inference is faster, as expected.

1.2 EKS’ Relationship to previous work

We are far from the first to notice that the output of pose tracking networks can contain “glitches,” and a
number of strategies have been proposed for post-processing the network output to remove these glitches.

The simplest and perhaps most commonly applied strategy [2–4] is to detect “bad” keypoints and frames
and remove them, followed by simple temporal interpolation to fill in the resulting gaps in the estimated
pose traces. A number of criteria have been proposed to find bad frames, e.g., low network confidence, large
temporal jumps, and/or multi-camera inconsistency.

While attractively simple, this “remove-then-interpolate” strategy is suboptimal for several reasons. First, it
can be challenging to automatically and reliably choose thresholds to determine which bad frames should be
dropped. Second, using simple temporal interpolation to replace removed keypoints ignores useful spatial
constraints (such as the multi-view PCA loss) which, as we have seen, can significantly improve the estima-
tion of uncertain keypoints. Third, networks often make errors confidently that may not be corrected with
this simple strategy. Finally, even error frames often contain partial information about keypoint location
(for example, a keypoint may be near the estimated value, but not match the estimated value exactly), and
removing error frames completely discards this useful partial information.

A number of more complex denoising strategies have been proposed in the single-animal pose tracking
literature [5–8], in addition to post-processing strategies for the multi-animal tracking case [9, 10] that are
beyond the scope of this paper. These advanced techniques vary widely in their complexity, computational
demands, assumptions, generality, outlier-handling logic, etc., but they all operate on the output of a single
network. As we have seen, the output of a single network (particularly a fully-supervised network) can be
highly unreliable, and moreover the reliability (as measured by the ensemble variance) can vary sharply from
frame to frame. Without well-calibrated information about the reliability of each frame, it can be difficult to
correct network errors.

Previous work [11] showed that training an ensemble of multiple networks and using the mean prediction
leads to better pose estimates. Our Ensemble Kalman Smoother (EKS) denoises the ensemble means and
leads to further drastic improvements in pixel errors (main text Fig. 5). EKS leverages the per-frame and
per-keypoint ensemble variance to determine the degree of smoothing by our spatiotemporal priors. To
reiterate, EKS extracts information even from “bad” predictions, all without the need for the user to set any
manual thresholds to detect these “bad” points. Once the ensemble has been run our method is simpler,
faster, more interpretable, and easier to tune than the more complex strategies discussed in [5–7].
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However, it is important to note that these more complex methods are complementary to ours: future work
could combine our ensembling strategy with the more realistic nonlinear constraints and non-Gaussian ob-
servation models developed in these previous papers, to potentially obtain further accuracy improvements
(at the cost of longer computational post-processing times).

Finally, a note on terminology: the Ensemble Kalman Smoother we use here is different from the Ensemble
Kalman filter commonly used e.g. in weather prediction [12]. The two approaches differ in whether ensem-
bling is performed in the dynamics step or the observation step of the Kalman filter model. In our case, the
ensemble is used to generate the observation model (which is then smoothed with a simple linear-Gaussian
dynamical system model), whereas in the weather prediction context ensembling is performed over multiple
instances of nonlinear dynamics models, which are then combined with a simple Kalman-like observation
update.

1.3 Differences between DeepLabCut and the Baseline model

Backbones. Both packages support multiple backbones. In the results we use AnimalPose10K for all
datasets but mirror-fish (where we use ImageNet), whereas DeepLabCut defaults to ImageNet.

Heatmap peak finding. As described in the Methods section, Lightning Pose operates on normalized
heatmaps, that are valid 2D probability distributions for each keypoint. We find the heatmaps’ peaks
(i.e., the predicted width-height coordinates) via a soft argmax. Crucially, this process is differentiable,
which is necessary when defining downstream unsupervised loss functions on the width-height coordinates.
DeepLabCut, on the other hand, uses a location refinement strategy that requires a hard argmax which is not
differentiable, and therefore incompatible with unsupervised losses.

Supervised heatmap losses. For the supervised loss, we use the mean-squared error between the target
heatmap and the predicted heatmap. DeepLabCut uses a cross-entropy loss for each pixel.

Training. Though both use the Adam optimizer, DeepLabCut trains for a certain number of “iterations”
(typically 50K) independent of the dataset size, while we use the more common “epochs” method which
counts full passes over the labeled dataset, typically 300 at a minimum. As a result there are differences in
the learning rate schedule as well.

1.4 IBL-paw results

Here, we report results on the “IBL-paw” dataset. As in “IBL-pupil”, we compare the following three ap-
proaches: DeepLabCut with custom post-processing (DLC), Lightning Pose’s semi-supervised TCN model
followed by the same post-processing (LP; using temporal difference and Pose PCA losses), and a multi-
view EKS variant which uses an ensemble ofm = 5 LP models (LP+EKS). Here too, we obtain performance
gains (Extended Data Fig. 7 and Supplementary Fig. 4).

We use two cameras to track the paws and, therefore, we can use the multi-view PCA loss to help quantify
the rate of paw tracking errors. (Since the dataset does not contain synchronous labeled frames from both
cameras, we did not train with multi-view PCA and only use it post-hoc; see the Methods section.)

Specifically, we use canonical correlations analysis (CCA) to find directions of motion that must match in
the left and right cameras (see Methods), and then we quantify the correlation values of these two directions
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of motion. We find that the correlation values obtained by DeepLabCut can be fairly low in some sessions
(r=0.83±0.02, mean±sem over 44 sessions), largely due to occlusions or to frames in which one paw is
confused for the other. LP networks improve these correlations slightly (r=0.86±0.02), and the EKS that
enforces the multi-view PCA loss pushes these correlation values to 1.0, by construction (Extended Data Fig.
7C,D; see Methods for multi-view EKS details). Next we align trials to movement onset and compute the
trial consistency metric introduced above, finding improvements with LP+EKS (Extended Data Fig. 7E,F;
DLC 0.07±0.01; LP 0.07±0.01; LP+EKS 0.17±0.02). As in IBL-pupil, we also quantify the correlation
between paw speed and neural activity using a simple decoding analysis, and find that LP+EKS but not LP
leads to greater decoding accuracy (Extended Data Fig. 7H; DLC R2=0.23±0.02; LP 0.22±0.02; LP+EKS
0.26±0.02). All quantities reported here refer to the right paw; see Supplementary Table 2 for left paw
values, which are qualitatively similar.
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2 Supplementary Tables

In-distribution (Train) Out-of-distribution (Test)

FPS Size Labeled frames Animals Videos/frames Labeled frames Animals Videos/frames

Mirror-mouse 250 406×396 789 10 17/510k 253 3 5/150k
Mirror-fish 300 384×512 373 10 28/55k 94 3 10/22k

CRIM13 30 480×640 3986 4 37/314k 1274 4 19/155k
IBL-paw 60/150 102×128 6071 35 84/187k 1446 10 19/90k

IBL-pupil 60/150 100×100 2619 26 52/279k 1012 8 8/72k

Supplementary Table 1: Dataset details. In-distribution (InD) frames are selected from one set of animals/videos; out-
of-distribution (OOD) frames are selected from a non-overlapping subset of animals/videos. The number of videos is
generally larger than the number of animals, indicating multiple experimental sessions from some animals. The total
number of unlabeled frames is also included under “Videos/frames” (rounded to the nearest thousand). See text for
IBL details.
Frame size is (height × width).

Vert vs Horz diameter r Trial consistency Decoding R2

IBL-pupil DLC 0.36±0.03 0.35±0.06 0.27±0.02
LP 0.88±0.01 0.62±0.07 0.33±0.02

LP+EKS 1.00±0.00∗ 0.74±0.08 0.35±0.02

CCA projection r Trial consistency Decoding R2

IBL-paw (left) DLC 0.85±0.02 0.10±0.01 0.22±0.02
LP 0.88±0.01 0.11±0.01 0.23±0.02

LP+EKS 1.00±0.00∗ 0.14±0.01 0.25±0.02

IBL-paw (right) DLC 0.83±0.02 0.07±0.01 0.23±0.02
LP 0.86±0.02 0.07±0.01 0.22±0.02

LP+EKS 1.00±0.00∗ 0.17±0.02 0.26±0.02

Supplementary Table 2: Model performance on IBL data. We quantify pose estimation performance on the IBL data
using a range of metrics. For more details on how the metrics are computed, see main text Fig. 6 (pupil) and Extended
Data Fig. 7 (paw). An asterisk (∗) indicates values that are fixed to 1.0 by model construction. Values are mean and
standard error of the mean computed over n=65 sessions for the pupil, and n=44 sessions for the paws.
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Single Frame Models Context (TCN)

Height ×Width Labeled Unlabeled Labeled (+ Context) Unlabeled

Mirror-mouse 256×256 8 32 8 (+32) 16
Mirror-fish 256×384 8 16 8 (+32) 12

CRIM13 256×256 8 32 8 (+32) 16
IBL-paw 128×128 32 64 32 (+128) 32

IBL-pupil 128×128 64 64 64 (+256) 32

Supplementary Table 3: Batch size details. Height ×Width column shows the dimensions of the resized images fed
to the network. TCN models with a window of (2J + 1) frames (we use J = 2) will result in a 5x larger effective
labeled batch size (number of unlabeled context frames in parentheses). In general, TCN’s effective labeled batch size
is (2J + 1)B without unlabeled videos and (2J + 1)B+T with unlabeled videos. We intentionally kept labeled batch
sizes small so that simple consumer GPUs could train a Single Frame and TCN models with an identical labeled batch
size.

Temporal Multi-view PCA Pose PCA

Train frames 75 All 75 All 75 All

Mirror-mouse 4.75 4.75 4.5 4.5 4.5 5.0
Mirror-fish 5.5 5.0 6.0 6.0 5.0 6.5

CRIM13 4.5 4.5 - - 4.5 5.0
IBL-paw 6.0 6.0 - - - -

IBL-pupil 4.5 4.5 - - 4.0 4.0

Supplementary Table 4: Hyperparameters for unsupervised losses. The table presents the log-weights w2
l for each

of the individual losses Ll, where the total loss is parameterized as sum of terms proportional to Gaussian likelihoods,
as in [13]: Ltotal = Lsuper +

∑L
l=1

1
2 exp(w2

l )
Ll.
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3 Supplementary Figures

Main view

Top view

Right view

Unintended reflectionsMirror-fish annotated frame

Supplementary Figure 1: Annotated frame from mirror-fish dataset. The mirror-fish dataset uses a single camera
pointed at a tank containing a single fish. The tank contains two mirrors at 45◦, allowing the the camera to capture
three roughly orthogonal views. Occasionally, a combination of mirror placement and water levels lead to unintended
reflections on the top of the frame.
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(a) Paw occlusion (b) Paw switching

Supplementary Figure 2: Ensemble Kalman smoothing example with the 75 training frame mirror-mouse
dataset. We use ensembles of m = 5 semi-supervised TCN models as input to EKS. The two columns show two
illustrative examples. Top panels: x and y coordinates of the left hind paw viewed on the top camera. Conventions
as in Supplementary Fig. 3. Second from top: x and y coordinates of the left paw viewed on the bottom camera.
Third from top: CCA coordinates computed from the top and bottom camera views. Similarly to the IBL-paw dataset
(Supplementary Fig. 4), these CCA coordinates should be equal at each frame. The top view is more challenging
(the camera is facing the side of the mouse rather than the bottom, and we are tracking the distant paw here, so more
occlusions occur), and the ensemble variance is correspondingly larger for the top view; therefore the EKS tracks the
bottom view more closely here. Bottom: example frames (indicated with the vertical dashed line above). In the left
column, we see an example of paw occlusion - when the left hind paw goes behind the back of the animal all members
of the ensemble jump to the nearest visible keypoint. Tracking is accurate in frame 17 and then the occlusion and
ensemble confusion is visible in frame 19. Note that the EKS accurately tracks the correct paw here, since it uses
information from the more confident camera view to resolve confusion in the more challenging camera view. In the
right column, we see an example in which the EKS is able to correct an error due to paw switching in the indicated
frames (823-24). For the full video used here, see Supplementary Video 8.
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Supplementary Figure 3: Ensemble Kalman smoothing example with pupil traces. The top four panels show the
eight tracked coordinates, while the bottom panel shows the estimated diameter. In each panel, the ×’s indicate the
output of individual ensemble members (semi-supervised TCN models); we have connected the output of a single
ensemble member with a solid line across time. The black trace indicates the EKS output. As the pupil keypoints are
arranged in a diamond shape, they are paired naturally, e.g. the x coordinate of the top and bottom keypoints should
be equal, as should the y coordinate of the left and right keypoint (as indicated by the insets at the bottom right of each
of the first four panels). This pairing makes it easy to detect errors: for example, in the first and second panels, any
divergence between the red and blue traces are due to tracking errors. Note that tracking errors are common here but
are largely resolved by the EKS (an example error is shown using dotted line at frame 246). For the full video used
here, see Supplementary Video 9.
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(a) Paw switching (b) Paw occlusion

Supplementary Figure 4: Ensemble Kalman smoothing of baseline supervised models improves pose estimation
on IBL-paw data. The two columns show two illustrative examples. Top panels: x and y coordinates of the left paw
viewed on the left camera. Conventions as in Supplementary Fig. 3. Second from top: x and y coordinates of the
left paw viewed on the right camera. Third from top: canonical correlation analysis (CCA) coordinates computed
from the left and right camera views (see Methods). Due to the geometry of multiple cameras recording the same
body parts from different directions, these CCA coordinates should be equal at each frame (this is true for the EKS by
construction). The left view is more challenging (the paw is further from the camera and the sampling rate of the video
is lower), and the ensemble variance is correspondingly larger for the left view; therefore the EKS tracks the right view
more closely here. Bottom: example frames (indicated with the vertical dashed line above). In the left column, we see
an example of paw confusion - some members of the ensemble (correctly) track one paw, and some (mistakenly) track
the other. Tracking is accurate in frame 221 and then confusion between the two paws is visible in frame 222. Note
that the EKS accurately tracks the correct paw here, since it uses information from the more confident camera view to
resolve confusion in the more challenging camera view. In the right column, we see an example in which the EKS is
able to correct an error due to paw occlusion in the indicated frames (877-8). The right ensemble is highly confident
so it is tightly packed behind the ensemble-kalman prediction. For the full video used here, see Supplementary Video
10.
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Supplementary Figure 5: Baseline vs semi-supervised context model predictions. Left: Model predictions (with
no confidence filtering) for a snippet of OOD video, for both the fully supervised baseline model (red) and the semi-
supervised context model (blue). The larger marker is the one depicted in the traces. Right: x- and y-coordinates of
the larger marker, along with confidence values and the multi-view PCA loss. Vertical black bar marks the current
frame in the video.
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Supplementary Figure 6: Selected frames with high Pose PCA errors. The video is composed of 100 unlabeled
video frames with high single-body-part Pose PCA errors, averaged across all views in the mirrored datasets (DLC
models using all available training frames). The body part in question is indicated in the text of the title, as well as the
enlarged markers in the frame. In the mirrored datasets the keypoint is enlarged in all views. Each body part is given
a unique marker color, which is shared across views (mirror-mouse, mirror-fish) or animals (CRIM13); marker shape
is unique for each view/animal. Skeleton lines highlight prediction errors. The videos demonstrate that high values
of the Pose PCA error generally capture erroneous predictions; however, high values are occasionally associated with
correct predictions on rare poses that are not included in the PCA subspace. To avoid redundant frames, we choose
the 1000 frames with highest Pose PCA errors, then fit k-means on these keypoints using 100 clusters, and select one
frame from each cluster to display in the video.
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A
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Supplementary Figure 7: Ensemble kalman model predictions. A: Video frames for IBL-paw dataset from two
cameras (right and left) overlaid with predicted markers from ten supervised baseline models (blue and red) and
the Ensemble Kalman Smoother (green). The cameras for this dataset have different sampling frequencies so the
closest frames are visualized together for this video. All blue points are closely packed together behind the green
point. B: Video frames for 75 frame mirror-mouse dataset with two camera views (top and bottom) overlaid with
predicted markers from five semi-supervsied baseline models (red) and the Ensemble Kalman Smoother (green). C:
Video frame for IBL-pupil dataset with predicted markers from ten supervised baseline models (red), one example
supervised baseline model (blue), and the Ensemble Kalman Smoother (green).
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Supplementary Figure 8: Trial-by-trial markers and traces for IBL datasets. Left: Video frame overlaid with
predicted markers from the DLC model (green) and the ensemble Kalman smoother (LP+EKS; magenta). Markers
with confidence <0.9 are not displayed. Center: Black traces show smoothed DLC pupil diameter from a subset of
correct trials, aligned to feedback onset (reward delivery). The green trace highlights the pupil diameter of the current
trial displayed on the left. Right: Pupil diameters from the LP+EKS model. For the paw video, instead of displaying
per-trial traces in black we display the mean and 95% confidence interval.
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Supplementary Figure 9: Training time per batch. Each bar depicts the mean batch processing time (in seconds) and
95% CI over n=100 batches, with each of the batches overlaid as a point, using a log-scale spacing for the y-axis. Left
panel: 128 × 128 images; right panel: 256 × 256 images. Each panel is divided into a labeled batch size of 16 (left)
and 32 (right). The upper x-axis label denotes the total batch size, comprised of both labeled and unlabeled frames.
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Supplementary Figure 10: Prediction throughput. x-axis: prediction sequence length (frames), log-spaced. y-axis:
frames per second, log-spaced. Colors indicate model types, line styles indicate the frame sizes. For image sizes 384
and 512, sequence lengths did not exceed 128 due to GPU memory constraints. Plotted are means ± standard errors
across n=5 videos.
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