
Supplementary Discussion 

Other Approaches to Imaging 3D Tissue Specimens 

3D imaging challenges the ability to balance between acquisition time, sensitivity, and most notably, 

reduction of out-of-focus signal that would otherwise reduce contrast. The latter is required for 

resolving structures in thick tissue along the axial direction, where the axial resolution depends on 

wavelength, numerical aperture of the objective lens, axial sampling step size, and pinhole diameter 

in the case of a confocal. Traditional widefield microscopy can be supplemented with deconvolution 

to reassign out-of-focus signal back to the focal plane, which requires knowledge of the point spread 

function and is generally suitable for thin samples53. Total internal reflection fluorescence (TIRF) 

microscopy54,55 can produce high contrast very thin 3D images when used in conjunction with other 

techniques such as DNA paint, but is limited to only 100 nm beyond the coverslip and is not suitable 

for highly multiplexed imaging protocols where the tissue is not mounted to the coverslip. More 

commonly found in research settings are spinning disk56 and laser scanning confocal57,58 

microscopes where the latter is much slower due to the need to laser raster but provides finer 

control over the pinhole diameter, and thus, the size of the optical sectioning and the gain in 

contrast by rejection of out of focus light.  

Confocal microscopes are relatively light inefficient; between a widefield and laser scanning 

confocal, orders of magnitude far fewer photons from the sample are rejected and never reach the 

detector59 although newer micro lenses and sensitive detectors are able to recapture much of this 

signal. Additionally, sample thickness at any given point is fully illuminated regardless of which focal 

plane is currently being imaged and this significantly contributes to photobleaching and challenges 

in downstream quantitative measurements. In specialized research settings, two-photon excitation 

(TPE)  microscopy60 uses pulsed mode-locked lasers to excite a femto-litre sized volume via the 

simultaneous absorption of two photons (typically in the near-infrared range). Two-photon lasers 

can also capitalize on certain collagen types that emit a label-free second harmonic signal61–63; the 

resulting signal has a wavelength that is precisely half of the incident laser wavelength. Since near-

infrared wavelengths experience less attenuation and contribute to less phototoxicity, TPE is 

preferred in tissue and intravital imaging. Furthermore, multiple fluorophores can share similar two-

photon excitation spectra, therefore, this creates a throughput advantage in thick specimens. 

However, these systems are less common than confocal microscopes because they are significantly 

costlier and require specialist knowledge to operate and maintain. 

A computationally-intensive solution to combine high-plex imaging with coarse 3D data has been to 

register several thin serial sections,49,64–66 however, the axial resolution of the final dataset is on the 

order of 5-20 microns and, thus, consists of incomplete cell volumes. A variety of Light Sheet 

Fluorescence Microscopy (LSFM) and tissue clearing methods67–69 have been developed to image 

tissue sections as thick as several mm, with the most recent capable of subcellular resolution, but 
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not all clearing methods are compatible with FFPE tissue70 and the total number of fluorophores that 

has been imaged is up to 5 or fewer depending on the optics71,72. While spectral unmixing, spillover 

compensation, or the use of Raman dyes can increase this number to 8-10 channels73–75, to date, 

sequential staining and high-plex high-resolution (sub-micrometer scale) imaging of thick sections 

has not been demonstrated.  

Given all of these considerations, it was not self-evident that confocal microscopy would be suitable 

for high-plex imaging of thick tissue sections. We are of efforts to create specialized multiplexed 

deep imaging microscopes, but the our data suggest that an existing Zeiss LSM980 Confocal 

microscope can be used for CyCIF with few compromises in terms of sensitivity, speed or 

resolution. We note that the current work does not fully exploit the spectral ummixing capabilities of 

the LSM980 and that this awaits further development of antibody panels.  

Methods 

Specimen collection  

Specimens for melanoma (MIS and VGP), glioblastoma, lung metastasis, and tonsil were retrieved 

from the archives of the Department of Pathology at Brigham and Women's Hospital and collected 

under Institutional Review Board approval (FWA00007071, Protocol IRB18-1363) under a waiver of 

consent. Three datasets were used for all experiments: two 35 µm serial sections of melanoma 

(referred to as Dataset 1 (LSP13626) and Dataset 2 (LSP13625)) and a 35 µm section of metastatic 

melanoma from the NIH Cooperative Human Tissue Network (CHTN) (referred to as metastatic 

melanoma or dataset 3; LSP22409 / WD-100476). Serous Tubal Intraepithelial Carcinoma (STIC) 

samples were obtained from University of Pennsylvania. Quantifications are based on Dataset 1. 

Deep immune cell phenotyping is based on Dataset 3. See Supplementary Table 2 for clinical 

metadata regarding this specimen and the related HTAN identifiers. The histopathological regions of 

interest for each specimen were annotated from a serial section consistent with the work of Nirmal, 

Vallius, Maliga et al. (2022)18 by a board-certified pathologist based on melanoma diagnostic 

criteria. See Supplementary Table 6 for an index of which figure panels relate to which datasets.  

Cyclic immunofluorescence (CyCIF) 

The procedure for thick section CyCIF is similar that of standard CyCIF76 except that additional care 

is taken during staining steps (see below) A staining plan containing a list of antibodies used can be 

found in Supplementary Table 3-5.  Antigen retrieval, staining, and bleaching was performed as 

described previously.18. Due to the fragile nature of thicker samples, extra care was taken during 

washes, bleaching and decoverslipping. We found that most tissues held up well, but that a subset 

of skin and melanoma samples disintegrated during antigen retrieval. We have observed this 

previously with skin and primary melanoma, and 3D imaging showed that these specimens had not 

fully adhered to the cover slip, instead exhibiting a series of corrugations just above the cover slip 

with liquid in between. This issue lies in the realm of “pre-analytical variables,” which are common in 
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histology, and will required additional work to resolve.  ,Antibodies for each cycle were diluted in 400 

µl of blocking buffer and stained for 8-10 hours to allow for same-day imaging and at room 

temperature to encourage penetration of antibodies (see below). See Supplementary Figures 1-11 

for the whole slide images of the full dataset for each sample.  

Optimization of sample thickness and antibody staining protocol 

We sought to determine an ideal tissue thickness for CyCIF imaging using well-characterized tonsil 

sections. Based on the maximum working distance of most water and oil-immersion lenses (~200 

µm) and the thickness of a grade 1.5 coverslip (170 µm), we obtained tonsil sections that were 10 

µm, 20 µm, 30 µm, 35 µm, and 40 µm thick (Supplementary Fig. 13). These were stained with 

Hoechst and y-tubulin conjugated in Alexafluor 555. Gamma-tubulin is punctate and can serve as a 

useful stain for assessing antibody penetration and image aberration. Z-stacks were acquired for 

each at 103 nm lateral resolution and 230 nm axial resolution with a 40x/1.2W C-Apochromat water 

immersion objective lens on a Zeiss LSM980 confocal microscope. We observed punctate gamma-

tubulin in all thicknesses up to 35 µm tissue thickness, with uniform intensity along the axial axis 

(Supplementary Fig. 13a-d). However, in the 40 µm thickness, gamma-tubulin appeared to 

significantly diminish in intensity along the axial axis (Supplementary Figure 13e). Furthermore, 

contrast even at the top surface was poorer than thinner samples. This could suggest that standard 

dewaxing and antigen retrieval protocols are not suitable for thicknesses greater than 35 µm. With 

Hoechst staining, we also observed severe signal attenuation in the 40 µm. Unlike gamma-tubulin, 

excitation and emission light penetration may be the issue here, which is well established for short 

wavelengths.  

We then evaluated if certain fluorophores impacted antibody penetration. This is important for 

CyCIF where the ability to choose different antibody fluorophore combinations is essential. We 

obtained a primary melanoma and co-stained MART1 conjugated to Alexafluor 647 with other 

secondary antibodies (Alexafluor 488, Alexafluor 555, Alexafluor 750) (Supplementary Fig. 14a) for 

8-10 hours at room temperature. We bleached MART1-647 and restained with Alexafluor 647 in a 

subsequent cycle. Supplementary Fig. 14b shows that the MART1 primary conjugate (magenta) 

penetrated the full thickness of the tissue, as judged by Hoechst staining (turquoise). 

Supplementary Fig. 14c-f shows that all secondary antibodies (magenta) penetrated equally well 

and showed a similar staining pattern to the MART1 primary conjugate. This demonstrates the 

ability for secondary antibodies to be used for thick tissue CyCIF. We noted that Alexafluor 750 had 

lower contrast, which can be attributed to the lower sensitivity of detectors in the near infrared 

spectrum. 

While testing multiple primary conjugated antibodies, we observed antibody penetration issues with 

some antibody conjugates. Although many immune markers (PD1, CD11c, CD8a, MHC-1, MHC-II; 

green) exhibited full depth staining, several tumour and stromal markers (αSMA, PCNA, SOX10; 

red) only stained the top layer of tissue (Supplementary Fig. 15). To determine whether the  
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fluorophore played a role in this, we repeated staining with the same PCNA clone conjugated to 

Alexafluor 488 or Alexafluor 750. We noticed there that was a difference in staining pattern; the 

Alexafluor 488 conjugate stained fewer cells (Supplementary Fig. 16a) but showed improved 

staining penetration (Supplementary Fig. 16b). For αSMA, we tried a similar strategy, but using a 

different fluorophore required a different antibody clone. Unlike PCNA, we did not see an 

improvement in staining penetration of a blood vessel (Supplementary Fig. 17). From these data 

we concluded that antibody penetration is not uniquely dependent on fluorophore or clone but is 

influenced by multiple factors and that each antibody must therefore be evaluated for its ability to 

stain a thick section using Z-stacks.  

3D image acquisition 

Tonsil and melanoma image data were collected on a LSM980 Airyscan 2 (Carl Zeiss) equipped 

with a 405nm, 488nm, 561nm, 647nm, and 750nm laser lines, and 10x/0.45NA air and 40x/1.3NA 

oil immersion objective lenses. In ZEN 3.7, a 2D overview scan using the 10x objective lens was 

used to identify regions of interest for higher resolution imaging at 40x in 3D. Images were sampled 

at 16-bit at 0.14 microns per pixel in X and Y, and 0.28 microns per pixel in Z for approximately 170 

or more optical planes. The pinhole size was set to 35 microns. At both resolutions, a focus surface 

was used to maintain focus. To increase throughput, bidirectional and fast frame scanning was 

used. Channels were separated into two tracks: track 1 - Hoechst, Alexafluor 555, and Alexafluor 

750 (if present). track 2 - Alexafluor 488 and Alexafluor 647. The emission range for Hoechst, 

Alexafluor 488, Alexafluor 555, Alexafluor 647, and Alexafluor 750 were 380nm-489nm, 499nm-

544nm, 579nm-640nm, 660nm-705nm, and 755nm-900nm respectively.  

Type I and II collagen were imaged using Second Harmonic Generation (SHG) in a Stellaris 8 DIVE 

coupled to an Insight X3 multiphoton laser and running LasX. Images were acquired with a 

20x/0.75NA multi-immersion lens and sampled at 0.36 microns laterally and 0.95 microns axially.  

SHG signal was detected using 4Tune Spectra non-descanned HyD detectors and separated from 

that of Hoechst 33342 using Fluorescence Lifetime Imaging Microscopy (FLIM).  

Microscope slides were secured in a slide holder fitted with a spring-loaded clamp, which 

correspondingly was secured onto the microscope stage in a plateholder. 

3D image processing and registration 

All channels acquired on the Zeiss LSM980 were processed using Zeiss ZEN LSM Plus Processing 

to improve signal-to-noise. Channels were background subtracted by removing a fixed constant 

grey-level from the background. The first cycle was stitched in ZEN using the Hoechst channel as a 

reference, and all subsequent cycles were registered to this first stitched cycle. Single-field and 

stitched 3D datasets were imported using Bioformats in MATLAB (Mathworks). First, the X and Y 

translations were obtained using max projections of the Hoechst nuclei channel. Following this 

transformation, subsequent cycles were registered in Z. We found that separating the lateral from 

axial transformations was more accurate than registering X, Y, and Z in one optimization step. We 
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then performed histogram equalization with MATLAB’s histeq() function and fine-tuned image 

alignment with elastic deformations using MATLAB’s imregdemons() function. Lastly, all 

transformations for each cycle were applied to their corresponding channels. Each channel was 

saved and appended to a TIFF file and visualized in Meshlab, ChimeraX or Imaris 10.0 (Bitplane) as 

.ims files. 

Single-Cell Phenotyping 

Manual gating was performed for each marker to differentiate background from true signal. The 

gates identified for each marker were subsequently used to normalize the single-cell data within a 

range of 0 to 1, wherein values above 0.5 indicated cells expressing the marker. The scaled data 

was subsequently used for phenotyping the cells based on known lineage markers as described 

previously using the SCIMAP Python package (scimap.xyz).18 See Supplementary Figure 12 for 

the detailed marker combinations used to define cell types. 

RCN Analysis to Identify Microenvironmental Communities 

The Latent Dirichlet allocation (LDA) based recurrent cellular neighbourhood (RCN) was performed 

using SCIMAP (scimap.xyz)18 using a k value of 10 (Extended Data Figure 7). The clusters were 

manually organized into meta-clusters (7 clusters), based on the cellular composition of the clusters. 

The meta-clusters were also overlaid on the H&E and CyCIF images to validate their characteristics. 

For instance, RCN1 typically aligned with areas known to be tumour domains, while RCN2 was 

more closely associated with the epidermis, thereby highlighting the structural elements within the 

dataset. 

Segmentation of individual 3D cells with Cellpose 

Individual 3D cells were segmented from the dense tissue volumes using Cellpose 

(https://github.com/MouseLand/cellpose),77 a custom gradient tracking approach which aggregates 

x-y, y-z, x-z 2D slice cell probability and gradient maps predicted by pretrained 2D segmentation 

models. The full Cellpose segmentation framework, suitable for a wide range of 3D cell imaging 

data along with in-depth validation and determination of method applicability will be described 

elsewhere, see below for the Cellpost workflow specific to this project.  

Image preprocessing for Cellpose 

The 3D volumes were acquired at voxel resolution of 280 x 140 x 140 nm. For each 3D channel 

image, we resized the x-y slices by half to obtain isotropic voxels. The raw image intensity, ����
��  was 

then corrected for uneven illumination, ��������
�� � ����

�������� 	���
��

	��
��  where ����

�������� is the mean image intensity

and �
�
��  an estimation of the background illumination obtained by downsampling the image by a

factor of 8, Gaussian smoothing with sigma = 5 and resizing back to the original image dimensions. 

��������
��  was then contrast-stretched to a range of 0-1, clipping any intensities less than the 2nd

percentile to 0 and any greater than the 99.8th percentile to 1. Cellpose uses a single channel 
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cytoplasmic and nuclear signal for two-color based cell segmentation. The mean of the intensity-

normalized, background-corrected HLA-AB, CD3E, CD11b, and �-actin channels was used as the 

cytoplasmic signal. DAPI was used as the nucleus signal. Both cytoplasmic and nucleus signals 

underwent a further round of background correction and contrast stretching as described above 

before being concatenated to form the input RGB volume image. 

Running Cellpose 2D 

The RGB volume was input slice-by-slice to Cellpose 2D in three different orientations; x-y, x-z, y-z 

to obtain three stacks of cell probability and 2D gradients. The performance of Cellpose depends on 

appropriate setting of the diameter parameter which relates to the size of the cells to be segmented. 

As the appearance of the cells may vary depending on orientation, we conduct a parameter screen 

with diameter = [10,100] at increments of 5 using the mid-slice for each orientation. At each 

diameter we compute the ‘sharpness’ of the predicted gradient map as the mean of the image 

variance evaluated over a local 5x5 pixel window in both ‘x’ and ‘y’ gradient directions. The diameter 

maximizing the variance after a moving average smoothing with window size of 3 was used to run 

Cellpose 2D on the remaining slices in the orientation. The raw cell probability output, � from 

Cellpose are the inputs to a sigmoid centered at zero, 1/�1 	 
�
�.This means the probabilities vary

predominantly linearly in the range -6 to +6 and this reduces the distinction between foreground and 

background. Thus, we clip the probabilities to the range [-88.72, 88.72] (to prevent overflow or 

underflow in float32) and convert back to a normalized probability value in the range 0-1 by 

evaluating the sigmoid, 1/�1 	 
�
�. The probabilities from all 3 orientations are combined into one

by averaging. Similarly, the 2D gradients are Gaussian smoothed with sigma=1 voxel and combined 

into a single 3D gradient map. Gradients are then normalized to be unit length. Lastly, we perform 3-

level Otsu thresholding on the combined probability map and use the lower threshold to define the 

foreground binary voxels for gradient tracking.  

Aggregating Cellpose 2D predictions 

The volume was divided into subvolumes of (256, 512, 512) with 25% overlap. Within each 

subvolume we run gradient descent with momentum for 200 iterations, momenta, � � 0.98, step

size � � 1 to propagate the position of foreground pixels towards its final attractor in the 3D gradient

map. 

���
���, ��

���, ��
���� � ���

�, ��
� , ��

�� 	 1
� 	 � �δ � ����

�, ��
� , ��

�� 	 � � ����
���, ��

��� , ��
�����

Here ���
� , ��

� , ��
�� denotes the coordinate of foreground voxel � at iteration number �, � the momentum

ranging from 0-1, � the step size and � is the gradient map. Nearest neighbor interpolation is used, 

thus ���
�, ��

�, ��
�� is always integer valued. Gradient tracking of all subvolumes are conducted in 

parallel using multiprocessing. The final coordinate positions from all subvolumes are compiled. We 

then build a volume count map where voxels mapping to the same final coordinate adds +1 to the 

count. The count map is Gaussian smoothed with sigma=1 and binarized using the mean value as 
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the threshold. Connected component analysis identifies the unique cell as clusters where 

foreground voxels have been mapped to the same cell. Transferring this labelling to initial voxel 

positions ���
���, ��

���, ��
���� generates the individual 3D cell segmentations.

Postprocessing 3D cell segmentations 

Small individual cell masks (<1000 voxels3 ! 20µm3) were first removed. We also removed all cell

masks that do not agree with the Cellpose predicted 3D gradient map. This is done by computing 

the 3D heat diffusion gradient map given the computed 3D cell segmentations and computing the 

mean squared error (MSE) with the input combined Cellpose 3D gradient map for each cell. Cells 

with MSE > 0.8 were discarded. Cells that are implausibly large, with volume greater than the mean 

volume # 5 standard deviations were also discarded.  

For the remainder cells, we run a label propagation78 to enforce that each segmented cell mask 

comprises only a single connected component and to denoise the masks. This is done for each cell 

mask, $�, by cropping a subvolume, %� , the size of its bounding box padded isotropically by 25

voxels. Each unique cell region is represented as a positive integer label. Every label in %�  is

encoded using a one-hot encoding scheme to create a binary column for each unique label. This 

generates a label matrix, &� ' (����� for %� , where ) is the total number of voxels and * the number

of unique labels in %�  and one additional label for background. We then construct the affinity matrix,

+, as a weighted sum (, � 0.25) of an affinity matrix based on the intensity difference in the

cytoplasmic signal between 8-connected voxel neighbors, +��������� , and one based on the

connectivity alone, +���������; + � ,+�������� 	 �1 / ,�+���������.

+��������� � 0
���	
�	��

 /��� ��	
�	��

!
�

"  � 1 21                                 � � 2 3  where 4���������  is the pairwise absolute difference

matrix between two neighboring voxels � and 2. +��������� � 0
����������	
� /��� ���������	!

�
"   � 1 21    � � 2 3  where

4��������� is the graph Laplacian with a value of 1 if a voxel � is a neighbor of voxel 2, and 0
otherwise. ��4� denotes the mean value of the entries of matrix 4. The iterative label propagation is

� ' (���

���� � 5
���� � �1 / 6�+ �� 	 �6�&,

where � is the interation number, 5, denotes the empty vector and 6 is a ‘clamping’ factor that 

controls the extent the original labeling is preserved. We set 6 � 0.01. We run the propagation for 25

iterations. The final � is normalized using the softmax operation and argmax is used to obtain the 

final labels.  The refined cell mask, $�
��#��� is  defined by all voxels where � has the same cell label
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�. All postprocessing steps were implemented using parallel multiprocessing iterating over individual 

cells.  

Statistical Tests 

All statistical tests were performed using MATLAB’s ttest2 implementation of the two-sample t-test 

without assuming equal variances and significance value of p<0.05.  
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