

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202308027

Mitochondrial-Targeted CS@KET/P780 Nanoplatform for Site-Specific Delivery and High-Efficiency Cancer Immunotherapy in Hepatocellular Carcinoma

Shanshan Liu, Hailong Tian, Hui Ming, Tingting Zhang, Yajie Gao, Ruolan Liu, Lihua Chen, Chen Yang, Edouard C. Nice, Canhua Huang, Jinku Bao*, Wei Gao* and Zheng Shi*

Supporting Information

2	
3	Mitochondrial-Targeted CS@KET/P780 Nanoplatform for Site-Specific Delivery
4	and High-Efficiency Cancer Immunotherapy in Hepatocellular Carcinoma
5	Shanshan Liu ^{a,b,1} , Hailong Tian ^{c,1} , Hui Ming ^{c,1} Tingting Zhang ^c , Yajie Gao ^d , Ruolan
6	Liu ^e , Lihua Chen ^e , Chen Yang ^e , Edouard C. Nice ^f , Canhua Huang ^c , Jinku Bao ^{g *} , Wei
7	Gao ^h *, Zheng Shi ^{a,b*}
8	
9	^a Clinical Medical College, Affiliated Hospital of Chengdu University, Chengdu
10	University, Chengdu, 610106, China.
11	^b Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University,
12	Zunyi, 563006, China.
13	State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and
14	West China School of Basic Medical Sciences & Forensic Medicine, Sichuan
15	University, Collaborative Innovation Center for Biotherapy, Chengdu, 610041,
16	China.
17	^d The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
18	^e School of Basic Medical Sciences, Chengdu University of Traditional Chinese
19	Medicine, Chengdu, 611137, China.
20	^f Department of Biochemistry and Molecular Biology, Monash University, Clayton,
21	VIC, 3800, Australia.
22	^g College of Life Sciences, Sichuan University, Chengdu, 610064, China.
23	^h Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of
24	Chengdu University, Chengdu, 610081, China.
25	
26	¹ These authors contributed equally to this work.

27 *Corresponding authors.

28 E-mail: baojinku@scu.edu.cn, gaowei@cdu.edu.cn, shizheng@cdu.edu.cn

29

30

31 Figure S1. Reagent synthesis of TPP-NH₂. (A) Synthetic route of TPP-NH₂. (B) 1 H

³² NMR spectrum of TPP-NH₂ in DMSO- d_6 . (C) HR-MS of TPP-NH₂.

Figure S2. Reagent synthesis of P780. (A) Synthetic route of P780 conjugate. (B) ¹H
NMR spectrum of P780 in DMSO-d₆. (C) ¹³C NMR spectrum of P780 in DMSO-d₆.
(D) HR-MS of P780.

40

Figure S3. Preparation and characterization of CS@KET/P780 NPs. (The following experimental conditions are: 808 nm for IR780, 660 nm for P780, KET/P780 NPs and CS@KET/P780 NPs; $P = 1.0 \text{ W cm}^{-2}$, irradiation time = 30 s; $C_{KET} = 4.5 \mu M$, $C_{P780} =$ 2.5 μ M). (A-D) Size distribution of KET/P780 NPs at different mass ratios of KET and P780. (E) TEM image of the CS@KET/P780 NPs after cleavage. (F) Zeta potential of the CS@KET/P780 NPs after cleavage. (G) Standard curve of KET was established by HPLC (n = 3). (H) Standard curve of P780 (n = 3). (I-J) Standard

48 curves of P780 at pH values of 7.4 and 5.0 (n = 3). (K-L) The photothermal efficiency 49 of IR780 and P780 distributed in water with indicated concentrations. (M-Q) Levels 50 of DPBF that remain after laser irradiation in the given groupings (150 s, 51 1.0 W cm^{-2}).

Figure S4. The cellular uptake and cytotoxicity of CS@KET/P780 NPs in vitro. (The 53 54 following experimental conditions are: 808 nm for IR780, 660 nm for P780, KET/P780 NPs and CS@KET/P780 NPs; $P = 1.0 \text{ W cm}^{-2}$, irradiation time = 30 s; 55 $C_{KET} = 4.5 \ \mu M$, $C_{P780} = 2.5 \ \mu M$). (A) Images captured by fluorescence microscopy 56 57 show the cellular uptake of CS@KET/P780 NPs in Hepa1-6 cells at various intervals. 58 Scale bar: 50 µm. (B) Fluorescence microscopy pictures of the cellular uptake of 59 IR780, P780, KET/P780 NPs, CS@KET/P780 NPs, and CS+CS@KET/P780 NPs 60 (cells were treated with CS for half an hour beforehand) in Hepa1-6 cells following 61 4-hour incubation. Scale bar: 50 µm. (C) Flow cytometry results of corresponding 62 cellular uptake in Hepa1-6 cells. (D) Viability of Hepa1-6 cells treated with KET, 63 IR780, P780, KET/P780 NPs, and CS@KET/P780 NPs after NIR laser irradiation.

64 (E-G) Viability of Hep3B, Huh7, and Hepa1-6 cells treated with CS@KET/P780 NPs, 65 KET/P780 NPs, P780, IR780 and KET without laser irradiation. (H) The viability of 66 LO2 and 293 T cells following treatment with CS@KET/P780 NPs at different 67 concentrations. (I-J) Representative images for colony development and quantitative 68 analysis of Hepa1-6 cells under different treatments. (K-L) EdU labeling test 69 quantitative analysis and fluorescence microscopy in Hepa1-6 cells with various 70 treatments. Scale bar: 50 μ m. (****P* < 0.001, one-way ANOVA).

Figure S5. CS@KET/P780 NPs cause ROS buildup and mitochondrial dysfunction in
liver cancer cells (808 nm for IR780, 660 nm for P780, KET/P780 NPs and

CS@KET/P780 NPs; P = 1.0 W cm⁻², irradiation time = 30 s; $C_{KET} = 4.5 \mu M$, $C_{P780} =$ 74 2.5 µM). (A-B) LSCM images to display subcellular localization of P780 or IR780 in 75 76 Huh7 and Hepa1-6 cells under different therapies. Scale bar: 10 µm. (C-E) Pearson's 77 correlation coefficient analysis of the co-location with mitochondria in HCC cells 78 under different treatments. (F, H) Fluorescence images and (G, I) intracellular ROS 79 levels of Huh7 and Hepa1-6 cells examined using flow cytometry DCFH-DA probe. 80 Scale bar: 100 µm. (J-L) Analysis of intracellular ROS production of NAC-treated 81 Hep3B, Huh7, and Hepa1-6 cells using flow cytometry. (M-O) Hep3B, Huh7, and Hepa1-6 cells viability of certain populations with or without NAC (10 µM) treatment. 82 (***P* < 0.01; ****P* < 0.001, one-way ANOVA). 83

Figure S6. CS@KET/P780 NPs induces mitochondrial dysfunction in HCC cells (808 nm for IR780, 660 nm for P780, KET/P780 NPs and CS@KET/P780 NPs; P = 1.0 W cm⁻², irradiation time = 30 s; $C_{KET} = 4.5 \mu M$, $C_{P780} = 2.5 \mu M$). (A-B) Flow cytometry investigation for potential of the mitochondrial membrane of Huh7 and Hepa1-6 cells following different treatments. (C-E) Fluorescence images for

90 mitochondrial membrane potential of Hep3B, Huh7, and Hepa1-6 cells determined by 91 JC-1 assay. Scale bar: 100 μ m. (F-G) ATP content in Huh7 and Hepa1-6 cells 92 following different treatments. (****P* < 0.001, one-way ANOVA).

Figure S7. CS@KET/P780 NPs evoke apoptosis through ROS accumulation in liver cancer cells (808 nm for IR780, 660 nm for P780, KET/P780 NPs and CS@KET/P780 NPs; $P = 1.0 \text{ W cm}^{-2}$, irradiation time = 30 s; $C_{KET} = 4.5 \mu M$, $C_{P780} =$ 2.5 μ M). (A, C) Results of apoptosis in Huh7 and Hepa1-6 cells via flow cytometry after various treatments. (B-D) Analysis of apoptotic markers using Western blot for Huh7 and Hepa1-6 cells after various treatments. (E-F) Flow cytometry results and

100quantification of apoptotic cell ratio of apoptosis in Huh7, Hep3B, and Hepa1-6 cells101treated with NC, NAC, CS@KET/P780 NPs and CS@KET/P780 NPs+NAC. (G) Cell102viability of particular cell populations in Hep3B, Huh7, and Hepa1-6 cells with or103without ZVAD therapy. (H-J) Western blot analysis of autophagic markers for Hep3B,104Huh7, and Hepa1-6 cells treated with KET, IR780, P780, KET/P780 NPs and105CS@KET/P780 NPs. (**P < 0.01, ***P < 0.001, one-way ANOVA).

Figure S8. *In vivo* biosafety assessment of CS@KET/P780 NPs. (A) Hemolysis rate
and photographs of CS@KET/P780 NPs at different concentrations. (B-E) Analysis of
the serum biochemistry indicators (ALT (B); AST (C); CREA (D); UREA (E)) after
various treatments. (F) H&E staining of the major organs and tumor tissue in a variety
of therapeutic groups (Scale bars: 50 μm, NS, not significant).

114 Figure S9. In vivo anti-liver cancer performance of CS@KET/P780 NPs in C57BL/6

mice. The mice were treated with normal saline, CS@KET/P780 NPs without laser irradiation, or CS@KET/P780 NPs with laser irradiation ($\lambda = 660$ nm, P = 1.0 W cm⁻²; irradiation time = 3 min). (A) Tumor volume curves of different groups (n = 5). (B) The weight of individual tumors and the inhibition ratio. (C) Photographs of the dissected tumors of different groups (n = 5). (***P* < 0.01; ****P* < 0.001, one-way ANOVA).