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Supplementary Methods 

 

P-GAN network architecture 
P-GAN consists of a generator (G), a twin discriminator (D1), and a CNN discriminator (D2) 
(Supplementary Fig. 2). The generator learns a mapping 𝐺𝐺: 𝑥𝑥 → 𝑦𝑦

^

 
 where 𝑥𝑥 is the speckled image and 𝑦𝑦

^
 

is the recovered RPE image. The twin discriminator assigns a similarity score by comparing the local 
structural features of the recovered image from the generator and the ground truth averaged image 𝑦𝑦. 
The CNN discriminator compares the overall image distribution between recovered images from the 
generator and averaged images. G, D1, and D2 are trained simultaneously by optimizing the adversarial 
and the content objective functions. 
 
Generator, G: The generator uses the U-Net architecture that has previously shown to be successful for 
various image based applications [1]. The network is composed of an encoding path, a decoding path, 
and skip connections from the encoder to the decoder modules. In the encoding path, there are five 
encoder blocks and a convolutional layer with rectified linear unit (ReLU) activation. Each encoder block 
consists of a convolutional layer, followed by batch normalization (BN) and leaky rectified linear unit 
(LReLU) activation. The convolution layers in the encoding path have a kernel size (k) of 4 with varying 
numbers of filters (n) and strides (s) of 2. In the decoding path, there are five decoder blocks, each of 
which contains a nearest neighbor interpolation block, a convolutional layer followed by BN and LReLU. 
Concatenation (concat) in the decoder module act as skip connections to link low-level features and high-
level features by concatenating their feature maps. In the end, a transpose convolution with Tanh 
activation is used.  
 
Twin discriminator, D1: The twin discriminator contains two identical twin CNNs to extract features from 
the image generated by the generator and the averaged images. The twin CNNs have a sequence of four 
convolutional layers and the weighted feature fusion (WFF) block. The convolution layers have filters of 
varying sizes and s=1. The kernel sizes follow 7 × 7, 5 × 5, and 3 × 3, respectively. The number of 
convolution filters is specified as multiples of 16. Each convolutional layer is followed by ReLU activation 
and max-pooling layer with filter size of 2 and s= 2. The feature fusion block consists of global average 
pooling (GAP) layers to summarize the feature maps from different convolutional layers and sigmoid 
activation for normalization. The features are weighted with empirically designed weights (𝛼𝛼1 = 1,𝛼𝛼2 =
0.2, and 𝛼𝛼3 = 0.2) and are concatenated to form a weighted feature vector. The L1 norm between feature 
vectors from the twin CNNs is provided to a dense layer with sigmoid activation to obtain the similarity 
scores. 
 
CNN discriminator, D2: The CNN discriminator consists of a sequence of three convolutional layers, 
each of which is followed by BN (except for the first layer) and LReLU. The convolution layers have k=4 
and s=2 with n specified as multiples of 16. The convolutional layers are followed by GAP, dense and 
sigmoid activation to obtain labels of fake/real. 
 
Objective loss functions 
The twin discriminator, D1 classifies the recovered and the ground truth averaged image pairs (𝑦𝑦,𝑦𝑦

^
)  as 

dissimilar and the averaged image pair (𝑦𝑦, 𝑦𝑦) as similar. The generator is forced to generate images that 
have features similar to the averaged images in order to fool D1. The training of G against D1 forms the 
adversarial part of the objective and is given as 
𝑚𝑚𝑚𝑚𝑚𝑚 
𝐺𝐺

 𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷1

 𝐿𝐿𝑡𝑡(𝐺𝐺,𝐷𝐷1) = 𝐸𝐸𝑦𝑦[log𝐷𝐷1 (𝑦𝑦,𝑦𝑦)] + 𝐸𝐸
𝑦𝑦
^[𝑙𝑙𝑙𝑙𝑙𝑙( 1 − 𝐷𝐷1(𝑦𝑦,𝑦𝑦

^
))]

 
            (1) 

 
The CNN discriminator, D2 takes the recovered image 𝑦𝑦 

^
 as input and classifies it as fake while the 

averaged images 𝑦𝑦 are classified as real. This feedback provided to the generator allows it to generate 
perceptually superior images, making it increasingly difficult for D2 to correctly discriminate. The 
adversarial objective for training G and D2 is given as 
𝑚𝑚𝑚𝑚𝑚𝑚 
𝐺𝐺
𝑚𝑚𝑚𝑚𝑥𝑥 
𝐷𝐷2

𝐿𝐿𝑐𝑐(𝐺𝐺,𝐷𝐷2) = 𝐸𝐸𝑦𝑦[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷2 (𝑦𝑦)] + 𝐸𝐸
𝑦𝑦
^ [𝑙𝑙𝑙𝑙𝑙𝑙( 1 − 𝐷𝐷2(𝑦𝑦

^
))]

 
            (2) 



To ensure that the information content is retained in the images recovered by the generator, we use the 
content loss defined as the per pixel difference between 𝑦𝑦 and 𝑦𝑦

^
 computed using L1 distance as 

𝐿𝐿𝑔𝑔 = ||𝑦𝑦 − 𝑦𝑦
^

||1            (3) 
Combining Eq. 1-3 using scaling factors 𝛽𝛽 and 𝜇𝜇 for 𝐿𝐿𝑡𝑡  

and  𝐿𝐿𝑐𝑐 , respectively, the final objective function is 
given as 
𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺

 𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷1,𝐷𝐷2

 [𝛽𝛽𝐿𝐿𝑡𝑡(𝐺𝐺,𝐷𝐷1) + 𝜇𝜇𝐿𝐿𝑐𝑐(𝐺𝐺,𝐷𝐷2) + 𝐿𝐿𝑔𝑔]            (4) 
 
Other network architectures 
U-Net: U-Net is a fully convolutional encoder-decoder neural network initially proposed for medical image 
segmentation [1]. The encoder performs convolution operations that reduce the spatial dimensions of the 
feature maps while increasing their depth and encoding increasingly abstract representations of the input. 
The decoder layers also perform convolution operations to restore the spatial size of the features. Skip 
connections between the encoder and decoder layers are a fundamental network element of U-Net for 
information propagation from encoder to decoder and stable training of the network. The U-Net 
architecture used to generate the results in this study is the same as the generator network of P-GAN and 
is trained using the same hyperparameters using L1-loss function. 
 
GAN: The original GAN framework introduced by Goodfellow et al. [2] used generator and discriminator 
networks with competing losses. Since its introduction, many different network architectures have been 
proposed, including those that replaced the generator with a deep residual network with upsample blocks 
(SRGAN) [3], or used U-Net [1]. Here, we used a U-Net based generator (same network architecture as 
the generator, G in P-GAN, Supplementary Fig. 2) and a CNN classifier as discriminator (same network 
architecture as the CNN discriminator, D2 in P-GAN, Supplementary Fig. 2) for cellular recovery.   

Pix2Pix: Because conditional GAN [4] was introduced for image-to-image translation and semantic 
segmentation, its generator also uses U-Net. The network was set up to transform images from the 
source to the target domain in a way that the generated images cannot be distinguished from the real 
images of the target domain. Here, a PatchGAN discriminator was adversarially trained to do as well as 
possible to distinguish the generated fakes.   

CycleGAN: This unsupervised strategy for image-to-image translation using unpaired images from the 
source (speckled images) and the target (averaged images) domain consisted of two GANs that were 
each trained to transfer images from one domain into another [5]. Each generator took images from its 
respective domain and generated images of the opposite. While each discriminator was trained to 
distinguish generated images from real ones, the generators in turn were trained to fool the 
discriminators. To ensure true style transfer, a cycle consistency prior was enforced whereby the 
generated images were provided into the generators of the corresponding domain and the result must be 
identical to the original image used to create the generated image. 
 
MedGAN: Medical image translation using GAN (MedGAN) [6] is an image translation method for medical 
images that builds upon the recent advances of GANs. MedGAN presented a generator architecture 
called CasNet that uses multiple U-Nets cascaded together to progressively refine the generated images. 
In this study we used three U-Nets in the CasNet generator. MedGAN also uses the discriminator network 
as a trainable feature extractor which penalized the discrepancy between generated and ground truth 
images.  
 
UP-GAN: Uncertainty guided progressive GAN (UP-GAN) [7] uses an uncertainty guided progressive 
learning strategy using GAN for medical image translation. By incorporating uncertainty as attention 
maps, multiple GANs were trained in progressive manner to generate images with increasing image 
fidelity. We used two successive GANs to recover the RPE images from the input speckled ones. The 
GANs were trained using an adaptive fidelity loss and adversarial loss. The details of the training 
parameters are presented in Supplementary Table 4. 
 
 
 



Validation metrics 
The four deep learning based objective image quality assessment metrics used for quantitative evaluation 
were DISTS [8], PieAPP [9], and LPIPS [10], and FID [11]. DISTS computes the textural and structural 
similarity between the reference (averaged images) and the recovered images using deep features from 
five layers of the VGG16 network. PieAPP uses a learning-based method to predict the perceptual error 
between the averaged and the recovered images. LPIPS provides the human perceptual scores of 
similarities between the averaged and the recovered images as the L2 distance between the unit-
normalized and scaled features of the images extracted from layers of the VGG network. FID uses the 
pretrained InceptionV3 to estimate the distance between the distribution of the generated images using 
GANs and the real images. Mean squared error (MSE), peak signal to noise ratio (PSNR), and structural 
similarity index measure (SSIM) [12] are commonly used metrics for image comparison. However, we 
chose to use the deep learning-based measures, which demonstrate better performance in quantifying 
subtle differences in cellular structures resolved with AO-OCT. 

 

 

 

 
 
 
 
 
 
 

  



Supplementary Figures 
 
 

 
 

Supplementary Fig. 1. Averaging improves visualization of cellular features. The retinal pigment 
epithelial (RPE) cell mosaic visualized by averaging increasing numbers (N) of sequentially acquired AO-
OCT volumes at sufficiently spaced time intervals. Images with fewer averaged volumes (N=1, 5, or 10) 
are dominated by speckle noise, obscuring the visibility of RPE cellular structures. Averaging 120 
volumes results in visualization of individual RPE cells (dark areas correspond to RPE cell centers). Scale 
bar: 50 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Supplementary Fig. 2. Network architecture of parallel discriminator generative adversarial 
network (P-GAN). The three neural networks in P-GAN are the generator (G), twin discriminator (D1), 
and CNN discriminator (D2). G takes as an input single speckled image and creates an image of the RPE 
using a series of encoders and decoders. The encoding path of G has a series of encoder blocks 
comprised of a convolution layer (Conv) and batch normalization (BN) with leaky rectified linear unit 
(LReLU) activation. k, n, and s in the encoder and decoder blocks denote kernel size, number of filters 
and stride of the convolution. x, y, and z are placeholders for numerical values relating to k, n, and s.    
The decoding path comprise a series of decoder blocks that perform nearest neighbor interpolation, 
convolution, BN, and concatenation (shown as skip connection) with the corresponding encoder block 
output and LReLU. i and j in the decoder block denotes the input from the previous layer and the skip 
connection, respectively. The last layer of the generator consists of a transpose convolution (Transpose 
Conv) layer with a Tanh activation. D1 comprises of two identical convolutional neural network (CNN) 
based twin networks that extract features from the generator created (recovered RPE) and ground truth 
(averaged images). The Conv layers in the twin networks are followed by rectified linear unit (ReLU) 
activation and max pooling (Maxpool) operation by a factor of 2.  Features from the last three layers are 
first summarized using global average pooling (GAP) and concatenated with weights (𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3) in 
the weighted feature fusion (WFF) block and compared using L1 distance. A dense layer with sigmoid 
activation provides the probabilistic score of similarity between the recovered RPE and the ground truth 
images. To further ensure perceptual closeness, D2 assigns labels of fake/real to the generator created 
and averaged images using a sequence of three convolutional layers (each of which is followed by BN 
(except for the first layer) and LReLU activation) followed by GAP, dense and sigmoid activation. The twin 
discriminator loss, CNN discriminator loss and the content loss functions ensures proper training of P-
GAN. More details on the network and training are provided in P-GAN network architecture and 
Objective loss functions section in Supplementary Methods. 
 
 
  



 
 
Supplementary Fig. 3. Data augmentation by leveraging natural eye motion. Three examples of 
averaged images (d-f and j-l) from two participants (S2 and S4) obtained by choosing different reference 
speckled images (a-c and g-i) for registration. By choosing different reference speckled images for 
registration, shifted versions of the averaged images were created to augment the training dataset.  Scale 
bar: 50 µm. 
 



 

Supplementary Fig. 4. AI recovers cellular structure from a single speckled adaptive optics optical coherence tomography (AO-OCT) 
image. (a1-a3) Example speckled AO-OCT images of RPE acquired from three participants (S1, S2, and S3) obtained from (b1-b3) U-Net, (c1-
c3) generative adversarial network (GAN), (d1-d3) Pix2Pix, (e1-e3) CycleGAN, (f1-f3) medical image translation using GAN (MedGAN), (g1-g3) 
uncertainty guided progressive GAN (UP-GAN), (h1-h3) parallel discriminator generative adversarial network (P-GAN) (ours), and (i1-i3) by 
averaging 120 volumes (ground truth). The yellow circle shows a vertical striped artifact in CycleGAN recovered that is not present in the averaged 
image, for comparison. The magenta arrows show regions where the individual cells are challenging to distinguish in existing methods but can be 
easily visualized in the P-GAN recovered images. Scale bar: 50 µm. 



 
 
 
Supplementary Fig. 5. Additional examples of artificial intelligence (AI) derived retinal pigment 
epithelial (RPE) cell montages from two participants. Visualization of RPE mosaic using parallel 
discriminator generative adversarial network (P-GAN) recovered images (montages were manually 
constructed from up to 63 overlapping recovered RPE images of participants S6 and S7). The white 
squares (a-e) in the montages indicate regions of interest which are further zoomed for visualization 
purposes. (a-e) for participant S6 correspond to regions of interest at retinal locations 0.1, 1.0, 1.7, 2.3, 
and 2.8 mm temporal to the fovea, respectively. For participant S7, (a-e) indicate regions of interest at 
retinal locations 0.1, 0.8, 1.3, 2.0, and 2.6 mm temporal to the fovea, respectively. 

 



 

Supplementary Fig. 6. Parallel discriminator generative adversarial network (P-GAN) and averaged 
(ground truth) images of the retinal pigment epithelial (RPE) cells have similar appearance for 
experimental data at four different retinal locations.  The P-GAN recovered and averaged images at 
four retinal locations (L1, L2, L3, and L4) of three participants (S2, S6, and S7) that have not been used in 
training have similar visualization of the cells. L1, L2, L3, and L4 denote regions on the retina located at 
0.9, 1.5, 2.1, and 2.7 mm temporal to the fovea, respectively. Scale bar: 50 µm. 
 
 

 

 

 



 
Supplementary Fig. 7. Parallel discriminator generative adversarial network (P-GAN) and averaged 
images show comparable peaks in the circumferentially averaged power spectral density (PSD). 
The circumferentially averaged PSD of P-GAN recovered and averaged images at four retinal locations of 
three participants (S2, S6, and S7) have comparable peak locations (indicative of the cell spacing) for 
most of the images.  

 
 
 
 
 
 
 

 
 
 
 
 



 
 

Supplementary Fig. 8. Parallel discriminator generative adversarial network (P-GAN) and averaged 
(ground truth) images show similar packing properties of RPE cells. Voronoi analysis of P-GAN 
recovered and averaged images at four retinal locations (L1, L2, L3, and L4) of three participants (S2, S6, 
and S7) reveal the retinal pigment epithelial (RPE) cells. L1, L2, L3, and L4 denote regions on the retina 
located at 0.9, 1.5, 2.1, and 2.7 mm temporal to the fovea, respectively. Scale bar: 25 µm. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Tables 

 
Supplementary Table 1. Participant information 

Participant 
ID 

Eye† No. of Imaging 
locations‡ 

Training and 
testing of the AI 

model 

Experimental validation 

S1 OD 3 Yes          No 
 

S2 
OD 2 Yes No 
OS 63 No Yes 

S3 OD 4 Yes No 
S4 OD 3 Yes No 
S5 OD 4 Yes No 
S6 OS 63 No Yes 
S7 OS 63 No Yes 

†OD = right eye, OS = left eye 
‡All locations acquired temporal to the fovea 

 

 

 

 

  



 

Supplementary Table 2. Effect of fusing features from different layers of the twin CNN on 
RPE recovery 

Configuration DISTS (↓) LPIPS (↓) PieAPP (↓) FID (↓) 
No fusion 0.22 0.38 0.72 166.44 

Fusion of last 
two layers 

0.21 0.38 0.69 155.18 

Fusion of last 
three layers 

0.20 0.37 0.78 142.60 

Fusion of all four  
layers 

0.21 0.38 0.75 142.65 

DISTS-deep image structure and texture similarity [8]; PieAPP-perceptual image error assessment 
through pairwise preference [9]; LPIPS-learned perceptual image patch similarity [10]; FID-Fréchet 
Inception Distance [11]. The arrow (↓) indicates that lower scores are better. To find the appropriate 
number of twin CNN layers to fuse, we investigated the performance resulting from no fusion (using the 
output from the last layer of twin CNN for similarity assessment on the twin discriminator), compared to 
fusing the last two, three, or all four convolutional layers of the twin CNN with equal weight value of one. 
The best performance is shown in bold. The fusion of three layers provides best performance across 
most of the measures. All layers are fused with equal weight value of one. 

 



Supplementary Table 3. Effect of the choice of the weight in the weighted feature fusion (WFF) 
block of P-GAN on the performance 

 
Weight configuration DISTS LPIPS PieAPP FID 

Learnable weights 0.21 0.39 0.71 145.74 

𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼3 = 1 0.20 0.37 0.78 142.60 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.1 0.27 0.44 0.70 124.73 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.2 0.19 0.36 0.66 139.62 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.3 0.23 0.37 0.78 151.77 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.4 0.21 0.36 0.87 147.17 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.5 0.22 0.39 0.78 218.99 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.6 0.22 0.39 0.75 152.16 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.7 0.20 0.36 0.70 154.37 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.8 0.21 0.37 0.74 156.35 

𝛼𝛼1 = 1,𝛼𝛼2 = 𝛼𝛼3 = 0.9 0.21 0.38 0.69 157.12 

 
In order to find the appropriate weights for feature fusion of the last three layers, different weight selection 
strategies were tested: (i) learnable weighting scheme, where the weight parameters are automatically 
learned along with the other model parameters, (ii) fixed parameters equal weighs, where the weight 
parameters are set to a constant value of 1, and (iii) fixed parameters unequal weights, where we varied 
the weights of the intermediate layers from 0-0.9 with steps of 0.1 while keeping the weights of the last 
convolutional layer fixed to 1. The recovery performance shows that the weight combination of 𝛼𝛼1 =
1,𝛼𝛼2 = 𝛼𝛼3 = 0.2, provided the best overall performance (shown in bold) for the majority of the metrics. 



Supplementary Table 4. Hyper parameters 

Parameter U-Net, GAN, 
Pix2Pix, 

CycleGAN and P-
GAN 

MedGAN UP-GAN 

Training image size 150 × 150 pixels 150 × 150 pixels 150 × 150 pixels 
No. of paired training images 5968 5968 5968 

Batch size 8 8 8 
No. of epochs 100 50 50 
Learning rate 0.0002 0.0002 0.00001 

Optimizer Adam Adam Adam 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 5. Comparison of cellular recovery performance across five participants 

Method DISTS (↓) PieAPP (↓) LPIPS (↓) FID (↓) 

U-Net 0.25 ± 0.01 1.38 ± 0.31 0.42 ± 0.03 175.13 ± 31.2 

GAN 0.24 ± 0.01 1.29 ± 0.24 0.41 ± 0.02 161.56 ± 10.4 

Pix2Pix 0.24 ± 0.02 1.31 ± 0.29 0.42 ± 0.04 172.83 ± 30.3 

CycleGAN 0.26 ± 0.02 1.13 ± 0.30 0.46 ± 0.03 151.56 ± 40.0 

MedGAN 0.23 ± 0.02 1.04 ± 0.23 0.43 ± 0.01 173.44 ± 40.8 

UP-GAN 0.23 ± 0.02 1.49 ± 0.33 0.42 ± 0.03 176.44 ± 40.0 

P-GAN (ours) 0.20 ± 0.01 0.94 ± 0.17 0.38 ± 0.02 150.07 ± 22.1 

The arrow (↓) indicates that lower scores are better. P-GAN (shown in bold) had the highest perceptual 
similarity between recovered images compared to ground truth averaged images across these networks. 
All values expressed as mean ± SD. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Supplementary Table 6. Effect of eye motion based data augmentation on cell recovery 
performance 

 
† The initial dataset was created by extracting pairs of speckled and averaged images from 17 locations. 
The 17 paired images were cropped (4 crops per image of size 150 × 150 pixels) and horizontally flipped 
to obtain 17×4×2=136 image patch pairs for training the network. 
 
‡ Leveraging the natural eye motion of the participants, we could get 40-50 paired images from the 17 
locations. These images were cropped (4 crops per image of size 150 × 150 pixels) to obtain 2998 image 
patch pairs which were further augmented using horizontal flipping to create a dataset of 5996 image 
pairs for training the network. Using the augmented dataset, a 44-fold increase in data was achieved with 
a corresponding improvement in all the objective metrics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset No. of paired 
training examples 

DISTS LPIPS PieAPP FID 

Initial dataset† 136   0.25 0.45 1.16 216.11 

Augmented dataset‡ 

(leveraging eye motion-
based data augmentation) 

5996   0.20 0.38 0.94 150.07 



 

Supplementary Table 7. Recovery performance across four retinal locations from three 
participants 

DISTS PieAPP LPIPS FID 
0.23 ± 0.02 0.82 ± 0.05 0.44 ± 0.04 206.0 ± 22.7 

The objective scores for the recovery performance for the experimental data are comparable to the test 
data (Supplementary Table 5). All values given as mean ± SD. 



Supplementary Table 8. RPE cell spacing and peak distinctiveness of three participants at four 
retinal locations estimated from power spectrum analysis 

 
Participant 

ID 

 
Imaging 

location† 

RPE spacing (µm)  
Spacing 

error 
(µm) 

Peak distinctiveness 
(a.u.) 

Averaged‡  P-GAN 
recovered 

Averaged 
 

P-GAN 
recovered 

 
 

S2 

L1 14.8 14.0 0.8 0.62 0.39 
L2 15.6 15.6 0.0 0.58 0.63 
L3 16.5 15.6 0.9 0.14 0.69 
L4 14.8 15.6 -0.8 0.56 0.37 

 
 

S6 

L1 12.8 14.0 -1.2 0.25 0.27 
L2 14.0 15.6 -1.6 0.33 0.56 
L3 14.8 16.5 -1.7 0.32 0.28 
L4 14.8 14.8 0.0 0.27 0.34 

 
 

S7 

L1 14.0 14.0 0.0 0.17 0.25 
L2 12.7 13.4 -0.7 0.37 0.24 
L3 12.7 15.6 -2.9 0.12 0.37 
L4 14.0 14.0 0.0 0.30 0.36 

† L1, L2, L3, and L4 denote 0.5 × 0.5 mm regions of interest imaged at 0.9, 1.5, 2.1, and 2.7 mm 
temporal to the fovea, respectively.  
 
‡ The averaged images are obtained by averaging 120 AO-OCT volumes. 

 
 

  



Supplementary Table 9:  RPE cell spacing of three participants at four locations estimated 
from Voronoi analysis 

 
Participant 

ID 

 
Imaging 
location† 

RPE spacing (µm)  
Spacing error 

(µm) 
Averaged‡ P-GAN 

recovered 

 
 

S2 

L1 14.7 14.1 0.6 
L2 15.2 14.1 1.1 
L3 15.2 14.8 0.4 
L4 15.5 14.3 1.2 

 
 

S6 

L1 14.4 14.7 -0.3 
L2 16.9 15.1 1.8 
L3 14.8 14.4 0.4 
L4 15.1 16.7 -1.6 

 
 

S7 

L1 14.0 13.6 0.4 
L2 14.0 14.1 -0.1 
L3 15.2 14.8 0.4 
L4 15.5 14.3 1.2 

         † L1, L2, L3, and L4 denote 0.5 × 0.5 mm regions of interest imaged at 0.9, 1.5, 2.1, and 2.7 mm 
temporal to the fovea, respectively. 

‡ The averaged images are obtained by averaging 120 AO-OCT volumes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 10. Network characteristics and times 

Characteristic U-Net GAN Pix2Pix CycleGAN MedGAN UP-GAN P-GAN 
(ours) 

No. of parameters 
(millions) 

9.41 9.45 9.45 84.45 79.92 28.90 9.56 

Training time (hours) 5.3 5.5 5.6 32 24 4.5 6.8 
Test image size (pixels) 300 × 200 300 × 200 300 × 200 300 × 200 300 × 200 300 × 200 300 × 200 

Test time (seconds) 0.1 s 0.1 s 0.1 s 0.5 s 0.26 s 1.41 s 0.1 s 
 

 



Supplementary Table 11. Comparison of AO-OCT imaging and AI enabled AO-OCT imaging 

Parameters 
   AO-OCT imaging [13] AI enabled AO-OCT imaging 

Image acquisition time† 6.3 h 30 min 
No. of volumes acquired 

per location 
120 10* 

Data processing time‡ 13 days 2.7 h 

Image registration Yes No 
Acquired data file size 2.8 TB 0.23 TB 

† It takes 6 minutes to acquire 120 volumes from one retinal location using AO-OCT. To image 63 
locations (covering 1 mm × 3 mm of the retina in this paper), it would take 6.3 h (6 minutes × 63) 
compared to only 30 minutes using AI enabled AO-OCT imaging. 
 
*A total of 10 volumes were acquired at each location from which the one with least distortion 
(subjectively-determined minimal motion artifacts and no eye blinks) was selected as input to the P-GAN 
for cellular recovery.   
 
‡ The data processing time for [13] includes AO-OCT reconstruction (converting raw data to volumes (120 
volumes per location × 63 locations)), registration to correct for eye motion, and averaging to suppress 
noise and increase the cellular contrast. Combined, the data processing time is 4.8 hours for each 
location with 120 volumes. The estimated data processing time required for AO-OCT data acquired from 
63 locations is ~13 days (4.8 h × 63 = 302.4 h). For AI enabled AO-OCT imaging we acquire only 10 
volumes per locations and also there is no requirement of registration and averaging. Hence, to convert 
the raw data to AO-OCT volumes, it takes 155 seconds for 10 volumes at each location and for 63 
locations, it takes only 2.7 hours (155 s × 63). AI based cell recovery time is neglected as it is small (0.1 
s) compared to the imaging and processing times. 
 
Altogether the total time taken for conventional imaging is 6.3 h (imaging) + 13 days (data processing) = 
318.3 h. The time taken by AI enabled imaging is 30 min (imaging) + 2.7 h (processing) = 3.2 h. 
Therefore, a 99.4 (318.3/3.2) fold improvement is achieved using AI. 
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