Supplementary Information

Early-life exercise induces immunometabolic epigenetic modification enhancing anti inflammatory immunity in middle-aged male mice

4 Nini Zhang^{1,2†}, Xinpei Wang^{1†}, Mengya Feng^{1,3}, Min Li¹, Jing Wang⁴, Hongyan Yang¹, Siyu He¹, Ziqi

5 Xia¹, Lei Shang⁵, Xun Jiang², Mao Sun⁶, Yuanming Wu⁶, Chaoxue Ren⁷, Xing Zhang¹, Jia Li^{1,5*},
6 Feng Gao^{1*}

¹Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, 7 Fourth Military Medical University, Xi'an, China. ²Department of Pediatrics, Tangdu Hospital, 8 Fourth Military Medical University, Xi'an, China. ³Center for Mitochondrial Biology and Medicine, 9 The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of 10 Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. ⁴Department of Orthopedics, 11 Xijing Hospital, Fourth Military Medical University, Xi'an, China. ⁵Key Lab of Hazard Assessment 12 and Control in Special Operational Environment, Ministry of Education; Department of Health 13 Statistics, School of Public Health, Fourth Military Medical University, Xi'an, China. ⁶Department of 14 Biochemistry and Molecular Biology, Center for DNA Typing, Fourth Military Medical University, 15 Xi'an China. ⁷School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China. 16 [†]These authors contributed equally: Nini Zhang, Xinpei Wang. 17

¹⁸ *Corresponding authors: Jia Li, jiali816@fmmu.edu.cn; Feng Gao, <u>fgao@fmmu.edu.cn</u>

- 19
- 20 Supplementary Figures 1-7
- 21 Supplementary Tables 1-6

Supplementary Fig. 1 Effects of early-life exercise training on leucocytes and cytokines at different age. (a-d) White blood cell (WBC) count, serum TNF, IL-1 β and IL-1Ra of Sed and Exe mice at different age (1, 4 and 15 months old). n=8 per group. Values are presented as mean ± SEM. Data are analyzed by using the two-way repeated measures ANOVA followed by Bonferroni's test. * p < 0.05; exact *p* values are listed in Source Data file. Sed=sedentary; Exe=exercise. Source data are provided as a Source Data file.

- 33
- 34
- ~ -
- 35
- 36

37

Supplementary Fig. 2 Early-life exercise reduced inflammatory injury in the lung of mice when
 exposed to LPS in middle age. Representative images of hematoxylin and eosin (H&E)-stained
 lung sections of mice at baseline and 48 hours after LPS infection. Scale bar, 50 µm.

43 Supplementary Fig. 3 Three-month swim training protected vital organs against LPS-induced
 44 sepsis in mice. a Experimental outline (created with Biorender.com). C57BL/6 mice were subjected

to swimming exercise for 3 months starting from 1-month-old. After 24 hours post 3-month exercise 45 training, mice were subjected to a single i.p. injection of LPS. The clinical severity score **b**, changes 46 of body weight \mathbf{c} , changes of body temperature \mathbf{d} and blood glucose level \mathbf{e} in different time points (0, 47 2, 4, 6, 12, 24, 48 and 72 hours) after injection. **f-i** The quantity of WBCs, granulocytes, lymphocytes 48 49 and monocytes in the blood at baseline and 6 hours after LPS infection. j Cytokine array analysis in the serum at baseline and 24 hours after LPS infection. k-m Serum TNF, IL-1β and IL-1Ra levels at 50 0, 24 and 48 hours after LPS infection. n=6 per group. (N) Representative images of hematoxylin 51 and eosin-stained (H&E) liver (scale bar, 20 µm), lung (scale bar, 50 µm) and spleen (scale bar, 50 52 µm) sections of mice at baseline and 48 hours after LPS infection. o Representative images and 53 quantitate analysis of F4/80 (red) staining in the liver sections of mice at baseline and 48 hours after 54 LPS infection. n=6 per group. Scale bar, 20 µm. p Representative images and quantitate analysis of 55 Oil red O-staining in the liver sections of mice at baseline and 48 hours after LPS infection. n=6 per 56 57 group. Scale bar, 20 μ m. Values are presented as mean \pm SEM. Data are analyzed using the two-way repeated measures ANOVA followed by Bonferroni's test (b-e, k-l) or unpaired, two-tailed Student's 58 t-test (f, h, o-p) or Mann-Whitney U test (g, i). * p < 0.05; ** p < 0.01; *** p < 0.001; exact p values 59 are listed in Source Data file. Sed=sedentary; Exe=exercise. Source data are provided as a Source 60 61 Data file.

- 62
- 63
- 64
- 65

Supplementary Fig. 4 Pipecolic acid administration reduced inflammatory injury in the lung of
 mice exposed to LPS. Representative images of hematoxylin and eosin (H&E)-stained lung
 sections of mice at baseline and 48 hours after LPS infection. Scale bar, 50 μm. Pip=pipecolic acid.

70

66

Supplementary Fig. 5 Pipecolic acid inhibited LPS-induced mTORC1 signaling in
 macrophages. a Gene expression heatmap of DEGs (n=3). b Number of genes significantly different

75 76 77 78	in LPS vs. vehicle control and/or in LPS+Pip vs. LPS in BMDMs (n=3). A=Vehicle; B=LPS; C=LPS+Pip. c KEGG analysis of 324 DEGs that were upregulated in BMDMs with LPS stimulation but downregulated after pipecolic acid treatment. d GSEA analysis of mTORC1 signaling pathway. Pip=pipecolic acid.
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	

98

99 Supplementary Fig. 6 Determination of transfection efficiency in the liver. a Representative 100 images of mCherry fluorescence in different tissues in wild-type mice and mice injected with the 101 serotype 8 adeno-associated virus (AAV8) vector carrying shRNA targeting Crym (Crym-shRNA). b 102 mCherry, an indicator for the AAV8 vector, was detectable by confocal microscopy in liver 103 transfected with AAV8. c Representative images of hematoxylin and eosin (H&E)-stained lung 104 sections of mice at 48 hours after LPS infection. Scale bar, 50 µm.

- 105
- 106
- 107
- 108

Supplementary Fig. 7 DNA methylation level of *Crym* gene in the liver of Exe and Sed mice. The representative images of DNA methylation of *Crym* gene in the liver of Sed and Exe mice aged at 15 months (n=3 for each group). The image was obtained from Whole Genome Bisulfite Sequencing (WGBS). The number on the Y axis indicates RPM (Reads per million), a parameter that measure the degree of enrichment. Sed=sedentary; Exe=exercise.

	Supplementary Table 1 Murine Sepsis Score (MSS).
Variable	Score and description
Appearance	0. Coat is smooth
	1. Patches of hair piloerected
	2. Majority of back is piloerected
	3. Piloerection may or may not be present, mouse appears "puffy"
	4. Piloerection may or may not be present, mouse appears emaciated
Level of	0. Mouse is active
consciousness	1. Mouse is active but avoids standing upright
	2. Mouse activity is noticeably slowed. The mouse is still ambulant
	3. Activity is impaired. Mouse only moves when provoked, movements have a
	tremor
	4. Activity severely impaired. Mouse remains stationary when provoked, with
	possible tremor
Activity	0. Normal amount of activity. Mouse is involved in any of the following activities:
	Eating, drinking, climbing, running, fighting
	1. Slightly suppressed activity. Mouse is moving around bottom of cage
	2. Suppressed activity. Mouse is stationary with occasional investigative movements
	3. No activity. Mouse is stationary
	4. No activity. Mouse experiencing tremors, particularly in the hind legs
Response to	0. Mouse responds immediately to auditory stimulus or touch
stimulus	1. Slow or no response to auditory stimulus, strong response to touch (moves to
	escape)
	2. No response to auditory stimulus, moderate response to touch (moves a few steps)
	3. No response to auditory stimulus, mild response to touch (no locomotion)
	4. No response to auditory stimulus. Little or no response to touch. Cannot right
	itself if pushed over

	Eyes	0. Open
		1.Eyes not fully open, possibly with secretions
		2. Eyes at least half closed, possibly with secretions
		3. Eyes half closed or more, possibly with secretions
		4. Eyes closed or milky
	Respiration	0. Normal, rapid mouse respiration
	rate	1. Slightly decreased respiration (rate not quantifiable by eye)
		2. Moderately reduced respiration (rate at the upper range of quantifying by eye)
		3. Severely reduced respiration (rate easily countable by eye, 0.5 s between breaths)
		4. Extremely reduced respiration (>1 s between breaths)
	Respiration	0. Normal
	quality	1. Brief periods of labored breathing
		2. Labored breathing, no gasping
		3. Labored with intermittent gasping
		4. Gasping
135		
126		
130		
137		
138		
120		
139		
140		
141		
140		
142		
143		
144		
1.45		
145		

Nama	Log2_FC(case	Dyoluo	FDR	VIP
	mean/control mean)	I value	IDK	
LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z))	-0.469246443	2.28E-06	0.000650	17.24
LysoPC(20:4(5Z,8Z,11Z,14Z))	-0.309256502	0.007092532	0.115503	10.61
4-(trimethylazaniumyl)butanoate	-0.428402948	5.23E-05	0.005813	6.66
8-Hydroxypinoresinol 4-glucoside	-0.89700277	0.003308631	0.073488	5.98
L-Glutamic acid	-0.584110383	0.000408211	0.021799	4.33
Pipecolic acid	0.480569672	0.035910594	0.291683	3.19
1-Methylhistidine	-0.330394428	0.00302549	0.069318	2.93
6-amino-1H-pyrimidin-2-one	-0.210864781	0.02241995	0.227601	2.85
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(0 007735500	0 048334545	0 334517	2.02
6Z,9Z,12Z))	-0.077733337	0.0+033+3+3	0.554517	2.02
13-chloro-2-piperidin-4-ylidene-4-azatric				
yclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,	-0.359038516	0.026379347	0.247615	1.73
12,14-hexaene				
2-(1H-imidazol-5-yl)acetic acid	-0.331847781	0.005249074	0.095826	1.62
Netilmicin	-1.787031359	0.000282823	0.017316	1.60
1-(1-Pyrrolidinyl)-2-propanone	0.644425926	0.034765212	0.287172	1.53
Glycerylphosphorylethanolamine	-0.690026499	0.003045045	0.069566	1.50
1-Pyrroline-4-hydroxy-2-carboxylate	-0.281631881	0.01056608	0.148372	1.32
Montecristin	-0.769968343	0.001007683	0.036625	1.25
5-Aminoimidazole ribonucleotide	-0.352058443	0.00094352	0.035090	1.25
(2S)-5-oxopyrrolidine-2-carboxylic acid	-0.2931504	0.037033398	0.296119	1.17
PA(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))	0.892742013	6.05E-05	0.006362	1.12
6-Deoxohomodolichosterone	0.61709148	0.003367733	0.074183	1.04

146 Supplementary Table 2 Differentially concentrated metabolites of serum in 4-month-old mice.

p values are determined by unpaired, two-tailed Student's t-test, FDR were subsequently determined
by Benjamini-Hochberg correction method. Abbreviations: VIP, variable importance in projection;
FC, fold change; FDR, false discovery rate.

N	Log2_FC(case		EDD	VID	
Name	mean/control mean)	P value	FDK	VIP	
L-Arginine	-0.26842	0.022466	0.432115	11.22	
N1-Methyl-4-pyridone-3-carboxamide	0.749909	0.022357	0.432115	7.61	
Pipecolic acid	0.815227	0.011061	0.375526	5.84	
Butyrylcarnitine	-0.58956	0.048083	0.491372	3.75	
5-Ethyl-2,4-dimethyloxazole	1.718371	0.031207	0.432147	3.68	
L-Tyrosine	-0.94037	0.004117	0.356110	3.66	
L-2-Amino-3-methylenehexanoic acid	1.062436	0.003145	0.350528	2.95	
3-Methylglutarylcarnitine	0.905903	0.019871	0.426313	2.90	
(2R,3R,4R)-2-Amino-4-hydroxy-3-meth	0.94922	0.002246	0 250529	2 70	
ylpentanoic acid	-0.84833	0.003340	0.330528	2.70	
6-Chloro-N-(1-methylethyl)-1,3,5-triazin	0.51019	0.047626	0 400 40 1	2 (0	
e-2,4-diamine	-0.51918	0.047020	0.490491	2.09	
apo-[3-methylcrotonoyl-CoA:carbon-dio	0 903907	0.047810	0 401272	266	
kide ligase (ADP-forming)]	0.802807	0.04/819	0.491372	2.00	
SM(d18:1/22:0)	0.491436	0.005202	0.366865	2.65	
L-Lysine	-0.30008	0.021755	0.432115	2.65	
PC(22:5(7Z,10Z,13Z,16Z,19Z)/14:0)	-0.21096	0.024642	0.432115	2.38	
Mesalazine	0.692351	0.027319	0.432115	2.12	
L-cis-3-Amino-2-pyrrolidinecarboxylic	0.00140	0.007/01	0 420115	2.05	
acid	-0.92148	0.027681	0.432115	2.05	
2,2,6,6-Tetramethyl-4-piperidinone	0.714119	0.001805	0.350528	1.94	
2-Pyridylacetic acid	0.382474	0.010914	0.375526	1.92	
PC(24:1(15Z)/14:1(9Z))	-0.37456	0.040562	0.470813	1.88	
2-Phenylacetamide	-1.05102	0.003955	0.356110	1.82	

151 Supplementary Table 3 Differentially concentrated metabolites of serum in 15-month-old mice.

p values are determined by unpaired, two-tailed Student's t-test, FDR were subsequently determined
by Benjamini-Hochberg correction method. Abbreviations: VIP, variable importance in projection;

154 FC, fold change; FDR, false discovery rate.

Nama	Log2_FC(case	Dyvalua	EDD	VIP
Indille	mean/control mean)	P value	ГDК	
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0)	0.420746	0.012218	0.300430	11.99
Adenine	0.650732	0.033853	0.406885	8.97
5-Aminoimidazole ribonucleotide	-1.49771	0.049779	0.444688	6.63
Methoxypyrazine	-0.67912	0.026163	0.373824	6.41
Glutathione	-2.83202	0.02865	0.384977	4.79
Pipecolic acid	0.820006	0.021898	0.357343	4.60
PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))	-0.70498	0.04741	0.442861	4.10
Pyrrolidonecarboxylic acid	-1.21481	0.000488	0.078683	3.88
PC(16:0/16:0)	-0.22273	0.030587	0.391350	2.97
N-a-Acetyl-L-arginine	1.24795	0.002213	0.149389	2.54
2-Methyl-5-propyloxazole	2.39478	0.008706	0.279332	2.48
PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,1	0.75606	0.022760	0 401052	2.06
1Z,14Z,17Z))	-0.75000	0.032709	0.401933	2.00
N-Alpha-acetyllysine	-0.55985	0.028988	0.384977	2.06
Cholesterol	1.013156	0.00012	0.037965	1.79
N-methyl-L-glutamic Acid	-0.90748	0.025545	0.372285	1.79
(+)-2,3-Dihydro-3-methyl-1H-pyrrole	0.669816	0.027761	0.382078	1.58
PC(20:2(11Z,14Z)/15:0)	-0.40051	0.010918	0.298467	1.57
Sedoheptulose	-2.19287	0.049446	0.443725	1.45
PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:0)	0.254515	0.032495	0.401953	1.41
Isotheaflavin	-0.21678	0.037721	0.424625	1.40

156 Supplementary Table 4 Differentially concentrated metabolites of liver in 15-month-old mice.

157 *p* values are determined by unpaired, two-tailed Student's t-test, FDR were subsequently determined

158 by Benjamini-Hochberg correction method. Abbreviations: VIP, variable importance in projection;

159 FC, fold change; FDR, false discovery rate.

Supplementary Table 5 Characteristics of participants.				
Characteristics	Untrained (n=21)	Trained (n=18)	P value	
Age (years)	16.57±3.63	15.78±1.31	0.798	
Weight (kg)	67.19±7.93	61.94±6.79	0.034	
Height (m)	1.76±0.07	1.74±0.13	0.923	
BMI (kg/m2)	21.68±1.56	19.95±1.45	0.001	

p values are determined by unpaired, two-tailed Student's t-test.

Supplementary Table 6 Sequences of gene-specific primers.				
Gene		Sequences (5'-3')		
Actb	Forward	CTGTCCACCTTCCAGCAGATGT		
	Reverse	CGCAACTAAGTCATAGTCCGCC		
Crym	Forward	ATGAGGCAAGCGGTGCTGTATG		
	Reverse	GTGGTCTTCTCACAGTGTGCAG		
Aass	Forward	GACCAGCAAATTATTCACGACA		
	Reverse	TTGTGATGCATCGGATAACAAC		
Pycr1	Forward	GTGATGTGCTCTTCCTGGCTGTG		
	Reverse	ATGTGCCTGTCCTCAATGTTCGC		
Pipox	Forward	GGCTTATCCAGAGGACTTCTAC		
	Reverse	AAAGATACTCATGGTCGATCCC		
Hykk	Forward	AGGTCATTCGGATGTTCAAGGAAGAAG		
	Reverse	AGAGGCTGACTTGCTGAGGTCTAC		
Phykpl	Forward	CATGACAACATCGTGGACTATG		
	Reverse	GTACTGTCGAGCTAGTCTCAAG		
Slc25a29	Forward	GTCCATCATCAAGCAGGAGAGTGTG		
	Reverse	GGAACTGATTGAGTGGTGAGTCTTGG		
36B4	Forward	GAGACTGAGTACCTTCCCAC		
	Reverse	ATGCAGATCAGCCAGG		
TNF	Forward	GAGTGACAAGCCTGTAGCC		
	Reverse	CTCCTGGTATGAGATAGCAAA		
IL-1β	Forward	CCTCGTGCTGTCGGACCCATA		
	Reverse	CAGGCTTGTGCTCTGCTTGTGA		
iNOS	Forward	CACCAAGCTGAACTTGAGCG		
	Reverse	CGTGGCTTTGGGCTCCTC		
Kmt2a	Forward	CGATGACAACCGACAGTGTGCA		
	Reverse	GCTGACCACAAAGCACAGTTCAC		

Kmt2b	Forward	GGAAGCCAGATGAAAGGACTCC
	Reverse	TGGTCCAAGGATGGAGGCAACA
Kmt2c	Forward	CCTATCCTCCAGAGGTTGCTGG
	Reverse	TTTGCTGAGGCACATGGAAGCG
Kmt2d	Forward	CACTATAAACGGCCCCATACC
	Reverse	TGACTTGGAGTGCACAAACTG
Kmt2e	Forward	GACCATCACAGGGTTTGTGG
	Reverse	CTATGCTCATGACGTTCGCC
Setd1a	Forward	CCAGGAGTCTTCCTCAGAGAAG
	Reverse	GACGAGTCACTGTCCTCATCCT
Setd1b	Forward	GACACCAAAGGGGAAACTCG
	Reverse	GTCTCGCTCACAATCGGAGA

