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1 An EM algorithm to estimate REG-FDR parame-

ters

The log-likelihood for REG-FDR is

L(π0, σ|X, Y ) = log(p(X)) +
N∑
i=1

log[π0f0(Yi) + (1− π0)
1

mi

mi∑
j=1

f1(Yi|X(i)
j , σ)]

where p(X) is the marginal density of X that we avoid modelling, but assume to be free of

π0 and σ. We introduce the following unobserved variables.

δi = 1 or 0 according as the ith gene has an eQTL or not, i = 1, 2, ..., N .

Sij = 1 or 0 according as the jth SNP local to the ith gene is causal or

not, j = 1, 2, ...,mi.

Given the data (X, Y ), δi followsBernoulli(1−π0). Given the data and δi = 1, (Si1, Si2, ..., Simi
)

follows a Multinomial(1; 1/mi, 1/mi, ..., 1/mi) distribution.

Now the complete log-likelihood becomes

Lc(π0, σ|X, Y, δ, S)

= log(p(X)) +
∑N

i=1 log[(π0f0(Yi))
(1−δi)((1− π0)

1
mi

∏mi

j=1 f1(Yi|X(i)
j , σ)Sij)δi ]
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= log(p(X)) +
∑N

i=1 (1− δi) log(f(Yi))

+
∑N

i=1 [(1− δi) log(π0) + δi log(1− π0)] +
∑N

i=1

∑m
j=1 Sijδilog[f1(Yi|X(i)

j , σ)]

The M-step gives

π̂0 =
1

N

N∑
i=1

(1− δi)

and

σ̂ = ArgMax
σ

N∑
i=1

m∑
j=1

Sijδi log[f1(Yi|X(i)
j , σ)]

In the kth iteration, the E-step replaces δi by E(δi|X, Y, π̂
(k−1)
0 , σ̂(k−1)) and Sijδi by

E(Sijδi|X, Y, π̂
(k−1)
0 , σ̂(k−1)). These are given by

E(δi|X, Y, π̂
(k−1)
0 , σ̂(k−1)) =

(1− π̂0
(k−1)) 1

mi

∑mi

j=1 f1(Yi|X(i)
j , σ̂(k−1))

π̂0
(k−1)f0(Yi) + (1− π̂0

(k−1)) 1
mi

∑mi

j=1 f1(Yi|X(i)
j , σ̂(k−1))

and

E(Sijδi|X, Y, π̂
(k−1)
0 , σ̂(k−1)) = E(δi|X, Y, π̂

(k−1)
0 , σ̂(k−1))×

f1(Yi|X(i)
j , σ̂(k−1))∑mi

t=1 f1(Yi|X(i)
t , σ̂(k−1))

The updating continues until |L(π̂(k+1)
0 , σ̂(k+1)|X, Y ) − L(π̂

(k)
0 , σ̂(k)|X, Y )| becomes suffi-

ciently small.

2 Dependence of conditional distribution on the cor-

relation structure

The following lemma shows the extent to which the conditional distribution f0|k might depend

on the effect size for any correlation structure among normally distributed SNPs. We use

a trivariate normal distribution for illustration, as it is rich enough for demonstration while

still analytically tractable.

Lemma 1. Suppose (X1, X2, X3) are jointly normal with mean (0, 0, 0) and covariance ma-
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trix  1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 .

Let Y = βX1 + ϵ, where ϵ ∼ N(0, 1 − β2), and r1, r2,r3 denote the sample product moment

correlation coefficient of Y with X1, X2 and X3 respectively for a sample of size n. The

asymptotic correlations between these sample correlations are given by

Cor(r1, r2) = ρ12 =
ρ1(2− β2 − β2ρ21)

2n(1− β2ρ21)

and

Cor(r2, r3) = ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2n(1− β2ρ21)(1− β2ρ22)
,

ρ13 having the same form as ρ12.

Proof. For the ith sample, let us define

Zi = (X1i, X2i, X3i, Yi, X
2
1i, X

2
2i, X

2
3i, Y

2
i , X1iYi, X2iYi, X3iYi).

Clearly, E(Zi) = µ = (0, 0, 0, 0, 1, 1, 1, 1, ρ1, ρ2, ρ3), and suppose V (Zi) = Σ = (σij)11×11.

Define the functions g1, g2 and g3, all R11 → R, as

g1(x1, x2, ..., x11) =
x9 − x1x4√

(x5 − x2
1)(x8 − x2

4)
,

g2(x1, x2, ..., x11) =
x10 − x2x4√

(x6 − x2
2)(x8 − x2

4)
,

g3(x1, x2, ..., x11) =
x11 − x3x4√

(x7 − x2
3)(x8 − x2

4)
.

Then, r1 = g1(Z̄), r2 = g2(Z̄) and r3 = g3(Z̄).

By the delta method,

√
n(r1 − β, r2 − βρ1, r3 − βρ2)

d−→ N(0,Γ),

where Γij =
11∑
k=1

11∑
l=1

σkl
∂gi
∂µk

∂gj
∂µl

; i = 1, 2, 3; j = 1, 2, 3.

Now,
∂g1
∂µ1

=
∂g1
∂µ2

=
∂g1
∂µ3

=
∂g1
∂µ4

=
∂g1
∂µ6

=
∂g1
∂µ7

=
∂g1
∂µ10

=
∂g1
∂µ11

= 0,
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∂g1
∂µ5

=
∂g1
∂µ8

= −1

2
β,

∂g1
∂µ9

= 1.

∂g2
∂µ1

=
∂g2
∂µ2

=
∂g2
∂µ3

=
∂g2
∂µ4

=
∂g2
∂µ5

=
∂g2
∂µ7

=
∂g2
∂µ9

=
∂g2
∂µ11

= 0,

∂g2
∂µ6

=
∂g2
∂µ8

= −1

2
βρ1,

∂g2
∂µ10

= 1.

∂g3
∂µ1

=
∂g3
∂µ2

=
∂g3
∂µ3

=
∂g3
∂µ4

=
∂g3
∂µ5

=
∂g3
∂µ6

=
∂g3
∂µ9

=
∂g3
∂µ10

= 0,

∂g3
∂µ7

=
∂g3
∂µ8

= −1

2
βρ2,

∂g3
∂µ11

= 1.

Since the partial derivative matrix is very sparse, we don’t need to calculate all the terms of

the matrix Σ. The ones that are needed are calculated below.

σ5,6 = E(X2
1X

2
2 )− 1 = 2ρ21 + 1− 1 = 2ρ21

σ5,8 = E(X2
1Y

2)− 1 = 2β2 + 1− 1 = 2β2

σ5,10 = E(X2
1X2Y )− βρ1 = 3βρ1 − βρ1 = 2βρ1

σ8,6 = E(X2
2Y

2)− 1 = 2β2ρ21 + 1− 1 = 2β2ρ21

σ8,8 = E(Y 4)− 1 = 2

σ8,10 = E(X2Y
3)− βρ1 = 3βρ1 − βρ1 = 2βρ1

σ9,6 = E(X1X
2
2Y )− β = 2βρ21 + β − β = 2βρ21

σ9,8 = E(X1Y
3)− β = 3β − β = 2β

σ9,10 = E(X1X2Y
2)− β2ρ1 = 2β2ρ1 + ρ1 − β2ρ1 = ρ1(1 + β2)

σ6,7 = E(X2
2X

2
3 )− 1 = 2ρ23 + 1− 1 = 2ρ23

σ6,11 = E(X2
2X3Y )− βρ2 = 2βρ1ρ3 + βρ2 − βρ2 = 2βρ1ρ3

σ8,7 = E(X2
3Y

2)− 1 = 2β2ρ22 + 1− 1 = 2β2ρ22

σ8,11 = E(X3Y
3)− βρ2 = 3βρ2 − βρ2 = 2βρ2

σ10,7 = E(X2X
2
3Y )− βρ2 = 2βρ2ρ3 + βρ2 − βρ2 = 2βρ2ρ3

σ10,11 = E(X2X3Y
2)− β2ρ1ρ2 = ρ3 + 2β2ρ1ρ2 − β2ρ1ρ2 = ρ3 + β2ρ1ρ2

Combining, we get,

Cov(
√
n(r1 − β),

√
n(r2 − βρ1)) =

ρ1
2
(1− β2)(2− β2 − β2ρ21),

Cov(
√
n(r2 − βρ1),

√
n(r3 − βρ2)) = 2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1).

Also,

V ar(
√
n(r1−β)) = (1−β2)2, V ar(

√
n(r2−βρ1)) = (1−β2ρ21)

2, V ar(
√
n(r3−βρ2)) = (1−β2ρ22)

2.
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Hence,

Cor(r1, r2) = ρ12 =
ρ1(2− β2 − β2ρ21)

2n(1− β2ρ21)

and

Cor(r2, r3) = ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2n(1− β2ρ21)(1− β2ρ22)
.

Corollary 1.1. Let z1, z2 and z3 be the Fisher transformed unscaled z-statistics correspond-

ing to r1, r2 and r3. Then,

√
n− 3

(
z1−tanh−1(β)

z2−tanh−1(βρ1)

z3−tanh−1(βρ2)

)
d−→ N(0,

[ 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

]
),

where

ρ12 =
ρ1(2− β2 − β2ρ21)

2(1− β2ρ21)

and

ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2(1− β2ρ21)(1− β2ρ22)
,

ρ13 having the same form as ρ12.

Corollary 1.2. The covariance of the z-statistics converge to the covariance matrix for the

case β = 0 as |ρ1| → 1 and |ρ2| → 1, or |ρ1| → 0 and |ρ2| → 0. This is also true for the

conditional mean E(z2, z3|z1).

The proof of Corollary 1.1 and Corollary 1.2 follows directly from Lemma 1. Clearly,

similar results apply to more than three variables. Corollary 1.2 immediately implies that

the conditional distribution of (z2, z3|z1) is approximately free of β when the correlations

ρ1 and ρ2 are very large or very small. So, if the data has a block structure where there is

very high correlation among SNPs within a block and there is very small correlation across

blocks, then assumption (A3) may hold approximately, in a manner that supports the use

of Z-REG-FDR.

To understand the difference between null and alternative of the conditional covariance

matrices and mean vectors, we calculated the large sample means and covariance matrices

under the two cases using Corollary 1.2 of Lemma 1. The dependence structure among the

SNPs is (i) assumed to be an AR(1) structure with serial correlation 0.9, (ii) obtained from

a real SNP matrix [1].

For case (i), Figure 1 shows the plot of the elements of the conditional covariance ma-

trix under the null and that under the alternative for different effect sizes. The maximum
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Supplementary Figure 1: Comparing the elements of conditional covariance matrix of Z
under the null and those under the alternative. The R2 as well as the maximum difference
in the conditional means are reported. The correlation structure of the SNPs is assumed to
be AR(1). β is the effect size.

difference in the conditional mean is also reported for each case. Figure 2 shows the same

plot for case (ii). The fact that the differences are small, especially for the real SNP matrix,

is an encouraging sign in favor of Z-REG-FDR. Figure 3 shows that under simulations, the

estimated FDR based on true parameters agrees with estimated FDR based on Z-REG-FDR

and REG-FDR both.
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Supplementary Figure 2: Comparing the elements of conditional covariance matrix of Z
under the null and those under the alternative. The R2 as well as the maximum difference
in the conditional means are reported. The correlation structure of the SNPs is obtained
from a real data. β is the effect size.
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3 Effect of more than one causal SNPs

One concern about our model is that it may have limited applicability for large cis-windows

since it uses the assumption of only one causal SNP. We have explored through simulation

the effect of more than one causal SNPs on the control of the FDR. We observed that under

certain conditions, even in the presence of two causal SNPs, Z-REG-FDR is only very slightly

anti-conservative.

True π0 True σ Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized
FDR(5%)

Realized
FDR(10%)

0.10 1 0.2178 1.1354 0.0800 0.0508 0.0320 0.0533
0.10 2 0.0942 2.1099 0.0237 0.0264 0.0566 0.0945
0.10 5 0.0884 5.1313 0.0070 0.0218 0.0574 0.0999
0.20 1 0.3039 1.1353 0.0764 0.0550 0.0439 0.0780
0.20 2 0.1926 2.1071 0.0241 0.0294 0.0545 0.1066
0.20 5 0.1885 5.1269 0.0077 0.0278 0.0549 0.1075

Supplementary Table 1: Showing summary of the simulation studies for two causal SNPs

Table 1 shows the results for simulated dataset. Under the alternative hypothesis, the

expressions are simulated using one primary causal SNP for which the Fisher transformed

effect size follows a normal distribution with standard deviation σ, and there might exist

(with probability 1/2) a secondary causal SNP which has an effect size that is smaller in

magnitude and has the same sign as the primary effect size. Note that it is not possible to

have the secondary effect size to be unconstrained and at the same time maintain the desired

variance of Y . It can be shown that the simulation using the above mentioned conditions is

always feasible. Table 1 demonstrates that if the secondary effect size is not very large and

has the same direction, then Z-REG-FDR achieves reasonable control of the FDR.
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4 Additional Supplementary Figures and Tables

A

Correlation of estimated FDR by REG-FDR 
 and estimated FDR with true parameters
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Supplementary Figure 3: Showing the histograms of correlations between the estimated FDR
based on the true values of the parameters and that based onA. REG-FDR B. Z-REG-FDR.
Simulation was conducted using the scheme described in Section 3.2 in the main paper.
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Supplementary Figure 4: Showing the histogram of correlations between estimated FDR
using the permutation method and that using Z-REG-FDR.
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Number of
significant genes

Tissue n Z-REG-FDR Simes Permutation

Subcutaneous adipose 298 7995 6963 6604
Visceral omentum 185 4231 3571 3501
Adrenal gland 126 2866 2693 2514

Aorta 197 5150 5162 4487
Coronary artery 118 2032 1882 1822
Tibial artery 285 7729 6736 6368

Anterior cingulate cortex BA24 72 1145 938 1044
Caudate nucleus 100 1945 1967 1796

Cerebellar hemisphere 89 3500 2557 2705
Cerebellum 103 3560 3454 3117
Cortex 96 2031 2086 1889

Frontal cortex (BA9) 92 1514 1588 1436
Hippocampus 81 1046 853 942
Hypothalamus 81 1113 879 1014

Nucleus accumbens (basal ganglia) 93 1554 1617 1445
Putamen (basal ganglia) 82 1530 1238 1310
Breast mammary tissue 183 4019 3271 3421

EBV-transformed lymphocytes 114 2558 2360 2287
Fibroblasts 272 8678 7513 6947

Sigmoid colon 124 2544 2269 2258
Transverse colon 169 4406 3723 3662

Gastroesophageal junction 127 2489 2237 2225
Esophagus mucosa 241 6794 6169 5700

Esophagus muscularis 218 6126 5731 5234
Atrial appendage 159 3746 3284 3137
Left ventricle 190 4484 3855 3716

Liver 97 1242 1231 1184
Lung 278 6815 5884 5818

Skeletal muscle 361 7175 6049 5841
Tibial nerve 256 9374 8087 7640

Ovary 85 1404 1167 1259
Pancreas 149 3938 3621 3352
Pituitary 87 2168 1607 1861
Prostate 87 1391 1045 1233

Skin (Not sun-exposed ) 196 4373 4499 3905
Skin (Sun-exposed) 302 8304 7109 6882

Small intestine terminal ileum 77 1306 1002 1150
Spleen 89 2822 2163 2267
Stomach 170 3420 2938 2927
Testis 157 8430 6796 7003
Thyroid 278 9498 7976 7809
Uterus 70 882 655 774
Vagina 79 933 582 792

Whole blood 338 6887 5862 5814

Supplementary Table 2: Number of significant genes found by different methods across the
tissues of the GTEx data
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