THE LANCET Global Health

Supplementary appendix 5

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Nyamai Mutono N, Basáñez M-G, James A, et al. Elimination of transmission of onchocerciasis (river blindness) with long-term ivermectin mass drug administration with or without vector control in sub-Saharan Africa: a systematic review and meta-analysis. *Lancet Glob Health* 2024; published online March 11. https://doi.org/10.1016/S2214-109X(24)00043-3.

Supplementary appendix

This appendix forms part of the original submission and will be peer reviewed.

Supplement to:

Elimination of transmission of onchocerciasis (river blindness) with long-term ivermectin mass drug administration with or without vector control in sub-Saharan Africa: a systematic review and meta-analysis

Nyamai Mutono PhD^{1,2*}, Prof. Maria-Gloria Basáñez PhD^{3*}, Ananthu James PhD⁴, Wilma A. Stolk PhD⁴, Anita Makori BSc^{1,2}, Teresia Njoki Kimani MSc^{1,2,5}, Prof. T. Déirdre Hollingsworth PhD⁶, Andreia Vasconcelos PhD⁶, Matthew A. Dixon PhD³, Prof. Sake J. de Vlas PhD^{4†}, Prof. S.M. Thumbi PhD^{1,2,7†}

¹Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya

² Paul G Allen School for Global Health, Washington State University, WA, USA

³ MRC Centre for Global Infectious Disease Analysis (MRC GIDA) and London Centre for Neglected Tropical Disease Research (LCNTDR), School of Public Health, Department of Infectious Disease Epidemiology, Imperial College London, London, UK

⁴ Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

⁵ Ministry of Health Kenya, Kiambu County, Kenya

⁶Big Data Institute, University of Oxford, Oxford, UK

⁷ Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK

* Co-first authors

[†] Contributed equally

Correspondence to: Mutono Nyamai, Centre for Epidemiological Modelling and Analysis, University of Nairobi, P.O Box 30197-00100, Nairobi Kenya <u>mutono.nyamai@uonbi.ac.ke</u>

Search strategy used in each database

Onchocerciasis, Onchocerca volvulus AND ivermectin, mectizan AND mass drug administration, community directed treatment AND

prevalence, microfilarial, microfilariae, microfilaria, endemicity, biting rate, microfilarial load, Ov16, elimin [ation] [ated], interruption, L3

Table S1: Detailed search strategy and records retrieved from each database

Database searched	Platform	Search strategy	Records	Records after duplicates removed
Embase	Embase.com	('onchocerciasis'/exp OR 'Onchocerca volvulus'/de OR (Onchocerc* OR onchodermat* OR river-blindness*):ab,ti,kw) AND ('ivermectin'/de OR (ivermectin* OR mectizan*):ab,ti,kw) AND ('mass drug administration'/de OR 'group therapy'/de OR 'epidemiology'/de OR 'mass immunization'/de OR 'parasite transmission'/de OR (mass OR ((communit*) NEAR/3 (administrat* OR treatment* OR immunization* OR immunisation* OR distribution* OR therap* OR chemotherap* OR vaccination*)) OR epidemiolog* OR ((parasite* OR elimination) NEAR/3 (transmission* OR public-health- problem*)) OR EoT OR EPHP):ab,ti,kw) NOT (([Conference Abstract]/lim OR [Conference Review]/lim)	1099	1077
MEDLINE	Ovid	(exp Onchocerciasis/ OR Onchocerca volvulus/ OR (Onchocerc* OR onchodermat* OR river-blindness*).ab,ti,kf.) AND (Ivermectin/ OR (ivermectin* OR mectizan*).ab,ti,kf.) AND (Mass Drug Administration/ OR Epidemiology/ OR exp Onchocerciasis/ep OR Onchocerca volvulus/ep OR Mass Vaccination/ OR Disease Transmission, Infectious/ OR (mass OR ((communit*) ADJ3 (administrat* OR treatment* OR immunization* OR immunisation* OR distribution* OR therap* OR chemotherap* OR vaccination*)) OR epidemiolog* OR ((parasite* OR elimination) ADJ3 (transmission* OR public- health-problem*)) OR EoT OR EPHP).ab,ti,kf.) NOT ((news OR congres* OR abstract* OR book* OR chapter* OR dissertation abstract*).pt.)	922	182
Web of Science* Core Collection	Web of Knowledge	TS=(((Onchocerc* OR onchodermat* OR river-blindness*)) AND ((ivermectin* OR mectizan*)) AND ((mass OR ((communit*) NEAR/2 (administrat* OR treatment* OR immunization* OR immunisation* OR distribution* OR therap* OR chemotherap* OR vaccination*)) OR epidemiolog* OR ((parasite* OR elimination) NEAR/2 (transmission* OR public- health-problem*)) OR EoT OR EPHP))) AND DT=(Article OR Review OR Letter OR Early Access)	840	181
Cochrane Central Register of Controlled Trials**	Wiley	((Onchocerc* OR onchodermat* OR river-blindness*):ab,ti) AND ((ivermectin* OR mectizan*):ab,ti) AND ((mass OR ((communit*) NEAR/3 (administrat* OR treatment* OR immunization* OR immunisation* OR distribution* OR therap* OR chemotherap* OR vaccination*)) OR epidemiolog* OR ((parasite* OR elimination) NEAR/3 (transmission* OR public- health-problem*)) OR EoT OR EPHP):ab,ti) NOT "conference abstract":pt	37	1
African Index Medicus (WHO)	https://www.globalind exmedicus.net/	TW:((Onchocerc* OR onchodermat* OR river-blindness*) AND (ivermectin* OR mectizan*) AND (mass OR community OR epidemiolog* OR EoT OR EPHP))	24	16

Google	onchocerciasis "river-blindness" ivermectin mectizan	220	68
Scholar	"mass community		
(200 top	administration treatment immunization immunisation distribution		
ranked)	therapy chemotherapy vaccination"		
-	onchocerciasis 'river-blindness' ivermectin mectizan		
	'mass community		
	administration treatment immunization immunisation distribution		
	therapy chemotherapy vaccination'		
Total			1525

*Science Citation Index Expanded (1975–present); Social Sciences Citation Index (1975–present); Arts & Humanities Citation Index (1975–present); Conference Proceedings Citation Index–Science (1990–present); Conference Proceedings Citation Index-Social Science & Humanities (1990-present); Emerging Sources Citation Index (2005-present). ** Manually deleted abstracts from trial registries

Table S2: Criteria used for abstract screening

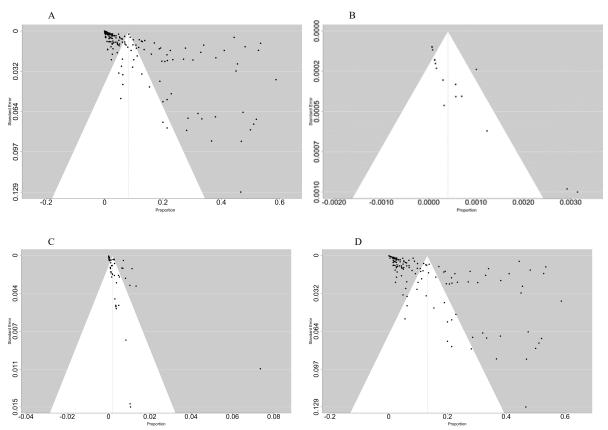
Criterion	Guidance	Outcome
Study foci	Does the Title/Abstract exclusively	If yes, exclude
	target foci or endemic areas outside	
	the African region?	If no, include
Treatment	Does the Title/Abstract mention use	If yes, include
	of ivermectin or Mectizan® as a	
	therapeutic treatment for	If no, exclude
	onchocerciasis for at least 10 years?	
Endemicity	Does the Title/Abstract mention	If yes, include
	endemicity either through	
	microfilarial prevalence, palpable	
	nodule prevalence or microfilarial	If no, exclude
	load in the study population?	

Table S3: Variables extracted

Data extracted	Description
Authors and Year of publication	
Journal title and Article title	
Country of focus	Country or countries where the study took place
Subnational area	States, districts, foci or villages where the study was conducted
Year data were collected	When the study was conducted
Population sample size	Study population and sample size for each study foci
Ecological features	Savannah, forest, or forest-savannah mosaic
Vector details	<i>Simulium</i> species, baseline annual biting rate (no. bites/person/year) and annual transmission potential (no. L3 larvae/person/year)
Baseline (pre-intervention) endemicity	Level of onchocerciasis endemicity at baseline (from hypo- to holoendemicity) according to microfilarial prevalence, onchocercal nodule prevalence, and/or community microfilarial load (CMFL)
Vector control	Presence or absence of vector control; number of years of vector control; type of vector control (aerial or ground larviciding of vector breeding sites)
Ivermectin MDA treatment	Number of years of ivermectin treatment in the study area; geographical coverage; therapeutic coverage of eligible population (if $\ge 80\%$, record the number of years it has been above this level); treatment frequency (yearly or more frequently; if shift to biannual or quarterly, record the number of years of change in frequency); proportion of the population adhering or not to treatment; proportion never treated.
Microfilarial prevalence and CMFL	Methods for collecting and incubating skin snips, detecting and enumerating microfilariae; calculation of microfilarial prevalence and CMFL, age groups and sample sizes
Nodule prevalence	Method for recording palpable nodules; age groups and sample sizes
Diagnostic tests used in Stop- MDA surveys	Children samples, ages and sample size; method for IgG4 antibody testing (ELISA, RDT); blackfly samples, number of flies tested and method for recording fly infection/infectivity. Ov16 seroprevalence (with 95% CIs), fly infectivity rate (with 95% CIs)
Co-endemicity	Record co-endemic infections (Loa loa, Wuchereria bancrofti)
Other important data collected	Record other clinical manifestations; duration of civil conflict; MDA interruption

Table S4: Quality assessment of the 75 studies using the STROBE and NIH checklists

Author and year of publication	Does the study have a clearly stated objective?	Is there a clear study design?	Is there a description of the study location?	Are there dates of data collection?	Are there participant eligibility criteria clearly stated?	Have the vector species been identified?	Has the morbidity examination clearly been described?	Has the parasito- logical examination been clearly described?	Is there a discussion of study limitations?	Have sources of funding been mentioned?	Quality
Abong et al., 2020 ¹	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	High
Anosike et al., 2007 ²	Yes	Yes	Yes	Yes	Yes	No	Yes	-	No	No	High
Aza'ah et al., 2020 ³	Yes	Yes	Yes	Yes	Yes	No	Yes	-	No	Yes	High
Bakajika et al., 2018 ⁴	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High
Biritwum et al., 2021 ⁵	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	High
Borsboom et al., 20036	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	High
Diawara et al., 2009 ⁷	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High
Djune-Yemeli et al., 2022 ⁸	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	High
Dolo et al., 2021 ⁹	Yes	Yes	Yes	Yes	Yes	Yes	Yes	-	No	Yes	High
Evans et al., 2014 ¹⁰	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	High
Forrer et al., 2021 ¹¹	Yes	Yes	Yes	Yes	Yes	No	Yes	-	Yes	Yes	High
Garms et al., 2015 ¹²	Yes	Yes	Yes	Yes	No	Yes	-	Yes	No	Yes	High
Gebrezgabiher et al., 2020 ¹³	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	High
Hendy et al., 2018 ¹⁴	Yes	Yes	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes	High
Hernández-González et al., 2016 ¹⁵	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	High
Herrador et al., 2018 ¹⁶	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	High
Higazi et al., 2013 ¹⁷	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High
Johanns et al., 2022 ¹⁸	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High
Kamga et al., 2016 ¹⁹	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes	Moderate
Kamga et al., 2017 ²⁰	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes	Moderate
Kamga et al., 2018 ²¹	Yes	Yes	Yes	Yes	Yes	No	No	-	Yes	Yes	High
Katabarwa et al., 2008 ²²	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	High
Katabarwa et al., 2011 ²³	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High
Katabarwa et al., 2012 ²⁴	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High


					-	*			-		
Katabarwa et al., 2013a ²⁵	Yes	No	Yes	High							
Katabarwa et al., 2013b ²⁶	Yes	No	No	High							
Katabarwa et al., 2014 ²⁷	Yes	Yes	Yes	Yes	No	Yes	Yes	-	No	Yes	High
Katabarwa et al., 2016 ²⁸	Yes	No	No	No	High						
Katabarwa et al., 2020a ²⁹	Yes	No	Yes	High							
Katabarwa et al., 2020b ³⁰	Yes	No	Yes	High							
Kogi & Bulus, 2008 ³¹	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Moderate
Komlan et al., 2018 ³²	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	High
Koudou et al., 2018 ³³	Yes	-	Yes	Yes	High						
Lakwo et al., 2013 ³⁴	Yes	-	No	Yes	High						
Lakwo et al., 2015 ³⁵	Yes	-	Yes	Yes	High						
Lakwo et al., 2017 ³⁶	Yes	No	No	Yes	High						
Lakwo Luroni et al., 2017 ³⁷	Yes	No	Yes	High							
Lamberton et al., 2015 ³⁸	Yes	Yes	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes	High
Moya et al., 2016 ³⁹	Yes	No	Yes	Yes	High						
Mweya et al., 2007 ⁴⁰	Yes	-	No	Yes	High						
Nyagang et al., 2020 ⁴¹	Yes	Yes	Yes	Yes	Yes	No	Yes	-	Yes	No	High
Okon & Ilugbiyin, 2008 ⁴²	Yes	No	No	High							
Osei-Atweneboana et al., 200743	Yes	High									
Osue et al., 2013 ⁴⁴	Yes	Yes	Yes	Yes	No	Yes	Yes	-	No	Yes	High
Osue, 2017 ⁴⁵	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes	High
Otabil et al., 201946	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	Moderate
Paulin et al., 2017 ⁴⁷	Yes	Yes	Yes	Yes	Yes	No	No	-	No	Yes	High
Richards et al., 2020 ⁴⁸	Yes	No	Yes	High							
Sam-Wobo et al., 2012 ⁴⁹	Yes	-	No	Yes	High						
Seidenfaden et al., 2001 ⁵⁰	Yes	No	Yes	High							
Shintouo et al., 2020 ⁵¹	Yes	High									
Siewe Fodjo et al., 2019 ⁵²	Yes	-	Yes	Yes	High						
Sufi & Zainab, 2015 ⁵³	Yes	Yes	Yes	Yes	Yes	No	No	_	No	No	Moderate
Surakat et al., 201854	Yes	-	No	Yes	High						

Ta et al., 2018 ⁵⁵	Yes	Yes	Yes	Yes	Yes	No	Yes	-	No	Yes	High
Tekle et al., 2012 ⁵⁶	Yes	High									
Tekle et al., 2016 ⁵⁷	Yes	-	No	Yes	High						
Traoré et al., 2009 ⁵⁸	Yes	-	No	No	High						
Traore et al., 2012 ⁵⁹	Yes	No	Yes	High							
Wanji et al., 2015 ⁶⁰	Yes	No	Yes	High							
Wilson et al., 2016 ⁶¹	Yes	High									
Yaya et al., 2014 ⁶²	Yes	No	High								
Zarroug et al., 2016 ⁶³	Yes	No	Yes	High							
Mshana et al., 2023 ⁶⁴	Yes	-	Yes	Yes	High						
Atekem et al., 2022 ⁶⁵	Yes	High									
Otabil et al., 2023 ⁶⁶	Yes	-	Yes	Yes	High						
Chikezie et al., 202367	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	High
Ekpo et al., 2022 ⁶⁸	Yes	Yes	Yes	Yes	Yes	No	Yes	-	Yes	Yes	High
Bhwana et al., 2023 ⁶⁹	Yes	-	Yes	Yes	High						
Efon-Ekanguouo et al., 2023 ⁷⁰	Yes	Yes	Yes	Yes	Yes	No	Yes	-	Yes	Yes	High
Miri et al., 2023 ⁷¹	Yes	High									
Anagbogu et al., 2022 ⁷²	Yes	Yes	Yes	Yes	Yes	No	Yes	-	Yes	Yes	High
Ekanya et al., 2022 ⁷³	Yes	High									
Domche et al., 2022 ⁷⁴	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	High
Isiyaku et al., 2022 ⁷⁵	Yes	High									

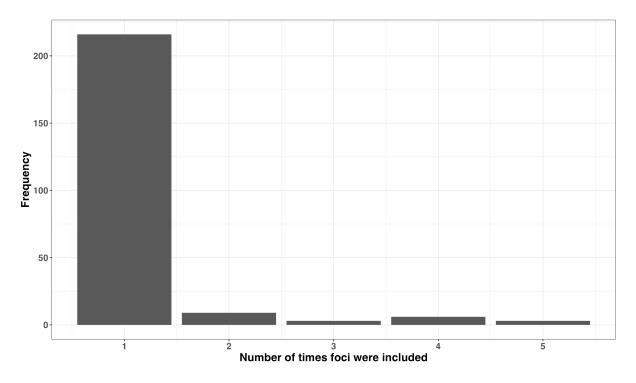

Categories	Sub-categories	Heterogeneity statistic	Degrees of freedom	I ²	τ ²
Region	Central Africa (Ref)				
-	East Africa	16643.5	282	99.63%	0.02
	West Africa				
Ecological features	Savannah (Ref)				
	Forest	6704.7	169	99.98%	0.02
	Forest-savannah				
	mosaic				
Vector control	No (Ref)				
(Larviciding)	Yes	16786.5	282	98.82%	0.02
Number of years of		14458.1	282	99.65%	0.01
ivermectin treatment					
Proportion never	≤5% (Ref)				
treated	>5%	3067.2	30	99.95%	0.02
Years of continuous	<10 years				
therapeutic treatment	≥10 years	16658.7	195	99.35%	0.02
at ≥80% coverage of					
the eligible population					
Baseline endemicity	Hypoendemicity (Ref)				
	Mesoendemicity	16647.4	282	99.79%	0.02
	Hyperendemicity				
	Holoendemicity				
Co-endemicity	Not reported				
	Loa loa	16285.2	282	99.91%	0.02
	Wuchereria bancrofti				

Table S5: I^2 and τ^2 values for quantifying heterogeneity across studies	Tabl	le S5:	<i>I</i> ²	and 7	² value	es for	quantifying	heterogeneity	across studies
--	------	--------	-----------------------	--------------	--------------------	--------	-------------	---------------	----------------

Ref: Reference group.

Figure S1: Funnel plots for standard error of the difference between microfilarial (mf) prevalence (number positive/examined) following the intervention period for: (A) the total number of records reporting parasitological information on this variable; (B) records reporting elimination of transmission; (C) records classified as close to elimination; (D) records reporting ongoing transmission. The black dots represent the mf prevalence (proportion) of individual studies. The unshaded area inside the diagonal dotted lines represents the region where 95% of the data points would lie if there were no systematic heterogeneity/publication bias. The dashed vertical line shows the average standardized mean difference of the microfilarial prevalence. The observed publication bias, indicated by studies deviating from the funnel plots to the shaded regions may be attributed to several reasons. One is the criteria employed for study inclusion, which selectively excluded foci characterized by treatment durations of less than ten years. Secondly, the exclusion of grey literature may have influenced the distinct shape of the funnel plot distribution. The heterogeneity evident in our studies, stemming from disparate population characteristics and variations in blackfly species, may contribute to the observed distribution patterns within the funnel plots.

Figure S2: Frequency histogram showing the number of times the retrieved records from the 238 distinct endemic foci entered the analysis. Of the 282 records identified, 216 (77%) were included once; 10 (3.5%) were included two times (Abu Hamed, Asubende, Bandjoun, Kaduna, Kasese, Kebbi, Mahenge, Ogun, Plateau and Nasarawa); 3 (1%) were included three times (Bandja, River Gambia and Tukuyu); 6 (2%) four times (Bakoye, Bafang, Bafia, Bangangte, Foumbot and Kekem), and 3 (1%) five times (Bioko, Falémé and Massangam). Therefore, some records were classified into one or more transmission status categories, according to when epidemiological evaluations were conducted that reported ongoing transmission, close to elimination, or elimination of transmission.

Author and year of publication	Year of study	Country	Subnational area / focus	Baseline endemicity	Years of MDA	Frequency MDA	Years biannual MDA	Therapeutic coverage of eligibles [§]	Years of therapeutic coverage ≥80% elig.	Simulium spp.	Vector control, no. yr	Trans- mission status	PTS
	•					West Africa	n region	•		•		•	•
Borsboom et al., 2003 ⁶	2002	Burkina Faso	Dienkoa	Hyper- endemic	13	Annual	0	≥80%	_	<i>S. damno-sum</i> s.1.	Yes; 26 years	Ongoing transmission	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Oumé	Hyper- endemic	18	Annual, biannual in 1995–1996	1	<80%	-	<i>S. damno-sum</i> s.1.	Yes, 5 years	Close to elimination	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Yamoussoukro	Hypo- endemic	18	Annual	0	≥80%	-	S. damno- sum s.1.	Yes, 5 years	Close to elimination	-
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Odienné, Korhogo, Zuénoula	Meso- endemic	20	Annual, biannual in 1995–1996	1	≥80%	_	<i>S. damno-sum</i> s.1.	Yes, 5 years	Close to elimination	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Adzope, Boundiali, Mankono	Hyper- endemic	20	Annual, biannual in 1995–1996	1	<80%	_	<i>S. damno-sum</i> s.1.	Yes, at least 5 years	Close to elimination	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Agboville, Tengrela, Issia	Hyper- endemic	20	Annual, biannual in 1995-1996	1	_	_	<i>S. damno-sum</i> s.1.	Yes, 5 years	Close to elimination	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Tiassalé, Bouaké	_	16,18	Annual, biannual in 1995–1996	1	<80%	_	<i>S. damno-sum</i> s.1.	Yes, 5 years	Ongoing transmission	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Daloa, Man, Danané, Seguela, Bondoukou, Bouna, Bèoumi, Bouaflé, Biankouma, Alépé	Meso- endemic	16-18	Annual, biannual in 1995–1996	1	≥80%	_	S. damno- sum s.l.	Yes, 5 years	Ongoing transmission	_
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Touba, Agnibilékro, Abengourou, Dabakala, Dimbokro, Daoukro, M'Bahiakro,	Hyper- endemic	20	Annual, biannual in 1995–1996	1	≥80%	_	S. damno- sum s.l.	Yes, 5 years	Ongoing transmission	-

Table S6: Characteristics of the 282 records (from 238 distinct onchocerciasis-endemic foci) that were included in the analysis

			Katiola, Bocanda										
Koudou et al., 2018 ³³	2007– 2016	Côte d'Ivoire	Soubré, Sassandra, Ferkéssédougo Ouangolo	Hyper- endemic	20	Annual, biannual in 1995–1996	1	_	_	S. damno- sum s.l.	Yes, 5 years	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Ghana	Asubende	Hyper- endemic	14	Annual	0	<80%	_	S. damno- sum s.1.	Yes; 11 years	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Ghana	Bui Gorge	Hyper- endemic	14	Annual, quarterly frequency in 1994–1996	2 quarterly	≥80%	NA	S. damno- sum s.l.	Yes; 21 years	Close to elimination	_
Osei- Atweneboana et al., 2007 ⁴³	2004– 2005	Ghana	Kintampo	_	17	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	-
Osei- Atweneboana et al., 2007 ⁴³	2004– 2005	Ghana	Atebubu	_	17	Annual	0	<80%	_	S. damno- sum s.1.	No	Close to elimination	-
Osei- Atweneboana et al., 2007 ⁴³	2004– 2005	Ghana	Nkoranza	_	12	Annual	0	<80%	_	S. damno- sum s.1.	No	Close to elimination	_
Osei- Atweneboana et al., 2007 ⁴³	2004– 2005	Ghana	East Gonja	_	11	Annual	0	<80%	_	S. damno- sum s.1.	No	Close to elimination	_
Lamberton et al., 2015 ³⁸	2009– 2011	Ghana	Asukawkaw Ferry, Dodi Papase	Hyper- endemic	18	Annual	0	<80%	_	S. damno- sum s.l.	Yes, 5 and 15 years respecti vely	Ongoing transmission	-
Lamberton et al., 2015 ³⁸	2009– 2011	Ghana	Pillar 83/Djodji	Hyper- endemic	18	Annual, biannual in 1993-1997	4	≥80%	-	S. damno- sum s.1.	Yes, 15 years	Ongoing transmission	-
Lamberton et al., 2015 ³⁸	2009– 2011	Ghana	Asubende	Hyper- endemic	14	Biannual	2	≥80%	-	S. damno- sum s.1.	Yes, 13 years	Ongoing transmission	_
Lamberton et al., 2015 ³⁸	2009– 2011	Ghana	Agborlekame	Hyper- endemic	24	Biannual	2	<80%		S. damno- sum s.1.	Yes, 27 years	Ongoing transmission	_
Garms et al., 2015 ¹²	2006, 2013– 2014	Ghana	Toll bridge, Buabenso, Adwuman, Akropong, Kyekyewere, Amoafo,	Hyper- endemic	10-14	Annual	0	_	_	S. damno- sum s.l. S. sancti- pauli affected	No	Ongoing transmission	-

			Badowa, Foso, Nyaduom, Asaman, Awisam, Asma camp, Zion camp, Buabin & Imbraim							by gold- mining in river Pra			
Otabil et al., 2019 ⁴⁶	2017	Ghana	Nkoranza North	-	19	Annual	0	-	-	S. damno- sum s.1.	No	Ongoing transmission	-
Otabil et al., 2023 ⁶⁶	2020– 2021	Ghana	Tain District, Wenchi Municipality	Meso- endemic	27	Biannual	12 (in Tain), 3 (in Wenchi)	≥80%	-	S. damno- sum s.1.	Yes; 20 years in Tain, 4 years in Wenchi	Ongoing transmission	_
Biritwum et al., 2021 ⁵	2016	Ghana	Ashanti, Brong Ahafo, Central, Eastern, Greater Accra, Northern, Upper East, Upper West, Volta, Western	Hyper- endemic	24	Biannual since 2009 in villages along some river basins according to risk	7	<80% ≥80%	3	S. damno- sum s.l.	Yes; 28 years	Close to elimination	-
Borsboom et al., 2003 ⁶	2002	Guinea	Milo & Sankarani	Hyper- endemic	12	Annual	0	<80%	-	S. damno- sum s.1.	Yes; 12 years	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Guinea & Mali	Bafing	Meso- endemic	12	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	-
Borsboom et al., 2003 ⁶	2002	Guinea & Mali	River Bakoye	Hyper- endemic	12	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Guinea & Senegal	River Mako & River Senegal	Hyper- endemic	12	Biannual since 1989	12	≥80%	-	S. damno- sum s.l.	No	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Mali	Tienfala	Hyper- endemic	14	Annual	0	≥80%	-	S. damno- sum s.1.	Yes- 7 years	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Mali & Senegal	River Falémé	Hyper- endemic	12	Annual	-	≥80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Diawara et al., 2009 ⁷	2006– 2008	Mali	River Bakoye	Hypo- (23%) to hyper- endemic (38%) ⁶⁴	15	Annual	0	<80% (38-78%) ≥80% (73-83%)	8	S. damno- sum s.1.	No	Elimination of transmission	Yes, in 2009–2011 by Traore et al, 2012 ³⁰

Diawara et al., 2009 ⁷	2006– 2008	Mali & Senegal	River Falémé	Hypo- to hyper- endemic	16	Annual	0	<80% (38-77%) ≥80% (77-81%)	8	S. damno- sum s.1.	No	Elimination of transmission	Yes, in 2009–2011 by Traore et al, 2012 ³⁰
Diawara et al., 2009 ⁷	2006– 2008	Senegal	River Gambia	Hypo- (7%) to hyper- endemic (50%) ⁶⁴	17	Biannual since 1989	17	<80% ≥80%	8	S. damno- sum s.1.	No	Elimination of transmission	Yes, in 2009–2011 by Traore et al, 2012 ³⁰
Dolo et al., 2021 ⁹	2017– 2018	Mali	River Bakoye	Hyper- endemic	24–25	Annual	0	_	-	S. damno- sum s.1.	Yes	Elimination of transmission	LF co- endemicity, PTS not conducted
Dolo et al., 2021 ⁹	2017– 2018	Mali	River Falémé	Meso- endemic	24–25	Annual	0	_	-	S. damno- sum s.1.	Yes	Elimination of transmission	LF co- endemicity, PTS not conducted
Anosike et al., 2007 ²	2005	Nigeria	Abia	Meso- endemic	11	Annual	0	_	_	S. damno- sum s.1.	No	Ongoing transmission	_
Anosike et al., 2007 ²	2005	Nigeria	Imo	Meso- endemic	12	Annual	0	-	-	S. damno- sum s.1.	No	Ongoing transmission	-
Anosike et al., 2007 ²	2005	Nigeria	Enugu	Meso- endemic	10	Annual	0	-	-	S. damno- sum s.1.	No	Ongoing transmission	_
Anosike et al., 2007 ²	2005	Nigeria	Anambra	Meso- endemic	10	Annual	0	-	-	S. damno- sum s.1.	No	Ongoing transmission	_
Kogi and Bulus, 2008 ³¹	2002	Nigeria	Galadimawa	Hyper- endemic	12	Annual	0	-	-	S. damno- sum s.1.	No	Ongoing transmission	_
Okon and Ilugbiyin, 2008 ⁴²	2006	Nigeria	Cross-River State, Aninegeye	Hyper- endemic	14	Annual	0	-	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Sam-Wobo et al., 2012 ⁴⁹	2009	Nigeria	Oyo & Ogun States, Ogun river system	_	14-15	Annual	0	-	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Tekle et al., 2012 ⁵⁶	2008	Nigeria	Kaduna State, Birnin Gwari	Hypo- to hyper- endemic (Median = meso- endemic)	15	Annual	0	≥80% Median = 77.7 (74.4– 80.4)%	15–17	S. damno- sum s.l.	No	Close to elimination	_
Tekle et al., 2012 ⁵⁶	2008	Nigeria	Kaduna State, Kauru	Hypo- to hyper- endemic	15	Annual	0	≥80%	15–17	S. damno- sum s.1.	No	Close to elimination	_

				(Median = meso- endemic)				Median = 77.7 (74.4– 80.4)%					
Tekle et al., 2012 ⁵⁶	2008	Nigeria	Kaduna State, Lere	Hypo- to hyper- endemic (Median = meso- endemic)	15	Annual	0	≥80% Median = 77.7 (74.4– 80.4)%	15–17	S. damno- sum s.1.	No	Close to elimination	-
Osue et al., 2013 ⁴⁴	2011	Nigeria	Kaduna State, Kachia Local Government Area	Meso- endemic	18	Annual	0	≥80%	-	S. damno- sum s.1.	No	Close to elimination	_
Evans et al., 2014 ¹⁰	2009	Nigeria	Nasarawa & Plateau States	Meso- endemic	17	Annual	0	≥80%	14	S. damno- sum s.1.	No	Close to elimination	-
Sufi and Zainab, 2015 ⁵³	2012	Nigeria	Kano State, Zainabi & Ririwai	_	10	Annual	0	_	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2013	Liberia	Lofa, Bong, Nimba	Meso- endemic	14	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	-
Tekle et al., 2016 ⁵⁷	2012, 2013	Nigeria	Adamawa, FCT, Kano, Kebbi, Niger, Osun, Oyo, Plateau Nasarawa	Meso- to hyper- endemic	10–14	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	-
Tekle et al., 2016 ⁵⁷	2009, 2012, 2013	Nigeria	Cross River, Ebonyi, Enugu Anambra, Ekiti, Kwara &Tabara	Meso- to hyper- endemic	10–14	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing elimination	_
Tekle et al., 2016 ⁵⁷	2012	Nigeria	Kaduna State	Hyper- endemic	21	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	-
Osue Hudu, 2017 ⁴⁵	2004	Nigeria	Gurara River basin	_	10	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Surakat et al., 2018 ⁵⁴	2015	Nigeria	Ogun State: Okeda, Abeokuta North and South, Imeko-Afon, Ewekoro, Ifo, Obafemi- Owode, Yewa North	Meso- endemic	10	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	_

Siewe Fodjo et al., 2019 ⁵²	2018	Nigeria	Imo River basin	-	13	Biannual	6	≥80%	-	S. damno- sum s.1.	No	Ongoing transmission	-
Richards et al., 2020 ⁴⁸	2017	Nigeria	Nasarawa & Plateau States	Meso- to hyper- endemic	16,19	Annual	0	≥80%	22	S. damno- sum s.l.	No	Elimination of transmission	Yes, in 2019-2021 by Miri et al., 2023 ⁷¹
Chikezie et al., 2023 ⁶⁷	2018– 2019	Nigeria	Cross River State: Agbokim, Aningeje, Ekong Anaku, Orimekpang	_	27	Annual	-	<80%	_	S. damno- sum s.1.	No	Close to elimination (3/4) to Ongoing transmission (1/4 villages)	_
Ekpo et al., 2022 ⁶⁸	2020– 2021	Nigeria	Enugu & Ogun States: Amokwe, Eziobodo, Obinagu/ Eziama, Ugwuorie, Umuezemanna, Umunnakwe, Abule Aje, Abule Peter, Adeaga, Ibara Afon, Ibaro, Idode, Imomo, Isara, Olokemeji, Olowo	Hypo- to hyper- endemic	11–26	Annual	_	≥80%	_	S. damno- sum s.1.	No	Close to elimination (1/16) to Ongoing transmission (15/16 villages)	_
Anagbogu et al., 2022 ⁷²	2017	Nigeria	Cross River, Taraba & Yobe States: Bade, Ikom, Bekwara, Gashaka, Karim-Lamido	Hypo- to hyper- endemic	-	Annual	_	≥80%	-	S. damno- sum s.l.	No	Close to elimination	_
Isiyaku et al., 2022 ⁷⁵	2016 (human) 2017– 2020 (vector)	Nigeria	Kaduna, Kebbi, Zamfara States	Hypo- to hyper- endemic	20–28	Annual	_	≥80%	12–20	S. damno- sum s.l.	No	Elimination of transmission	_

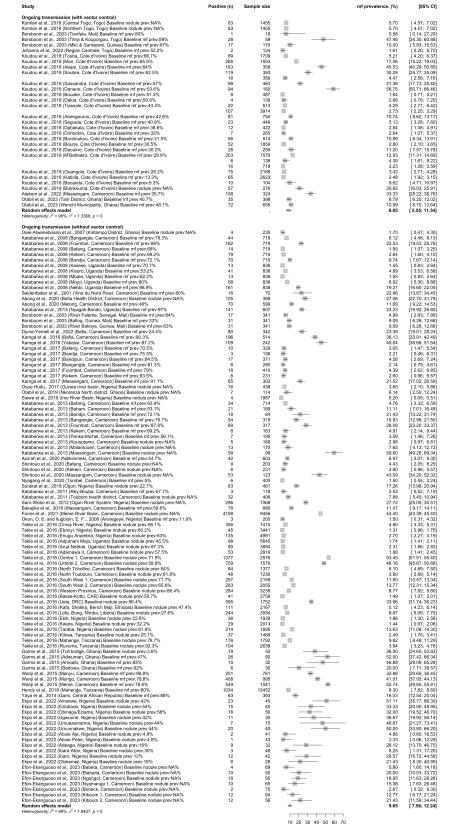
Wilson et al., 2016 ⁶¹	2014	Senegal	River Falémé & River Kaolakabe	_	16	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Wilson et al., 2016 ⁶¹	2014	Senegal	River Gambia	Hyper- endemic	18	Biannual since 1990	24	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Borsboom et al., 2003 ⁶	2002	Togo	Titira & Kouporgou	Hyper- endemic	13	Annual	0	≥80%	-	S. damno- sum s.1.	Yes, 24 years	Ongoing transmission	_
Komlan et al., 2018 ³²	2015	Togo	Central Togo	Hyper- endemic	25	Annual, with biannual from 2003– 2012 in SIZ	9	≥80%	12	S. damno- sum s.1.	Yes, 26 years	Ongoing transmission	_
Komlan et al., 2018 ³²	2015	Togo	Northern Togo	Hyper- endemic	25	Annual, with biannual from 2003– 2012 in SIZ	9	≥80%	12	S. damno- sum s.1.	Yes, 15 years	Ongoing transmission	_
Johanns et al., 2022 ¹⁸	2019	Тодо	Region Centrale	Hyper- endemic	30	Annual, biannual from 2003- 2012 in SIZ	9	-	-	S. damno- sum s.1.	Yes, 31 years	Ongoing transmission	_
			-			Central Africa	in region						
Seidenfaden et al., 2001 ⁵⁰	1996– 1998	Cameroon	Vina du Nord	Hyper- endemic	10	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Borsboom et al., 2003 ⁶	2002	Cameroon	Vina Valley	Hyper- endemic	13	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	_
Katabarwa et al., 2008 ²²	2005	Cameroon	Bangangte, Foumbot, Bafang, Kekem, Bandja	Hyper- endemic	10	Annual	0	≥80%	_	S. damno- sum s.1.	No	Ongoing transmission	_
Katabarwa et al., 2008 ²²	2005	Cameroon	Kekem	Hyper- endemic	10	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Katabarwa et al., 2011 ²³	2008- 2009	Cameroon	Rey-Bouba Health District	Hyper- endemic	12	Annual	0	≥80%	6	S. damno- sum s.1.	No	Ongoing transmission	_
Katabarwa et al., 2011 ²³	2008- 2010	Cameroon	Tcholliré	Meso- endemic	12	Annual	0	≥80%	7	S. damno- sum s.1.	No	Close to elimination	_
Katabarwa et al., 2011 ²³	2008- 2009	Cameroon	Touboro Health District	Hyper- endemic	17	Annual	0	≥80%	6	S. damno- sum s.1.	No	Ongoing transmission	_
Katabarwa et al., 2013a ²⁵	2011	Cameroon	Bafang, Baham, Bandja, Bangangte, Foumbot, Kekem, Penka- Michel,	Hyper- endemic	14	Annual	0	≥80%	8	S. damno- sum s.l.	No	Ongoing transmission	_

	0011		Foumban, Kouoptamo, Malantouen, Massangam						2			qt	
Katabarwa et al., 2013a ²⁵	2011	Cameroon	Foumban, Folap village	_	14	Annual	0	≥80%	8	S. damno- sum s.1.	No	Close to elimination	-
Wanji et al., 2015 ⁶⁰	2011- 2012	Cameroon	Manyu River, Mungo & Meme basin	Hyper- endemic	10–14	Annual	0	<80%	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2010- 2012	Cameroon	North Tcholliré, Centre 1, Littoral 2, Western Province, Adamawa II, South West 1, South West 2	Hyper- endemic	11	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	-
Tekle et al., 2016 ⁵⁷	2010	Cameroon	North Toubouro	-	21	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Kamga et al., 2016 ¹⁹	2015	Cameroon	Bafia & Yabassi Health Districts	Hyper- endemic	15,16	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Kamga et al., 2017 ²⁰	2015	Cameroon	Bafang, Bandja, Bandjoun, Bangangte, Foumbot, Kekem, Massangam Health Districts	Hyper- endemic	19	Annual	0	<80% except Bandja	_	S. damno- sum s.l.	No	Ongoing transmission	-
Kamga et al., 2018 ²¹	2015	Cameroon	Bafia, Foumbot- Massangam, Yabassi Health Districts	Hyper- endemic	15	Annual	0	≥80% except Yabassi	3	S. damno- sum s.1.	No	Ongoing transmission	I
Bakajika et al., 2018 ⁴	2015- 2016	Cameroon	Massangam	Hyper- endemic	20	Annual	0	≥80%	-	S. damno- sum s.1.	No	Ongoing transmission	-
Abong et al., 2020 ¹	2016– 2017	Cameroon	Bafia Health District	_	>20	Annual	0	≥80%	-	S. damno- sum s.l.	No	Ongoing transmission	_
Abong et al., 2020 ¹	2016– 2017	Cameroon	Melong	Hyper- endemic	10	Annual	0	≥80%	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Aza'ah et al., 2020 ³	2018	Cameroon	Ndikinimeki	Hyper- endemic	20	Annual	0	<80%	-	<i>S. damno-sum</i> s.1.	No	Ongoing transmission	_
Nyagang et al., 2020 ⁴¹	2017- 2018	Cameroon	Tombel	Hyper- endemic	15	Annual	0	≥80%	13	S. damno- sum s.l.	No	Ongoing transmission	_

Shintouo et al., 2020 ⁵¹	2019	Cameroon	Bandjoun, Bangangte & Foumbot	_	23	Annual	0	-	_	S. damno- sum s.1.	No	Close to elimination	_
Shintouo et al., 2020 ⁵¹	2019	Cameroon	Bafang Kekem & Massangam	_	23	Annual	0	_	-	S. damno- sum s.1.	No	Ongoing transmission	_
Forrer et al., 2021 ¹¹	2017	Cameroon	Meme River basin	_	>15	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	-
Djune-Yemeli et al., 2022 ¹⁹	2019	Cameroon	Bafia Health district	Meso- endemic	20	Annual	0	-	_	S. damno- sum s.1.	No	Ongoing transmission	—
Atekem et al., 2022 ⁶⁵	2019	Cameroon	Massangam	Hypo- endemic	23	Biannual	5	<80%	_	S. damno- sum s.1.	Yes, 2 years	Ongoing transmission	-
Efon- Ekanguouo et al., 2023 ⁷⁰	2021	Cameroon	Babeta, Biatsota, Ngongol, Nyamanga 1, Boneck, Kiboum 1, Kiboum 2		>20	Annual	_	≥80%	-	_	No	Ongoing transmission	_
Ekanya et al., 2022 ⁷³	2017	Cameroon	Berenge, Betenge, Big Massaka, Bombele, Kwakwa, Muramba 1, Small Massaka	Hyper- to holo- endemic		Annual	-	≥80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Domche et al., 2022 ⁷⁴	2019- 2020	Cameroon	Bayomen, Biatsota	Hyper- to holo- endemic	24	Annual	-	≥80%	_	-	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2010	Central African Republic	Basse-Kotto	Hyper- endemic	11	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2012	Central African Republic	Ouaham Pende & Ouaka	Hyper- endemic	13	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Yaya et al., 2014 ⁶²	2010	Central African Republic	Gami	Hyper- endemic	22	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2012- 2014	Chad	Logon Occidental, Logon Oriental, Mandoul, Mayo Kebbi East,	Hyper- endemic	16	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_

			Moyen Chari, Tandjile										
Tekle et al., 2016 ⁵⁷	2011	Congo	Bouenza	Meso- endemic	10	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	-
Tekle et al., 2016 ⁵⁷	2012	Democratic Republic of Congo	Uele	Hyper- endemic	10	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	_
Traoré et al., 2009 ⁵⁸	2007– 2008	Equatorial Guinea	Bioko Island	Hyper- endemic	10	Annual	0	<80%	-	Bioko form of S. yahense (S. dam- nosum s.l.)	Yes, 2003, 2005, vector elimi- nated	Ongoing transmission	_
Hernández- González et al., 2016 ¹⁵	2014	Equatorial Guinea	Bioko Island	Hyper- endemic	19	Annual	0	<80%	-	As above	As above	Close to elimination	_
Moya et al., 2016 ³⁹	2014	Equatorial Guinea	Bioko Island	Hyper- endemic	25	Annual	0	-	-	As above	As above	Close to elimination	_
Ta et al., 2018 ⁵⁵	2014	Equatorial Guinea	Bioko Island	Hyper- endemic	16	Annual	0	—	_	As above	As above	Close to elimination	_
Herrador et al., 2018 ¹⁶	2016- 2017	Equatorial Guinea	Bioko Island	Hyper- endemic	26	Annual	0	-	-	As above	As above	Elimination of transmission	Not conducted; recommen- ded
						Eastern Afric	an region						
Tekle et al., 2016 ⁵⁷	2013	Ethiopia	North Gondar	Hyper- endemic	10	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Tekle et al., 2016 ⁵⁷	2011	Ethiopia	Kafa, Shekka & Bench Maji	Hyper- endemic	10	Annual	0	<80%	_	S. damno- sum s.1.	No	Ongoing transmission	-
Gebrezgabiher et al., 2020 ¹³	2017- 2018	Ethiopia	Yeki	Hyper- endemic	15	Biannual	7	≥80%	6	-	No	Close to elimination	_
Katabarwa et al., 2020a ²⁹	2014- 2017	Ethiopia	Metema	Hyper- endemic	14	Annual, biannual in 2016	1	≥80%	14	S. damno- sum s.1.	No	Elimination of transmission	
Tekle et al., 2016 ⁵⁷	2012	Malawi	Malawi extension & Thyolo Muanza	Meso- endemic	12 13	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Higazi et al., 2013 ¹⁷	2011	Sudan	Abu Hamed	Meso- endemic	13	Biannual	5	≥80%	2	S. damno- sum s.l.	No	Elimination of transmission	Yes, in 2014–2015. Zarroug et al., 2016 ³⁹

Katabarwa et al., 2020a ²⁹	2014– 2017	Sudan	Galabat	Hyper- endemic	10	Annual, biannual from 2011– 2014	3	≥80%	14	S. damno- sum s.1.	No	Elimination of transmission	_
Mweya et al., 2007 ⁴⁰	2004	Tanzania	Tukuyu	Hyper- endemic	10	Annual	0	-	_	S. damno- sum s.1.	No	Close to elimination	-
Tekle et al., 2016 ⁵⁷	2012	Tanzania	Tanga & Tukuyu	Meso- to hyper- endemic	11 12	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Tekle et al., 2016 ⁵⁷	2009, 2011, 2012	Tanzania	Kilosa, Mahenge & Ruvuma	Meso- endemic	10–12	Annual	0	<80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Tekle et al., 2016 ⁵⁷	2013	Tanzania	Tunduru	Hyper- endemic	18	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_
Paulin et al., 2017 ⁴⁷	2015	Tanzania	Tukuyu	Hypo- to hyper- endemic	15	Annual	0	<80%	-	S. damno- sum s.1.	Yes, 3 years	Ongoing transmission	_
Hendy et al., 2018 ¹⁴	2015– 2016	Tanzania	Mahenge	Hyper- endemic	19	Annual	0	<80%	-	Simulium neavei	No	Ongoing transmission	_
Mshana et al., 2023 ⁶⁴	2022	Tanzania	Ulanga (Morogoro)	Hyper- endemic	20	Biannual	3	≥80%	-	S. damno- sum s.1.	No	Ongoing transmission	_
Bhwana et al., 2023 ⁶⁹	2021	Tanzania	Mahenge: Mdindo, Msogezi, Mzelezi, Sali	Hyper- to holo- endemic	24	Biannual	2	<80% ≥80%	1	S. damno- sum s.l., S. neavei	No	Ongoing transmission	-
Katabarwa et al., 2008 ²²	2005	Uganda	Kasese, Kisoro, Mbale, Moyo, Nebbi	Hyper- endemic	13	Annual	0	≥80%	-	-	No	Ongoing transmission	_
Katabarwa et al., 2012 ²⁴	2010	Uganda	Wadelai	Meso- endemic	18	Annual from 1993–2005, biannual from 2006– 2010 ⁶⁵	5	≥80%	15	Simulium neavei	No, disap- peared	Elimination of transmission	Not conducted; later reported for 2017– 2020 ⁶⁵
Katabarwa et al., 2013b ²⁶	2010– 2011	Uganda	Nyagak-Bondo	Hyper- endemic	15–19	Annual from 1993–2011, biannual from 2012 ⁶⁵	7	≥80%	12	Simulium neavei	No	Ongoing transmission	-
Katabarwa et al., 2014 ²⁷	2007– 2011	Uganda	Mount Elgon	Hyper- endemic	18	Annual from 1994–2006, biannual	5	≥80%	4	Simulium neavei	Yes, 1.25 years	Elimination of transmission	Not conducted; later reported for


						from 2007– 2011 ⁶⁵							2012– 2015 ⁶⁵
Katabarwa et al., 2016 ²⁸	2012– 2015	Uganda	Imaramagambo	Hypo- to meso- endemic	22	Annual from 1991–2012 ⁶⁵	0	<80%	-	Simulium neavei	No, disap- peared	Elimination of transmission	Yes; reported for 2013– 2016 ⁶⁵
Lakwo et al., 2013 ³⁴	2010	Uganda	Itwara	Hyper- endemic	21	Annual from 1991–2011 ⁶⁵	0	≥80%	17	Simulium neavei	Yes, 1 year, elimina- tion	Elimination of transmission	Not conducted; recommen- ded; later reported for 2012– 2015 ⁶⁵
Lakwo et al., 2015 ³⁵	2012	Uganda	Mpamba-Nkusi	Holo- endemic	18	Annual from 1995–2008, biannual from 2009– 2012 ⁶⁵	4	≥80%	18	Simulium neavei	Yes, 2– 7 years, elimina- tion	Elimination of transmission	Not conducted; recommen- ded; later reported for 2013– 2016 ⁶⁵
Lakwo et al., 2017 ³⁶	2013	Uganda	Kashoya-Kitomi	Hyper- endemic	23	Annual from 1991–2006, biannual from 2007– 2013 ⁶⁵	7		12	Simulium neavei	Yes, 3– 5 years, elimina- tion	Elimination of transmission	Not conducted; recommen- ded; later reported for 2014– 2017 ⁶⁵
Lakwo Luroni et al., 2017 ³⁷	2014	Uganda	Obongi	Hyper- endemic	21	Annual from 1993–2014 ⁶⁵	0	≥80%	12	S. damno- sum s.1.	No, disap- peared	Elimination of transmission	Not conducted; recommen- ded with LF; later reported for 2016– 2019 ⁶⁵
Katabarwa et al., 2020b ³⁰	2014– 2017	Uganda	Wambabya- Rwamarongo	_	23	Annual from 1991–2006, biannual from 2007– 2013 ⁶⁵	7	≥80%	9	Simulium neavei	Yes, 3 years, elimina- tion	Elimination of transmission	Yes; reported for 2014– 2017 ⁶⁵
Tekle et al., 2016 ⁵⁷	2012	Uganda	Kasese	Hyper- endemic	14	Annual	0	<80%	-	S. damno- sum s.1.	No	Close to elimination	_

Tekle et al.,	2009	Uganda	Adjumani Mojo	Hyper-	10	Annual	0	<80%	-	S. damno-	No	Ongoing	-
201657	2012	-	& Arua Nebbie	endemic	13					<i>sum</i> s.1.		transmission	

§ For papers that had reported coverage of total population, this value was converted into coverage of eligible population by multiplying it by 1.23 (80/65), as treating 80% of the eligible population is approximately equivalent to treating 65% of the total population.
PTS: Post-treatment surveillance; SIZ: Special Intervention Zone; s.l.: sensu lato.

Study	Positive (n)	Sample size		mf prevalence. (%)	[95% CI]
EOT (with vector control) Katabarwa et al., 2014 (Mourt Elgon, Uganda) Baseline mf prev:652,2% Lakvo et al., 2015 (Mourt Algonda) Baseline mf prev:65% Lakvo et al., 2015 (Mpamba-Nkusi focus, Uganda) Baseline mf prev:92% Random effects model Heterogeneity: <i>f²</i> = 0%, <i>e²</i> = 0, <i>p</i> = 0.94	2 4 0 2	442 883 688 732	₩	0.45 0.45 0.00 0.27 0.29	[0.05; 1.62] [0.12; 1.16] [0.00; 0.53] [0.03; 0.98] [0.15; 0.58]
EOT (without vector control) Richards et al., 2020 (Nasarwaw State, Nigeria) Baseline mf prev:64%, Richards et al., 2020 (River Bandows State, Nigeria) Baseline nodule prev:N4% Diawara et al., 2009 (River Banbia, Senegal) Baseline nodule prev:N4% Katabarva et al., 2012 (Waldai, Uganda) Baseline mf prev:258% Traore et al., 2012 (River Gambia, Senegal) Baseline mf prev:258% Traore et al., 2012 (River Gambia, Senegal) Baseline mf prev:34.4% Traore et al., 2012 (River Gambia, Senegal) Baseline nodule prev:N4% Traore et al., 2012 (River Gambia, Senegal) Baseline nodule prev:N4% Traore et al., 2012 (River Gambia, Senegal) Baseline nodule prev:N4% Random effects node] Heterogenety; <i>I[±]</i> = 0%, <i>I[±]</i> = 0.5828, <i>p</i> = 0.4	10 9 18 3 0 1 0 0 3	3182 3080 6899 1971 513 913 3520 1540 2005	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0.31 0.29 0.26 0.15 0.00 0.11 0.00 0.00 0.00 0.00 0.15 0.12	[0.15; 0.58] [0.13; 0.55] [0.15; 0.41] [0.00; 0.72] [0.00; 0.61] [0.00; 0.10] [0.00; 0.24] [0.03; 0.44] [0.06; 0.27]
Close to elimination (with vector control) Birthwim et al., 2021 (Multiple foci, Ghana) Baseline mf prev:69.3% Hermandez-Gorzales et al., 2016 (Bioko Island, Equatorial Guinea) Baseline nodule prev:NA% Borsboom et al., 2003 (Bui Gorge, Ghana) Baseline mf prev:57% Ta et al., 2016 (Bioko Island, Equatorial Guinea) Baseline mf prev:75% Ta et al., 2018 (Bioko Island, Equatorial Guinea) Baseline mf prev:78% Koudou et al., 2018 (Adzoe, Cotel d'Ivioria) Baseline mf prev:71.5% Koudou et al., 2018 (Adzoe, Cotel d'Ivioria) Baseline mf prev:71.5% Koudou et al., 2018 (Adzoe, Cotel d'Ivioria) Baseline mf prev:73.4% Koudou et al., 2018 (Adzoe, Cotel d'Ivioria) Baseline mf prev:73.4% Koudou et al., 2018 (Gloundial), Cotel d'Ivioria) Baseline mf prev:74.8% Koudou et al., 2018 (Gloundial), Cotel d'Ivioria) Baseline mf prev:74.8% Koudou et al., 2018 (Gloundial), Cotel d'Ivioria) Baseline mf prev:74.8% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:74.8% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:24.8% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:24.4% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:24.4% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:24.4% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:24.4% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:31% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:33% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34% Koudou et al., 2018 (Kuenou), Cotel d'Ivioria) Baseline mf prev:34%	199 40 0 1 1 2 2 3 0 9 9 0 6 0 2	27603 544 47 543 142 119 1161 521 7707 540 1425 163 1142 138 710	□ <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u>	0,72 7,35 0,00 0,84 1,03 0,08 0,08 0,08 0,01 1,03 0,08 0,01 0,05 0,05 0,05 0,05 0,05 0,028 0,28 0,28	[0.62; 0.83] [5.30; 9.88] [0.00; 7.55] [0.00; 1.02] [0.00; 2.66] [0.00; 2.56] [0.02; 4.59] [0.54; 1.80] [0.54; 1.80] [0.44; 0.51] [0.04; 0.51] [0.04; 0.51] [0.04; 0.51] [0.00; 2.24] [0.19; 1.14] [0.03; 1.01] [0.03; 1.01]
Close o Lollinitation (without vactor control) Gebrezgabiher et al., 2020 (Yeki, Ethiopia) Baseline mf prev:37% Tekle et al., 2012 (Birnin Gwark, Nigeria) Baseline mf prev:37% Osei-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Osei-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Osei-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Osei-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Osei-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Casi-Atweneboana et al., 2007 (Neoraza) Datitic, Ghana) Baseline nodule prev:NA% Katabarwa et al., 2013 (Fourban, Gameroon) Baseline nodule prev:NA% Wilson et al., 2016 (River Falaeme Koal, Senergal) Baseline nodule prev:NA% Shintous et al., 2016 (River Falaeme focus, Senergal) Baseline nodule prev:NA% Shintous et al., 2020 (Bandjoun, Cameroon) Baseline nodule prev:NA% Shintous et al., 2020 (Bandjoun, Cameroon) Baseline nodule prev:NA% Shintous et al., 2020 (Roundor, Cameroon) Baseline module prev:NA% Shintous et al., 2020 (Roundor, Cameroon) Baseline nodule prev:NA% Shintous et al., 2020 (Roundor, Cameroon) Baseline nodule prev:NA% Shintous et al., 2020 (Roundor, Cameroon) Baseline nodule prev:35% Catabarwa et al., 2011 (Tchollire, Cameroon) Baseline nodule prev:35% Takite et al., 2016 (Ligon Occidental, Chad) Baseline nodule prev:32.8% Osue et al., 2016 (Ligon Occidental, Chad) Baseline nodule prev:32.8% Takite et al., 2016 (Ligon Occidental, Chad) Baseline nodule prev:42.8% Takite et al., 2016 (Ligon Occidental, Chad) Baseline nodule prev:44.8% Takite et al., 2016 (Maya Kebb) West, Chad) Baseline nodule prev:52.8% Takite et al., 2016 (Maya Kebb) West, Chad) Baseline nodule prev:52.8% Takite et al., 2016 (Maya Kebb) West, Chad) Baseline nodule prev:52.8% Takite et al., 2016 (Maya Kebb) West, Chad) Baseline nodule prev:52.8% Takite et al., 2016 (Maya Kebb) Reseline nodule prev:52.8% Takite et al., 2016 (Maya Keb	0 0 0 1 1 8 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1435 4407 1718 1378 202 5720 329 329 329 329 329 329 329 329 329 329		0.00 0.00 0.00 0.55 0.54 0.64 0.64 0.60 0.00 0.00 0.00 0.00 0.0	$ \begin{array}{l} [0.00; \ 0.26] \\ [0.00; \ 0.21] \\ [0.00; \ 0.23] \\ [0.00; \ 0.26] \\ [0.00; \ 0.26] \\ [0.01; \ 2.73] \\ [0.01; \ 2.73] \\ [0.02] \\ [0$

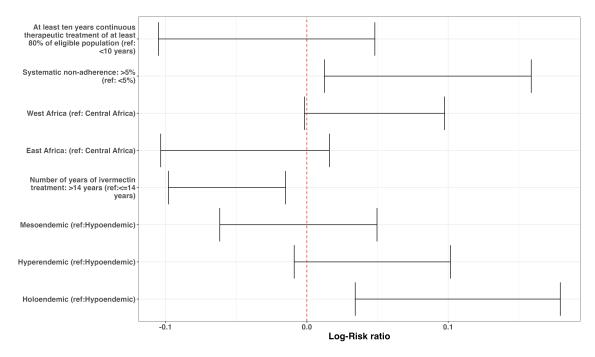

Figure S3: Forest plots of microfilarial (mf) prevalence reported by studies conducting parasitological evaluations to measure the impact of interventions for records classified as reporting elimination of transmission (EOT) or being close to EOT with or without vector control. Records reporting EOT had achieved proposed serological/entomological thresholds,^{11,19} and those classified as close to elimination had mf prevalence <1% at the time of the evaluations, but had not conducted sero- or xenomonitoring, or had not met proposed thresholds. Some records appear in both groups (e.g. Plateau and Nasarawa in Nigeria) depending on the time the evaluations took place. The references used are described in page 10. The grey boxes denote the effect sizes of studies and the horizontal lines are the 95%CIs.

Figure S4: Forest plots of microfilarial (mf) prevalence reported by studies conducting parasitological evaluations to measure the impact of interventions for records reporting ongoing onchocerciasis transmission, with or without vector control. Records were classified as reporting ongoing transmission if mf prevalence $\geq 1\%$ at the time of the evaluations. The references used are described in page 10. The grey boxes denote the effect sizes of studies and the horizontal lines are the 95%CIs.

Additional multivariable analysis

We conducted an additional (Poisson) meta-regression analysis on the association between microfilarial prevalence (number of skin-snip positive individuals out of total examined) at the time epidemiological evaluations were conducted after the intervention period being reported in the records providing parasitological results and the following variables: African region where the records originated from (West, Central, or East Africa) as per United Nations classification;⁷⁶ ecological features (savannah, forest, forest-savannah mosaic); larviciding of vector breeding sites (yes or no and duration); number of years of ivermectin treatment (<14 or \geq 14 years); proportion of systematic non-adherence (\leq 5% as used in epidemiological models,^{77,78} or >5%); years of continuous therapeutic coverage at \geq 80% of eligible population (<10 or \geq 10 years); baseline endemicity (i) hypoendemicity, ii) mesoendemicity, iii) hyperendemicity, and iv) holoendemicity as defined in the main text), and co-endemicity (not reported, with loiasis and/or with lymphatic filariasis). The results below present the log-risk ratios for the variables included in the final model, with the method of model selection as described in the main text.

Figure S5: Multivariate analysis of the factors associated with mf prevalence at the time epidemiological evaluations were conducted following the intervention period.

In foci that had received at least 14 years of ivermectin treatment, the risk of high mf prevalence was significantly lower (log-risk ratio: -0.06 [95%CI = -0.10 - -0.02]) than in those with <14 years. Foci reporting systematic non-compliance >5% had a significantly higher risk of reporting high mf prevalence (log-risk ratio 0.09 [95%CI = 0.01 - 0.16]), compared to those with <5%. Taking hypoendemicity at baseline (pre-intervention) as the reference group, records that reported holoendemicity at baseline had significantly increased risk of presenting mf prevalence at the time of the epidemiological evaluation following the intervention period (log-risk ratio: 0.11 [95%CI = 0.03 - 0.18]).

Supplementary References

- 1 Abong RA, Amambo GN, Chounna Ndongmo PW, et al. Differential susceptibility of *Onchocerca volvulus* microfilaria to ivermectin in two areas of contrasting history of mass drug administration in Cameroon: relevance of microscopy and molecular techniques for the monitoring of skin microfilarial repopulation within six months of direct observed treatment. *BMC Infect Dis* 2020; **20**: 726.
- 2 Anosike JC, Dozie INS, Ameh GI, Ukaga CN, Nwoke BE, Nzechukwu CT, Udujih OS, Nwosu DC. The varied beneficial effects of ivermectin (Mectizan) treatment, as observed within onchocerciasis foci in south-eastern Nigeria. *Ann Trop Med Parasitol* 2007; **101:** 593–600.
- 3 Aza'ah RA, Sumo L, Ntonifor NH, Bopda J, Bamou RH, Nana-Djeunga HC. Point prevalence mapping reveals hotspot for onchocerciasis transmission in the Ndikinimeki Health District, Centre Region, Cameroon. *Parasit Vectors* 2020; **13**: 519.
- 4 Bakajika D, Senyonjo L, Enyong P, *et al.* On-going transmission of human onchocerciasis in the Massangam health district in the West Region of Cameroon: better understanding transmission dynamics to inform changes in programmatic interventions. *PLoS Negl Trop Dis* 2018; **12**: e0006904.
- 5 Biritwum NK, de Souza DK, Asiedu O, Marfo B, Amazigo UV, Gyapong JO. Onchocerciasis control in Ghana (1974–2016). *Parasit Vectors* 2021; **14:** 3.
- 6 Borsboom GJ, Boatin BA, Nagelkerke NJ, Agoua H, Akpoboua KL, Alley EW, Bissan Y, Renz A, Yameogo L, Remme JH, Habbema JD. Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West-Africa. *Filaria J* 2003; **2**: 8.
- 7 Diawara L, Traoré MO, Badji A, Bissan Y, Doumbia K, et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. *PLoS Negl Trop Dis* 2009; **3**: e479.
- 8 Djune-Yemeli L, Domché A, Nana-Djeunga HC, Donfo-Azafack C, Lenou-Nanga CG et al. Relationship between skin snip and Ov16 ELISA: two diagnostic tools for onchocerciasis in a focus in Cameroon after two decades of ivermectin-based preventive chemotherapy. *PLoS Negl Trop Dis* 2022; **16:** e0010380.
- 9 Dolo H, Coulibaly YI, Sow M, et al. Serological Evaluation of onchocerciasis and lymphatic filariasis elimination in the Bakoye and Falémé foci, Mali. *Clin Infect Dis* 2021; **72:** 1585–93.

- 10 Evans DS, Alphonsus K, Umaru J, et al. Status of onchocerciasis transmission after more than a decade of mass drug administration for onchocerciasis and lymphatic filariasis elimination in central Nigeria: challenges in coordinating the stop MDA decision. *PLoS Negl Trop Dis* 2014; 8: e3113.
- 11 Forrer A, Wanji S, Obie ED, et al. Why onchocerciasis transmission persists after 15 annual ivermectin mass drug administrations in South-West Cameroon. *BMJ Glob Health* 2021; **6**: e003248.
- 12 Garms R, Badu K, Owusu-Dabo E, et al. Assessments of the transmission of *Onchocerca volvulus* by *Simulium sanctipauli* in the Upper Denkyira District, Ghana, and the intermittent disappearance of the vector. *Parasitol Res* 2015; **114:** 1129–37.
- 13 Gebrezgabiher G, Mekonnen Z, Yewhalaw D, Hailu A. Status of parasitological indicators and morbidity burden of onchocerciasis after years of successive implementation of mass distribution of ivermectin in selected communities of Yeki and Asosa districts, Ethiopia. *BMC Public Health* 2020; **20:** 1233.
- 14 Hendy A, Krüger A, Pfarr K, et al. The blackfly vectors and transmission of *Onchocerca volvulus* in Mahenge, south eastern Tanzania. *Acta Trop* 2018; **181**: 50–9.
- 15 Hernández-González A, Moya L, Perteguer MJ, et al. Evaluation of onchocerciasis seroprevalence in Bioko Island (Equatorial Guinea) after years of disease control programmes. *Parasit Vectors* 2016; **9:** 509.
- 16 Herrador Z, Garcia B, Ncogo P, et al. Interruption of onchocerciasis transmission in Bioko Island: Accelerating the movement from control to elimination in Equatorial Guinea. *PLoS Negl Trop Dis* 2018; **12:** e0006471.
- 17 Higazi TB, Zarroug IMA, Mohamed HA, et al. Interruption of *Onchocerca volvulus* transmission in the Abu Hamed focus, Sudan. *Am J Trop Med Hyg* 2013; **89:** 51–7.
- 18 Johanns SI, Gantin RG, Wangala B, et al. *Onchocerca volvulus*-specific antibody and cellular responses in onchocerciasis patients treated annually with ivermectin for 30 years and exposed to parasite transmission in central Togo. *PLoS Negl Trop Dis* 2022; **16**: e0010340.
- 19 Kamga GR, Dissak-Delon FN, Nana-Djeunga HC, et al. Still mesoendemic onchocerciasis in two Cameroonian community-directed treatment with ivermectin projects despite more than 15 years of mass treatment. *Parasit Vectors* 2016; **9:** 581.
- 20 Kamga GR, Dissak-Delon FN, Nana-Djeunga HC, et al. Important progress towards elimination of onchocerciasis in the West Region of Cameroon. *Parasit Vectors* 2017; **10**: 373.
- 21 Kamga GR, Dissak-Delon FN, Nana-Djeunga HC, et al. Audit of the community-directed treatment with ivermectin (CDTI) for onchocerciasis and factors associated with adherence in three regions of Cameroon. *Parasit Vectors* 2018; **11:** 356.
- 22 Katabarwa M, Eyamba A, Habomugisha P, et al. After a decade of annual dose mass ivermectin treatment in Cameroon and Uganda, onchocerciasis transmission continues. *Trop Med Int Health* 2008; **13**: 1196–203.
- 23 Katabarwa MN, Eyamba A, Nwane P, et al. Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon. *Am J Trop Med Hyg* 2011; **85:** 1041–9.
- Katabarwa MN, Walsh F, Habomugisha P, et al. Transmission of onchocerciasis in Wadelai focus of northwestern Uganda has been interrupted and the disease eliminated. *J Parasitol Res* 2012; 2012: 748540.
- 25 Katabarwa MN, Eyamba A, Nwane P, et al. Fifteen years of annual mass treatment of onchocerciasis with ivermectin have not interrupted transmission in the West region of Cameroon. *J Parasitol Res* 2013a; **2013**: 420928.

- 26 Katabarwa MN, Lakwo T, Habomugisha P, et al. Transmission of Onchocerca volvulus continues in Nyagak-Bondo focus of northwestern Uganda after 18 years of a single dose of annual treatment with ivermectin. Am J Trop Med Hyg 2013b; 89: 293–300.
- 27 Katabarwa M, Lakwo T, Habomugisha P, et al. Transmission of *Onchocerca volvulus* by *Simulium neavei* in Mount Elgon focus of eastern Uganda has been interrupted. *Am J Trop Med Hyg* 2014; **90:** 1159–66.
- 28 Katabarwa MN, Katamanywa J, Lakwo T, et al. The Imaramagambo onchocerciasis focus in southwestern Uganda: interruption of transmission after disappearance of the vector *Simulium neavei* and its associated freshwater crabs. *Am J Trop Med Hyg* 2016; **95**: 417–25.
- 29 Katabarwa MN, Zarroug IMA, Negussu N, et al. The Galabat-Metema cross-border onchocerciasis focus: the first coordinated interruption of onchocerciasis transmission in Africa. *PLoS Negl Trop Dis* 2020a; **14**: e0007830.
- 30 Katabarwa MN, Habomugisha P, Khainza A, et al. Elimination of *Simulium neavei*-transmitted onchocerciasis in Wambabya-Rwamarongo focus of western Uganda. *Am J Trop Med Hyg* 2020b; 103: 1135–42.
- 31 Kogi E, Bulus W. The impact of ivermectin mass treatment on the prevalence of onchocerciasis by rapid epidemiological assessment in Galadimawa, Kaduna State, Nigeria. Sci World J 2008; 3: 1–5.
- 32 Komlan K, Vossberg PS, Gantin RG, et al. *Onchocerca volvulus* infection and serological prevalence, ocular onchocerciasis and parasite transmission in northern and central Togo after decades of *Simulium damnosum* s.l. vector control and mass drug administration of ivermectin. *PLoS Negl Trop Dis* 2018; **12:** e0006312.
- 33 Koudou BG, Kouakou MM, Ouattara AF, et al. Update on the current status of onchocerciasis in Côte d'Ivoire following 40 years of intervention: progress and challenges. *PLoS Negl Trop Dis* 2018; **12:** e0006897.
- 34 Lakwo TL, Garms R, Rubaale T, et al. The disappearance of onchocerciasis from the Itwara focus, western Uganda after elimination of the vector *Simulium neavei* and 19 years of annual ivermectin treatments. *Acta Trop* 2013; **126**: 218–21.
- Lakwo TL, Garms R, Tukahebwa E, et al. Successful interruption of the transmission of Onchocerca volvulus in Mpamba-Nkusi focus, Kibaale District, Uganda. East Afr Med J 2015;
 92: 401–7.
- 36 Lakwo T, Garms R, Wamani J, et al. Interruption of the transmission of *Onchocerca volvulus* in the Kashoya-Kitomi focus, western Uganda by long-term ivermectin treatment and elimination of the vector *Simulium neavei* by larviciding. *Acta Trop* 2017; **167**: 128–36.
- 37 Lakwo Luroni T, Gabriel M, Tukahebwa E, et al. The interruption of *Onchocerca volvulus* and *Wuchereria bancrofti* transmission by integrated chemotherapy in the Obongi focus, North Western Uganda. *PLoS One* 2017; **12:** e0189306.
- Lamberton PHL, Cheke RA, Winskill P, et al. Onchocerciasis transmission in Ghana: persistence under different control strategies and the role of the simuliid vectors. *PLoS Negl Trop Dis* 2015;
 9: e0003688.
- 39 Moya L, Herrador Z, Ta-Tang TH, et al. Evidence for suppression of onchocerciasis transmission in Bioko Island, Equatorial Guinea. *PLoS Negl Trop Dis* 2016; **10:** e0004829.
- 40 Mweya CN, Kalinga AK, Kabula B, Malley KD, Ruhiso MH, Maegga BT. Onchocerciasis situation in the Tukuyu focus of southwest Tanzania after ten years of ivermectin mass treatment. *Tanzan Health Res Bull* 2007; **9:** 174–9.
- 41 Nyagang SM, Cumber SN, Cho JF, Keka EI, Nkfusai CN, Wepngong E, Tsoka-Gwegweni JM, Fokam EB. Prevalence of onchocerciasis, attitudes and practices and the treatment coverage after

15 years of mass drug administration with ivermectin in the Tombel health district, Cameroon. *Pan Afr Med J* 2020; **35:** 107.

- Okon OE, Ilugbiyin EF. Evaluation of Mectizan efficacy in the treatment of onchocerciasis using microfilarial load in a community in south-eastern Nigeria. *Int J Biomed Hlth Sci* 2008; 4: 1994–6.
- 43 Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of *Onchocerca volvulus* infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. *Lancet* 2007; **369**: 2021–9.
- 44 Osue HO, Inabo HI, Yakubu SE, et al. Impact of eighteen-year varied compliance to onchocerciasis treatment with ivermectin in sentinel savannah agrarian communities in Kaduna State of Nigeria. *ISRN Parasitol* 2013; **2013**: 960168.
- 45 Osue HO. Field-based evidence of single and few doses of annual ivermectin treatment efficacy in eliminating skin microfilaria load after a decade of intervention. *Ethiop J Health Sci* 2017; **27**: 129–38.
- 46 Otabil KB, Gyasi SF, Awuah E, et al. Prevalence of onchocerciasis and associated clinical manifestations in selected hypoendemic communities in Ghana following long-term administration of ivermectin. *BMC Infect Dis* 2019; **19**: 431.
- 47 Paulin HN, Nshala A, Kalinga A, Mwingira U, Wiegand R, Cama V, Cantey PT. Evaluation of onchocerciasis transmission in Tanzania: preliminary rapid field results in the Tukuyu Focus, 2015. Am J Trop Med Hyg 2017; 97: 673–6.
- 48 Richards FO, Eigege A, Umaru J, et al. The interruption of transmission of human onchocerciasis by an annual mass drug administration program in Plateau and Nasarawa States, Nigeria. *Am J Trop Med Hyg* 2020; **102:** 582–92.
- 49 Sam-Wobo SO, Adeleke MA, Jayeola OA, et al. Epidemiological evaluation of onchocerciasis along Ogun river system, Southwest Nigeria. *J Vector Borne Dis* 2012; **49:** 101–4.
- 50 Seidenfaden R, Fischer A, Bonow I, Ekale D, Tanya V, Renz A. Combined benefits of annual mass treatment with ivermectin and cattle zooprophylaxis on the severity of human onchocerciasis in northern Cameroon. *Trop Med Int Health* 2001; **6:** 715–25.
- 51 Shintouo CM, Nguve JE, Asa FB, et al. Entomological assessment of *Onchocerca* species transmission by black flies in selected communities in the West Region of Cameroon. *Pathogens* 2020; **9:** 722.
- 52 Siewe Fodjo JN, Ukaga CN, Nwazor EO, et al. Low prevalence of epilepsy and onchocerciasis after more than 20 years of ivermectin treatment in the Imo River Basin in Nigeria. *Infect Dis Poverty* 2019; **8**: 8.
- 53 Sufi DA, Zainab T. Evaluation of onchocerciasis: A decade of post treatment with ivermectin in Zainabi and Ririwai Doguwa local government area of Kano State. *Adv Entomol* 2015; **3:** 1–5.
- 54 Surakat OA, Sam-Wobo SO, De Los Santos T, et al. Seroprevalence of onchocerciasis in Ogun State, Nigeria after ten years of mass drug administration with ivermectin. *Southern Afr J Infect Dis* 2018; **33**: 65–71.
- 55 Ta T-H, Moya L, Nguema J, et al. Geographical distribution and species identification of human filariasis and onchocerciasis in Bioko Island, Equatorial Guinea. *Acta Trop* 2018; **180**: 12–7.
- 56 Tekle AH, Elhassan E, Isiyaku S, et al. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. *Parasit Vectors* 2012; **5**: 28.

- 57 Tekle AH, Zouré HGM, Noma M, Boussinesq M, Coffeng LE, Stolk WA, Remme JH. Progress towards onchocerciasis elimination in the participating countries of the African Programme for onchocerciasis control: epidemiological evaluation results. *Infect Dis Poverty* 2016; **5**: 66.
- 58 Traoré S, Wilson MD, Sima A, et al. The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. *Acta Trop* 2009; **111**: 211–8.
- 59 Traore MO, Sarr MD, Badji A, et al. Proof-of-principle of onchocerciasis elimination with ivermeetin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. *PLoS Negl Trop Dis* 2012; **6**: e1825.
- 60 Wanji S, Kengne-Ouafo JA, Esum ME, et al. Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment. *Parasit Vectors* 2015; **8:** 202.
- Wilson NO, Badara Ly A, Cama VA, et al. Evaluation of lymphatic filariasis and onchocerciasis in three Senegalese districts treated for onchocerciasis with ivermectin. *PLoS Negl Trop Dis* 2016; 10: e0005198.
- 62 Yaya G, Kobangué L, Kémata B, Gallé D, Grésenguet G. Élimination ou contrôle de l'onchocercose en Afrique ? Cas du village de Gami en République Centrafricaine. *Bull Soc Pathol Exot* 2014; **107:** 188–93.
- 63 Zarroug IM, Hashim K, ElMubark WA, et al. The first confirmed elimination of an onchocerciasis focus in Africa: Abu Hamed, Sudan. *Am J Trop Med Hyg* 2016; **95:** 1037–40.
- 64 Mshana MI, Silvestri V, Mushi V, Bonaventura WM, Tarimo D, et al. Burden and factors associated with onchocerciasis transmission among school-aged children after more than 20 years of Community Directed Treatment with Ivermectin in Ulanga district, Tanzania: a school-based cross-sectional study. *PLoS Glob Public Health* 2023; **3**: e0001919.
- 65 Atekem K, Dixon R, Wilhelm A, Biholong B, Oye J, et al. Evaluating the impact of alternative intervention strategies in accelerating onchocerciasis elimination in an area of persistent transmission in the West Region of Cameroon. *PLoS Negl Trop Dis* 2022; **16**: e0010591.
- 66 Otabil KB, Ankrah B, Bart-Plange EJ, et al. Prevalence of epilepsy in the onchocerciasis endemic middle belt of Ghana after 27 years of mass drug administration with ivermectin. *Infect Dis Poverty* 2023;12: 75.
- 67 Chikezie, F.M., Opara, K.N., Ubulom, P.M.E. et al. Onchocerciasis transmission status in some endemic communities of Cross River State, Nigeria after two decades of mass drug administration with ivermectin. *Sci Rep* 2023; **13**: 5413.
- 68 Ekpo, U.F., Eneanya, O.A., Nwankwo, E.N. et al. Persistence of onchocerciasis in villages in Enugu and Ogun states in Nigeria following many rounds of mass distribution of ivermectin. BMC Infect Dis 2022; 22: 832.
- 69 Bhwana D, Amaral LJ, Mhina A, Hayuma PM, Francis F, et al. Impact of a bi-annual communitydirected treatment with ivermectin programme on the incidence of epilepsy in an onchocerciasisendemic area of Mahenge, Tanzania: a population-based prospective study. *PLoS Negl Trop Dis* 2023; **17**: e0011178.
- 70 Efon-Ekangouo A, Nana-Djeunga HC, Nzune-Toche N, Dongmo-Yemele R, Bopda J, et al. Impact of short-term discontinuation of ivermectin-based chemoprevention on onchocerciasis transmission in endemic settings with long history of mass drug administration. *PLoS Negl Trop Dis* 2023; 17: e0011250.
- 71 Miri ES, Eigege A, Kahansim B, et al. Two Nigerian States (Plateau and Nasarawa) have eliminated transmission of human onchocerciasis: a report of post-ivermectin mass drug administration surveillance. *Am J Trop Med Hyg.* 2022;**108**:37–40.

- 72 Anagbogu, I.N., Saka, Y.A., Surakat, O. et al. Integrated transmission assessment surveys (iTAS) of lymphatic filariasis and onchocerciasis in Cross River, Taraba and Yobe States, Nigeria. *Parasit Vectors* 2022; **15**: 201.
- 73 Ekanya, R., Obie, E.D., Hamill, L. et al. The preparatory phase for ground larviciding implementation for onchocerciasis control in the Meme River Basin in South West Cameroon: the COUNTDOWN Consortium alternative strategy implementation trial. *Parasit Vectors* 2022; 15: 219.
- 74 Domche A, Nwane PB, Nana Djeunga HC, et al. Status of *Onchocerca volvulus* (Spirurida: Onchocercidae) transmission and effect of climatic variables on the vector population dynamics after two decades of ivermectin-based preventive chemotherapy in the Mbam Valley (Centre Region, Cameroon). *J Med Entomol.* 2022;**59:** 2130–38.
- Isiyaku S, Igbe M, Madaki S, et al. The interruption of transmission of onchocerciasis in Kaduna, Kebbi and Zamfara states, Nigeria: another milestone achievement. *Int Health*. 2022;14 (Suppl 2): ii43–ii54.
- 76 Stolk WA, Walker M, Coffeng LE, Basáñez MG, De Vlas SJ. Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modelling analysis. *Parasit Vectors* 2015; 8: 552.
- United Nations Department of Economic and Social Affairs. World Population Prospects 2019 Volume I: Comprehensive Tables. 2019.
 <u>https://population.un.org/wpp/Publications/Files/WPP2019_Volume-I_Comprehensive-Tables.pdf</u>.
- 78 Cano J, Basáñez MG, O'Hanlon SJ, Tekle AH, Wanji S, Zouré HG, Rebollo MP, Pullan RL. Identifying co-endemic areas for major filarial infections in sub-Saharan Africa: seeking synergies and preventing severe adverse events during mass drug administration campaigns. *Parasit Vectors* 2018; **11:** 70.