Supplementary Information for

Multiscale architecture design of 3D printed biodegradable Zn-based porous

scaffolds for immunomodulatory osteogenesis

Authors list

Shuang Li^{1†}, Hongtao Yang^{1,2†,*}, Xinhua Qu^{3†}, Yu Qin², Aobo Liu⁴, Guo Bao⁵, He Huang⁶, Chaoyang Sun¹, Jiabao Dai⁴, Junlong Tan¹, Jiahui Shi², Yan Guan⁷, Wei Pan⁷, Xunan Gu¹, Bo Jia⁴, Peng Wen^{4*}, Xiaogang Wang^{1*}, Yufeng Zheng^{2*}

Affiliations

¹School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China ²School of Materials Science and Engineering, Peking University, Beijing, 100871, China ³Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China 4 Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China. ⁵Department of Reproduction and Physiology National Research Institute for Family Planning Beijing 100081, China 6 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China ⁷College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China † These authors contributed equally to this work.

Corresponding author: Hongtao Yang, Yufeng Zheng Email address: [yang276070@buaa.edu.cn,](mailto:yang276070@buaa.edu.cn) yfzheng@pku.edu.cn

This PDF file includes:

Figures. S1 to S9 Tables S1 to S5

Fig. S1. Immunofluorescence staining of iNOS, CD206, and DAPI of RAW264.7 after co-culture with material extracts for 48h. Each image was acquired independently three times, with similar results.

Fig. S2. SEM images of RAW264.7 cells after 6h attachment on different surfaces. Each image was acquired independently three times, with similar results.

Fig. S3. Diffusion coefficient of Zn ions in scaffolds with BCC and G unit over 120 minutes (*n*=3, independent experiments). Data are presented as mean \pm standard deviation. OA: orientation A, OB: orientation B. P-values are calculated using one-way ANOVA with Tukey's post hoc test, **p* $< 0.05, **p < 0.01, **p < 0.005.$

Fig. S4. Enriched KEGG pathway of G scaffold versus control.

Fig. S5. Runx2 and Osx immunofluorescence staining of MC3T3-E1 cultured in conditioned medium at 7 days. Each image was acquired independently three times, with similar results.

Fig. S6. Comparison of new bone regeneration and degradation between Zn-Li alloy bulk sample and scaffolds at 3 months. Red asterisks indicate scaffold degradation. Each image was acquired independently three times, with similar results.

Fig. S7. Bone regeneration comparison between Zn-Li scaffold and Ti scaffold in a critical bone defect rabbit model at 2 months. A Micro-CT reconstruction of new bone tissue and metallic implants with quantitative analysis (*n*=3, independent experiments) of bone volume/tissue volume (BV/TV), bone mineral density (BMD), trabecular thickness (Tb. Th), and trabecular separation (Tb. Sp). New bone is marked in yellow, implants are marked in white. B Methylene blue acid fuchsin staining of bone defect regions. Yellow asterisks indicate newly formed bone, white asterisks are scaffold struts. Data are presented as mean ± standard deviation. P-values are calculated using one-way ANOVA with Tukey's post hoc test, $\frac{*p}{0.05}$, $\frac{*p}{0.01}$, $\frac{***p}{0.005}$. Each image was acquired independently three times, with similar results.

Fig. S8. Schematic diagram of diffusion device.

Fig. S9. Zn concentrations of BCC and G scaffold extracts determined by ICP (*n*=4 independent experiments). Data are presented as mean ± standard deviation. P-values are calculated using oneway ANOVA unpaired t-test with a Mann-Whitney test.

Nominal composition $(wt.\%)$	Actual composition $(wt.\%)$
$Zn-0.2Li$	0.239
$Zn-0.5Li$	0.494
$Zn-0.8Li$	0.779
$Zn-1.2Li$	1.36

Table S1 Chemical composition of Zn-Li alloys

Products	Component	Binding energy (eV)		
		Measured	Ref.	
ZnO	$Zn 2p_{3/2}$	1021.8	1021.9	
	O _{1s}	530.6	530.8	
	Li1s	55.0	55.1	
Li ₂ CO ₃	C _{1s}	289.6	289.6	
	O 1s	530.6	531.4	

Table S2. Binding energy of corrosion products detected in Zn-Li alloys after immersion in SBF

Size	Structure characteristics	BCC	G
	Porosity $(\%)$	88	86
	Pore size (mm)	0.75	0.4
Φ 3×4	Strut thickness (mm)	0.4	0.5
mm	Surface area $\text{(mm}^2)$	78.7	76.08
	Scaffold volume $(mm3)$	3.58	3.99
	Specific surface area (scaffold) (mm^{-1})	21.99	19.04
	Porosity $(\%)$	90.48	90.34
Φ 10×2	Surface area $\text{(mm}^2)$	404.12	353.59
mm	Volume $\text{(mm}^3)$	15.20	15.14
	Specific surface area (scaffold)	26.6	23.35

Table S3. CT-measured structure parameters of Zn-Li scaffolds with different pore unit and size.

Materials	Mechanical properties			Biodegrad	Bioactivity	Printability	
	UTS^b	UCS^c	Elongation	Elastic	ability		
	(MPa)	(MPa)	$\frac{0}{0}$	Modulu			
				s(GPa)			
Cortical bone ^{ }	50-151	130-200	$\overline{}$	$7 - 30$	No	Yes	No
Pure Ti (Grade 240-550		$\qquad \qquad \blacksquare$	$15 - 24$	110	No	No	Yes
$1-4$) ^a							
Zn-Li alloys	252-780	$790 - 1100^{d2}$	$0 - 26$	100	Yes	Yes	Yes

Table S4 Comparison of key properties between pure Ti, autologous bone and Zn-Li alloys

a ASTM-F67

b Ultimate tensile strength

^c Ultimate compressive strength

^d Zn-Li alloys have compression super plasticity, the maximum stress before 50% compressive strain was defined as ultimate compressive strength

References

1. Gerhardt, L. C., Boccaccini, A. R. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. *Materials* **3**, 3867-3910 (2010).

2. Yang, H., Jia, B., Zhang, Z., Qu, X., Li, G., Lin, W., Zhu, D., Dai, K., Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. *Nat. commun.* **11**, 1-16 (2020).

Primer	Sequences
iNos	GTTCTCAGCCCAACAATACAAGA
	GTGGACGGGTCGATGTCAC
	GCAACTGTTCCTGAACTCAACT
$Il-1\beta$	ATCTTTTGGGGTCCGTCAACT
$Tnf-\alpha$	CCCTCACACTCAGATCATCTTCT
	GCTACGACGTGGGCTACAG
Argl	CTCCAAGCCAAAGTCCTTAGAG
	AGGAGCTGTCATTAGGGACATC
	GGTCTCAACCCCCAGCTAGT
$Il-4$	GCCGATGATCTCTCTCAAGTGAT
$Il-10$	GCTCTTACTGACTGGCATGAG
	CGCAGCTCTAGGAGCATGTG
Collal	GCTCCTCTTAGGGGCCACT
	CCACGTCTCACCATTGGGG
Opg	ACCCAGAAACTGGTCATCAGC
	CTGCAATACACACACTCATCACT
0pn	ACCCAGAAACTGGTCATCAGC
	CTGCAATACACACACTCATCAC
Alp	CCAACTCTTTTGTGCCAGAGA
	GGCTACATTGGTGTTGAGCTTTT
Gapdh	AGGTCGGTGTGAACGGATTTG
	TGTAGACCATGTAGTTGAGGTCA

Table S5 Primer sequences of migration-related genes for qRT-PCR