
Supplementary Material 

Section I. The visual structure of the interaction module in KDGene 

 

Supplementary Fig S1. Schematic Representation of the Interaction Module in KDGene. The diagram 

illustrates the LSTM-like architecture tailored for embedding entities 𝑒ℎ , 𝑒𝑡  and relations 𝑒𝑟 within the 

biological knowledge graph. The ‘input’ vector combines the embeddings of the head entity and relation, which 

are processed through a series of gates—'forget' (𝑓), 'input' (𝑖), and 'output' (𝑜)—to regulate the flow of 

information. The 'hidden' state carries forward the processed information to the next time step. The 'cell state' (𝑐) 

is updated by a combination of the previous cell state (𝑐0), the 'input' gate, and a 'candidate' memory (�̃�) created 

by the 'tanh' function. The final output is produced after the 'output' gate modulates the cell state through a 

'tanh' activation, symbolizing the updated relation embedding after the interaction. 

 

 

  



Section II. Results of different hyper-parameter settings 

The hyper-parameters of KDGene that demand our attention mainly include the embedding 

dimensions (comprising both entity and relation dimensions), batch size, learning rate, and 

regularization coefficient. 

1) Embedding dimensions 

 
Supplementary Fig S2. Performance comparison of different entity and relation dimension combinations on 

model metrics. Subfigures (a), (b), and (c) show the Hit Ratio at 1, 10, and 50 (HR@1, HR@10, HR@50), 

respectively, while subfigures (d), (e), and (f) depict the Mean Average Precision at 1, 10, and 50 (MAP@1, 

MAP@10, MAP@50). Each bar represents the metric value for a specific combination of entity and relation 

dimensions, with error bars indicating the standard deviation across ten-fold cross-validation. 

In determining the optimal embedding dimensions for entities and relations, we explored three 

values: 1000, 1500, and 2000, resulting in nine distinct combinations. Our analysis of these 

combinations revealed that the selection of 2000 dimensions for entities and 1500 for relations 

offered optimal performance. It is important to note, however, that the performance differences 

across various combinations were not substantial. This observation suggests that while our chosen 

configuration provides an effective balance, users may select alternative dimension settings based on 

the memory capacities of their systems. Such a decision allows for flexibility in resource allocation, 

ensuring that the model's deployment is efficient and practical.



2) Batch size 

 
Supplementary Fig S3. Impact of batch size on model performance. Subfigures (a), (b), and (c) display the Hit 

Ratio at 1, 10, and 50 (HR@1, HR@10, HR@50) across different batch sizes, respectively. Subfigures (d), (e), 

and (f) present the Mean Average Precision at 1, 10, and 50 (MAP@1, MAP@10, MAP@50). Each bar 

corresponds to the metric value obtained with a specific batch size, where error bars denote the standard 

deviation observed over ten-fold cross-validation. 

In our evaluation, we experimented with batch sizes of 128, 256, 512, and 1024. The aggregated 

results suggest that a batch size of 512 yields the best overall performance. However, practical 

considerations led us to adopt a batch size 1024 for our final model training. This decision was 

informed by recognizing that smaller batch sizes, while potentially more optimal, relatively increase 

training duration. By opting for the larger batch size, we struck a balance between computational 

efficiency and performance. Users are encouraged to adjust the batch size according to their specific 

computational constraints and training time considerations, thereby customizing the model training 

to their unique operational contexts. 

 

 



3) Learning rate 

 
Supplementary Fig S4. Impact of learning rate on model performance. Subfigures (a), (b), and (c) display the 

Hit Ratio at 1, 10, and 50 (HR@1, HR@10, HR@50) across different learning rates, respectively. Subfigures 

(d), (e), and (f) present the Mean Average Precision at 1, 10, and 50 (MAP@1, MAP@10, MAP@50). Each bar 

corresponds to the metric value obtained with a specific learning rate, where error bars denote the standard 

deviation observed over ten-fold cross-validation. 

When analyzing the effect of the learning rate on our model, we considered values of 0.01, 0.03, 

0.05, and 0.1. We ultimately selected 0.05 for our model. Our selection of the 0.05 learning rate was 

based on its peak performance across our evaluations. However, the experimental results indicate 

that specifically for the DisGeNet dataset, a learning rate of 0.1 is also a feasible choice, providing 

satisfactory outcomes. It's important to consider that higher learning rates can lead to faster 

convergence but also carry the risk of missing the optimal solution. This factor becomes particularly 

crucial when adapting our model to various datasets, where the optimal learning rate may differ. 

 

 

 

 

 

 



4) Regularization coefficient 

 
Supplementary Fig S5. Impact of regularization coefficient on model performance. Subfigures (a), (b), and (c) 

display the Hit Ratio at 1, 10, and 50 (HR@1, HR@10, HR@50) across different regularization coefficients, 

respectively. Subfigures (d), (e), and (f) present the Mean Average Precision at 1, 10, and 50 (MAP@1, 

MAP@10, MAP@50). Each bar corresponds to the metric value obtained with a specific regularization 

coefficient, where error bars denote the standard deviation observed over ten-fold cross-validation. 

Our analysis for selecting the appropriate regularization coefficient considered values of 0, 

0.001, 0.01, and 0.1. The performance metrics distinctly favored a coefficient of 0.1, indicating that 

this level of regularization effectively mitigates overfitting without overly constraining the model's 

capacity to learn from the data. A coefficient of 0, which corresponds to no regularization, typically 

leads to overfitting, as suggested by the lower performance metrics—a pattern that aligns with the 

outcomes observed for our baseline model CP-N3 [1] when applied to general knowledge graphs. 

This consistency in results reinforces the importance of regularization for tensor 

decomposition-based models, where the right amount of regularization is crucial for generalization 

and robust performance. 

  



Section III. The computational cost and complexity of KDGene 

We analyzed the computational cost and complexity of KDGene from the following three aspects: 

the scale of the knowledge graph, model parameters, and experimental details. 

1) The scale of the knowledge graph 

Our method introduces additional entities and relations, which naturally increases model 

parameters. This increase is scalable and depends on the size of the biological knowledge graph 

(KG). For example, incorporating the disease-symptom relationships into our KG significantly 

enhanced model performance with a marginal increase of 11,607 entities. In addition, each type of 

relation is represented by a 1500-dimensional vector (our current hyper-parameter setting). There are 

7 types of relations in our KG now, which means 7 * 1500-dimensional vector storage is required. In 

other words, relational representation does not significantly increase memory overhead. 

2) Model parameters of KDGene 

The interaction module, unique to KDGene, is the recurrent neural network unit, which facilitates 

effective learning of representations in vertical-domain knowledge graphs through a straightforward 

yet powerful mechanism. This module in KDGene is implemented using a LSTMCell, which 

introduces additional parameters inherent to their design, including gates for regulating the flow of 

information (input, output, and forget gates) and cell states. Our selected hyper-parameters, with an 

entity dimension of 2000 and a relation dimension of 1500, reflect this design choice. While this 

increases the model’s parameter count, it remains within manageable limits and can be adjusted 

based on computational resources available to the user. To assist researchers in optimizing these 

parameters, we have included a comprehensive analysis of hyper-parameter tuning in our 

supplementary material, thus enabling fine-tuning of the model's performance to fit computational 

constraints. 

3) Experimental details 

Our experiments were all conducted in PyTorch and on GeForce GTX 2080Ti GPUs. We have 

implemented optimization strategies, including efficient memory management and parallel 

processing, to keep the increased computational load manageable.  The average training time was 

86.75 seconds per epoch, with early stopping usually around 135 epochs. Comparatively, our 

baseline model CP-N3 recorded an average training time of 67.21 seconds per epoch across ten folds, 

with an average of 150 epochs until completion. Acknowledging the comparative analysis, it's 

evident that our model entails an average increase of 16.17% in training time compared to CP-N3. 

However, this investment in time is counterbalanced by a performance improvement of over 30%. 

This substantial enhancement in accuracy and predictive capabilities far outweighs the modest 

increase in computational effort. 
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