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Supporting Information Text12

S.1. Data availability13

Mycobacterium tuberculosis data is publicly available under Accession ID PRJEB41116 (1). SARS-CoV-2 data is publicly14

available under Accession ID PRJNA817806 (2). Both datasets were chosen arbitrarily from the sequence read archive (3) and15

were analyzed with the same method with the same default parameters. Code for SPLASH (previously called NOMAD) is16

publicly available at https://github.com/salzman-lab/splash, along with code for OASIS inference. An optimized implementation of17

SPLASH called SPLASH 2 has been developed (4) using the bounds and techniques described in this work, and is available here18

https://github.com/refresh-bio/R-SPLASH. M. tuberculosis data was generated with this improved implementation of SPLASH.19

Then, the same optimization procedures were run to generate the optimized p-value bounds.20

S.2. Proofs21

As discussed, OASIS’s test statistic S has a simple linear algebraic characterization. For X ∈ NI×J the expected matrix E22

can be written as the rank 1 outer product between the row and column sums (dividing by M). The centered matrix is then23

right normalized to account for the unequal sampling depth, dividing by the square root of the column sums to appropriately24

normalize, yielding the centered and right normalized matrix X̃. Multiplying from the left by f yields a deviation statistic for25

each column, which is aggregated in a c-weighted sum to yield the final test statistic S.26

To analyze OASIS’s test statistic, we define the random variables {Zj,k} for j = 1, . . . , J and k = 1, . . . nj . Zj,k denotes27

the row identity of the k-th observation from the j-th column, so Zj,k ∈ [I]. The table can then be equivalently constructed28

from the {Zj,k} by taking Xi,j =
∑nj

k=1 1{Zj,k = i}. Under the null hypothesis, {Zj,k} are all independently drawn from the29

common probability distribution p over [I]. This ordering k = 1, . . . , nj represents a random ordering of the counts observed30

and is for analysis purposes only. This reformulation allows OASIS’s test statistic to be expressed as a weighted sum of31

independent random variables, enabling the use of classical concentration inequalities.32

S.2.A. Proof of original p-value bound. The original p-value bound proposed in (5) is:

P (|S(f , c)| ≥ s) ≤ 2 exp
(
−2(1− ξ)2s2∑

j
c2

j

)
+ 2 exp

− 2ξ2Ms2(∑
j

cj
√

nj

)2


where ξ =

1 +

√√√√ M
∑

j
c2

j(∑
j

cj
√

nj

)2


−1

.

Using the quantity γ defined in this paper, this can be expressed as:

P (|S(f , c)| ≥ s) = 2 exp
(
−2(1− ξ)2s2

∥c∥2

)
+ 2 exp

(
− 2ξ2s2

∥c∥2γ

)
where ξ =

(
1 + 1
√

γ

)−1

.

The p-value bound in (5) can be proved in the following manner. First, we estimate the expectation (unconditional on33

sample identity) of f on the observations as µ̄. Then, we estimate the expectation of f for each column j separately, as µ̂j . We34

then construct an estimate for the deviation of a column j from the table average by computing Sj = √nj(µ̂j − µ̄), normalizing35

by √nj to ensure that each Sj will have essentially constant variance (up to the correlation between µ̄ and µ̂j). Finally, we36

construct our overall test statistic S as the c-weighted sum of the Sj , i.e. S =
∑

j
cjSj . In summary:37

µ̄ = 1
M

∑
i,j

fiXi,j = 1
M

∑
j,k

fZj,k

µ̂j = 1
nj

∑
i,j

fiXi,j = 1
nj

nj∑
k=1

fZj,k

Sj = √nj(µ̂j − µ̄)

S =
∑

j

cjSj [1]

To provide a p-value bound, we use Hoeffding’s inequality for sums of independent, bounded random variables:38
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Lemma 1 (Hoeffding’s inequality, Prop. 2.1 (6)). Suppose that the random variables Xi, i = 1, . . . , n are independent, and Xi

has mean µi and ai ≤ Xi ≤ bi almost surely. Then for all t ≥ 0 we have:

P

(
n∑

i=1

(Xi − µi) ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Taking the true (unknown) distribution of the {Zj,k} under the null to be p, we define µ ≜ EZ∼p[fZ ]. Then, as in (5),

P(|S(f , c)| ≥ ϵ) ≤ P

(∣∣∣∣∣∑
j,k

cj

fZj,k − µ̄
√

nj

∣∣∣∣∣ ≥ ϵ

)

= P

(∣∣∣∣∣∑
j,k

cj

fZj,k − µ
√

nj
+ (µ− µ̄)

∑
j

cj
√

nj

∣∣∣∣∣ ≥ ϵ

)

≤ min
ξ∈(0,1)

[
P

(∣∣∣∣∣∑
j,k

cj

fZj,k − µ
√

nj

∣∣∣∣∣ ≥ (1− ξ)ϵ

)
+P

(∣∣∣∣∣(µ− µ̄)
∑

j

cj
√

nj

∣∣∣∣∣ ≥ ξϵ

)]
(a)= min

ξ∈(0,1)

[
P

(∣∣∣∣∣∑
j,k

cj√
nj

(
fZj,k − µ

)∣∣∣∣∣ ≥ (1− ξ)ϵ

)
+P

(∣∣∣∣∣ 1
M

∑
j,k

(
fZj,k − µ

)∣∣∣∣∣ ≥ ξϵ∑
j

cj
√

nj

)]

(b)
≤ min

ξ∈(0,1)

2 exp
(
−2(1− ξ)2ϵ2∑

j,k
c2

j /nj

)
+ 2 exp

−
2ξ2M2ϵ2(∑

j
cj

√
nj

)2

M




= min
ξ∈(0,1)

2 exp

(
−2(1− ξ)2ϵ2∑

j:nj >0 c2
j

)
+ 2 exp

− 2ξ2Mϵ2(∑
j

cj
√

nj

)2


 [2]

The first inequality comes from a union bound (if neither of the two conditions are met, then |S| < ϵ. (a) assumes that the39

denominator
∑

j
cj
√

nj ̸= 0, as otherwise ξ can simply be taken to be 0. In (b) we utilize Hoeffding’s inequality on the two40

terms; in the first we note that the j, k-th term, cj√
nj

(fZj,k − µ) is indeed 0 mean, and is bounded as µ ∈ [0, 1] is simply a41

constant offset that shifts both the min and max by the same amount (retaining the dynamic range of fZj,k ∈ [0, 1]). Concretely,42

Yj,k ≜
cj√
nj

(fZj,k − µ) =⇒ −cjµ
√

nj
≤ Yj,k ≤

cj(1− µ)
√

nj
[3]43

Similarly, for the second term, each summand has a range of 1. This bound can easily be optimized over ξ ∈ (0, 1) to within a44

factor of 2 of optimum by equating the two terms, which is achieved when:45

ξ =

1 +

√
M
∑

j:nj >0 c2
j∑

j
cj
√

nj

−1

.

This leads to the stated p-value bound in (5) of46

P (|S(f , c)| ≥ s) ≤ 2 exp

(
−2(1− ξ)2s2∑

j:nj >0 c2
j

)
+ 2 exp

− 2ξ2Ms2(∑
j

cj
√

nj

)2

 with ξ =

1 +

√√√√ M
∑

j
c2

j(∑
j

cj
√

nj

)2


−1

. [4]47

S.2.B. Proof of improved p-values. We restate below the finite-sample p-value bound proved in the main text.48

Proposition 1 (Restatement of Proposition 1). Under the null hypothesis, for any fixed f ∈ [0, 1]I and c ∈ RJ with ∥c∥2 ≤ 1,
if γ < 1, the OASIS test statistic S = S(f , c) satisfies

P (|S| ≥ s) ≤ 2 exp
(
− 2s2

1− γ

)
.
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As before, we define µ̄ = 1
M

f⊤X1 as the estimate of µ = EZ∼p [fZ ], where p is the unknown common row distribution
under the null. Due to the structure of the test statistic, the p-value bound in Equation (4) can be improved and simplified.
Fixing f , c, the test statistic can be simplified as

S(f , c) =
∑

j

cj
√

nj (µ̂j − µ̄)

=

[∑
j

cj
√

nj

(
1
nj

nj∑
k=1

fZj,k

)]
−

[∑
j

cj
√

nj

(
1

M

∑
ℓk

fZℓ,k

)]

=
∑

jk

cj√
nj

fZj,k −
∑

ℓ
cℓ
√

nℓ

M

∑
jk

fZj,k

=
∑

jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)
fZj,k

=
∑

jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)
. [5]

Note that, ignoring fZj,k in the second to last line, this summation is identically 0, to allow for the test statistic to have mean49

0 independent of f and p. This allows us to subtract the mean µ ≜ EZ∼p[fZ ] inside the summation in the last line, yielding a50

sum of mean 0 terms.51

Note that γ = 1 if and only if c = ±
√

n/M by Cauchy-Schwarz, in which case each coefficient will be equal to 0, i.e.52 (
cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)
= 0 for all j, k. Then S(f , c) = 0 with probability 1.53

If γ < 1, then examining each term in the summation in Eq. (5) yields54

Yj,k ≜

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)
=⇒

∣∣∣∣ cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣ (min
i

fi − µ
)
≤ Yj,k ≤

∣∣∣∣ cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣ (max
i

fi − µ
)

.

[6]55

At right we are simply claiming that Yj,k is almost surely bounded with the provided range. Thus, observing that each Yj,k has
mean 0, and is bounded as above, we can apply Hoeffding’s inequality to the sum of these Yj,k. For the simplification below we
consider the case where maxi fi −mini fi = 1, but this is without loss of generality as dividing by maxi fi −mini fi simply
rescales ϵ. Note that this condition of γ < 1 ensures that the denominator is nonzero.

P (|S(f , c)| ≥ ϵ) = P

(∣∣∣∣∣∑
jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)∣∣∣∣∣ ≥ ϵ

)

≤ 2 exp

− 2ϵ2∑
jk

(
cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)2



= 2 exp

− 2ϵ2∑
j

(
cj −

∑
ℓ

cℓ
√

nℓ

M

√
nj

)2



= 2 exp

− 2ϵ2∑
j

[
c2

j − 2cj
√

nj

∑
ℓ

cℓ
√

nℓ

M
+
(∑

ℓ
cℓ

√
nℓ

)2

M2 nj

]


= 2 exp

− 2ϵ2

∥c∥2 − 1
M

(∑
j

cj
√

nj

)2

 . [7]

The only inequality used is Hoeffding’s; the rest is simplification and manipulation.56

This improves upon the previous result, due to the smaller denominator. It also follows much more similarly to the
asymptotic normality argument, where the variance of S appears in the denominator, up to the variance of fZj,k . Essentially,
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this finite-sample valid bound takes the same form as the asymptotic bound, but upper bounds the variance of fZj,k to be at
most 1

4 , as we discuss later. Thus, our final p-value bound is

P (|S(f , c)| ≥ s) ≤ 2 exp

− 2s2

(maxi fi −mini fi)2
(
∥c∥2 − 1

M

(∑
j

cj
√

nj

)2
)


= 2 exp
(
− 2s2

(maxi fi −mini fi)2 ∥c∥2(1− γ)

)
[8]

We state this general proposition below, noting that Proposition 1 follows as an immediate corollary.57

Proposition 2. For any fixed f ∈ RI and c ∈ RJ , if γ = 0 then S = 0 with probability 1. If γ < 1, then

P (|S(f , c)| ≥ s) ≤ 2 exp
(
− s2

2∥f∥2
∞∥c∥2

2 (1− γ)

)
,

where ∥f∥∞ can be tightened to (maxi fi −mini fi)/2.58

S.2.C. Asymptotic distribution of OASIS test statistic. We begin by restating our asymptotic normality result.59

Proposition 3 (Restatement of Prop. 2). Consider any fixed f ∈ RI , c ∈ RJ , probability distribution p ∈ ∆I with σ2
f > 0, and

any sequence of column counts {n(t)}∞
t=1 where each n(t) ∈ NJ , with minj∈[J] n

(t)
j

t→∞−→ ∞ and γ(n(t), c) < 1 for all t. Then,
the random sequence of OASIS test statistics {St}∞

t=1, where St = S(Xt, f , c) and X
(j)
t ∼ multinomial(n(t)

j , p) independently
across j and t, satisfies

1√
1− γ(n(t), c)

St
D→ N

(
0, σ2

f∥c∥2) .

We show that OASIS’s test statistic is asymptotically normally distributed using the Lyapunov Central Limit Theorem.60

Theorem 1 (Theorem 27.3 (7)). Suppose that for each M the sequence XM1, . . . , XMM is independent and satisfies

E[XMk] = 0, σ2
Mk = E[X2

Mk], s2
M =

M∑
k=1

σ2
Mk

for all M, k, where the means and variances are assumed to be finite, and s2
M > 0 for large M . Defining SM =

∑M

k=1 XMk, if

lim
M

M∑
k=1

1
s2+δ

M

E
[
|XMk|2+δ

]
= 0

holds for some positive δ (Lyapunov’s condition), then SM /sM
D→ Z where Z ∼ N (0, 1).61

Proof. Continuing from Eq. (5), the test-statistic S can be expressed as

XMτ(j,k) ≜

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)
S(f , c) =

∑
jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)
=

M∑
τ=1

XMτ ,

for an appropriate reindexing τ which maps j, k indices to [M ]. Since fi ∈ [0, 1] for all i, each XMτ has finite variance, and has62

mean 0 due to the centering.63

Computing the variance of SM , which is s2
M as the terms in SM have mean 0 and are independent, yields

s2
M =

∑
jk

E

[((
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

))2
]

= σ2
f

∑
jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)2

= σ2
f

(
∥c∥2 − 1

M

(∑
ℓ

cℓ
√

nℓ

)2)
= σ2

f∥c∥2(1− γ), [9]
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where we use the definition of σ2
f = VarZ∼p(fZ) =

∑
i
pif

2
i −

(∑
i
pifi

)2. This is greater than 0 by assumption in the64

Proposition statement, where we also assumed that γ was bounded away from 1. Thus, our desired result is65

1√
1− γ

S(f , c) D→ N
(
0, ∥c∥2σ2

f

)
. [10]66

Satisfying Lyapunov’s condition: we show that this condition holds for δ = 1, which entails bounding third moments. We67

assume that maxi |fi − µ| ≤ 1, which is without loss of generality as f is fixed and everything can simply be rescaled, and so68

E[|fZj,k − µ|3] ≤ E[|fZj,k − µ|2] = σ2
f . By Cauchy-Schwarz, even the largest coefficient is vanishing:69 ∣∣∣∣ cj√

nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣ ≤ ∣∣∣∣ cj√
nj

∣∣∣∣+ ∥c∥√
M
≤ 2∥c∥

minj
√

nj
. [11]70

Using this, we can upper bound the sum of the third moments:

M∑
τ=1

E
[
|XMτ |3

]
=
∑

jk

E

[∣∣∣∣( cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)(
fZj,k − µ

)∣∣∣∣3
]

=
∑

jk

∣∣∣∣ cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣3E [∣∣fZj,k − µ
∣∣3]

≤
∑

jk

∣∣∣∣ cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣3 σ2
f

≤
(

2∥c∥
minj

√
nj

)
σ2

f

(∑
jk

∣∣∣∣ cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

∣∣∣∣2
)

. [12]

Verifying Lyapunov’s condition:

1
s3

M

M∑
τ=1

E
[
|XMτ |3

]
=

∑
jk
E

[∣∣∣∣( cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)
fZj,k

∣∣∣∣3
]

(∑
jk
E

[∣∣∣∣( cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)
fZj,k

∣∣∣∣2
])3/2

≤

(
2∥c∥

minj
√

nj

)
σ2

f

(∑
jk

(
cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)2
)

(
σ2

f

∑
jk

(
cj√
nj
−
∑

ℓ
cℓ

√
nℓ

M

)2
)3/2

= 2∥c∥
minj

√
nj

(
σ2

f

∑
jk

(
cj√
nj
−
∑

ℓ
cℓ
√

nℓ

M

)2
)−1/2

= 2∥c∥
σf minj

√
nj

(
∥c∥2(1− γ)

)−1/2

= 2
σf

√
(1− γ) minj nj

[13]

Since the original quantity is nonnegative, this last line goes to 0 as all nj →∞ simultaneously as long as σf > 0 and γ < 1,71

which were assumed in the Theorem statement, and thus by the Lyapunov CLT we have the desired result. The variance of72

S(f , c) has already been computed as s2
M , and so73

1√
1− γ

S(f , c) D→ N
(
0, ∥c∥2σ2

f

)
. [14]74

Note that if σf = 0 then S = 0 w.p. 1, which matches this result under the convention that a Gaussian with variance 0 is a75

Dirac point mass at 0.76

With this proposition, we can construct an asymptotically valid p-value.77
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Corollary 3.1 (Restatement of Corollary). Under the conditions of Proposition 3,

2Φ
(
− |S|

σ̂f∥c∥
√

1− γ

)
,

is an asymptotically valid p-value.78

For comparison with our finite-sample p-value bound, we construct an asymptotically valid p-value bound using standard79

Gaussian tail bounds as80

P(|S(f , c)| ≥ s) = 2Φ
(
− s

σ̂f∥c∥
√

1− γ

)
≤ 2 exp

(
− s2

2σ̂2
f∥c∥2(1− γ)

)
, [15]81

where Φ is the CDF of a standard Gaussian random variable. This holds by Slutsky’s theorem, as σ̂2
f is an asymptotically82

consistent estimator of σf > 0. Note that this form precisely matches that of the finite-sample p-value bound in Proposition 1,83

up to bounding σ̂2
f ≤ 1

4 (bounding the variance of a [0, 1] random variable as 1/4). Since fZj,k ∈ [0, 1], the rate of convergence84

can be quantified with the Berry-Esseen inequality (8) if desired.85

S.2.D. Effect Size. The effect size measure for OASIS is motivated by a simple two group alternative, where each sample originate86

from either group A or group B. Each group has a characteristic target distribution, pA and pB respectively, where observations87

from a sample in group A (resp. B) are drawn i.i.d. from pA (resp. pB). Then, denoting Z as the identity of the random88

row drawn from pA or pB , the effect size estimate ∆̂ is nothing but the plug-in estimate of ∆ =
∣∣EZ∼pA

[
fZ

]
−EZ∼pB

[
fZ

]∣∣89

the difference between E
[
fZ

]
where Z ∼ pA or Z ∼ pB. This is an intuitive measure of discrepancy, as OASIS declaring90

a discovery based on a specific f and c indicates that when partitioned into groups by c, the two groups of samples have91

significantly different row distributions as measured by f . This quantity ∆ is nonnegative, and is bounded above by the total92

variation distance between the empirical row distributions of columns where cj > 0 and where cj < 0. This is attained by93

taking the supremum over all f ∈ [0, 1]I , yielding a value of 0 if and only if the empirical row distributions are the same94

between the two clusters, and 1 if and only if they are disjoint. Note that due to the rescaling of each point’s contribution by95 √
nj (downweighting) in OASIS’s test statistic, for a given c constructing f to minimize the p-value bound will not necessarily96

maximize the effect size.97

In the main text we stated that 0 ≤ ∆̂ ≤ δTV(p̂+, p̂−), which we prove below.98

Proof of Effect Size Bound. The lower bound on ∆̂ follows trivially from the absolute value. The upper bound follows from
the reformulation of ∆̂ as:

∆̂ =

∣∣∣∣∣∑
i

(p̂+,i − p̂−,i)fi

∣∣∣∣∣ ≤ max
g∈[0,1]I

∣∣(p̂+ − p̂−)⊤g
∣∣ = 1

2∥p̂+ − p̂−∥1 = δTV(p̂+, p̂−)

We can rewrite this as an ℓ1 norm as since p̂+ and p̂− are probability distributions, shifting g by a constant does not change
the objective value. Thus, we can equivalently maximize over g ∈ [−1/2, 1/2]I . Then, for any vector x,

max
g:∥g∥∞≤1/2

g⊤x = 1
2∥x∥1,

by the dual norm characterization of the ℓ1 norm.99

Considering general c beyond the simple binary case, there is no clear extension of this effect size measure. We discuss some
candidate measures and their drawbacks below. For simplicity, in this section we consider f ∈ [−1, 1]I instead of f ∈ [0, 1]I , to
avoid centering. One candidate measure which encourages binary f is:

∆̂ =
∣∣∣∣f⊤Xc

1X|c|

∣∣∣∣ .
A more gradual and natural alternative which allows for non-binarized f is:

∆̂ =
∣∣∣∣ f⊤Xc

|f |⊤X|c|

∣∣∣∣ .
These quantities are both bounded between 0 and 1. The first attains a value of 1 only if fiXi,jcj = Xi,j |cj | (extending the100

range of f to [−1, 1]). The second requires that fiXi,jcj = |fi|Xi,j |cj |. However, note that these can both be trivially achieved101

by taking f and c to both be all ones vectors. This will not yield a significant p-value, however, due to the structure of X̃.102
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S.2.E. Statistical validity of data-splitting. The p-value bound outputted by the data-splitting optimization procedure is103

statistically valid, by a classical data-splitting argument (used in e.g. (9)), which we detail here for completeness. We begin by104

defining the random table generated by the null for probability vector p with column counts {nj}J
j=1. The data generated by the105

null is X ∼ nullTable({nj}J
j=1, p). Data-splitting entails selecting {nTrain

j } as a function of the given column counts {nj}J
j=1,106

where nTrain
j ≤ nj for all j. In this procedure we select uniformly at random nTrain

j counts uniformly at random from the nj total107

counts in that column and assign them to XTrain, with the rest being assigned to XTest. Then, XTrain ∼ nullTable({nj}J
j=1, p),108

XTest ∼ nullTable({nj−nTrain
j }J

j=1, p), and the two are independent. This is due to the fact that each count in the multinomial109

X(j) is an i.i.d. draw from p, and so splitting the counts randomly between X
(j)
Test and X

(j)
Train is simply separating these i.i.d.110

draws into two groups, resulting in a multinomial for each with the appropriate counts.111

As shown by Proposition 1, for any fixed f , c, the random variable given by the p-value bound p(XTest, c, f) (where only
XTest is random) is a statistically valid p-value bound. We show that even when c = c(Xtrain) and f = f(Xtrain) are functions
of the training data, p(X) = p(XTest, c(Xtrain), f(Xtrain)) is a valid p-value bound.

P(p(X) ≤ u) (a)= P(p(XTest, c(Xtrain), f(Xtrain)) ≤ u)
(b)=
∑

xtrain

P(p (XTest, c(Xtrain), f(Xtrain)) ≤ u | Xtrain = xtrain)P(Xtrain = xtrain)

(c)=
∑

xtrain

P(p (XTest, c(xtrain), f(xtrain)) ≤ u)P(Xtrain = xtrain)

(d)
≤
∑

xtrain

uP(Xtrain = xtrain)

= u [16]

where (a) holds by definition, (b) by law of total probability, (c) by the fact that XTest is independent of XTrain, and (d) as112

once we condition on XTrain, c and f are no longer random, and so the p-value bound from the theorem statement can be used.113

Finally, the last line follows from summing over the probabilities. The resulting p-value bound is not just random with respect114

to the data X (which is to be expected), but also with respect to the random splitting procedure. However, since the p-value115

bound holds for any fixed f , c, once we condition on XTrain, the p-value bound can be applied.116

Note that more generally, there are two sources of randomness used in the algorithm; one from splitting the data into117

train and test sets, and one from the generation of c(Xtrain) and f(Xtrain). The first source (splitting into train and test sets)118

is fundamental, whereas the second is simply for computational efficiency; if computational complexity is not an issue, we119

could enumerate over all possible f ∈ {0, 1}I and exactly solve the inner optimization problem deterministically. However, the120

randomness in data-splitting is necessary, and can greatly impact performance. If the training data is not representative of the121

test data, then even if the optimal f and c for the training data are identified, it need not yield a significant p-value bound on122

the test data. Thus, a natural approach is to generate multiple random splits of the data, perform Bonferroni correction over123

these multiple splits, and take the minimum as a valid p-value bound. To this end, OASIS generates independent random124

splits of the data by using the Poisson distribution of the counts under the null (assuming the column counts are Poisson). The125

Poisson nature of these counts is critically important, as under negative binomial overdispersion the counts observed are no126

longer independent, and so more sophisticated methods are needed, which do not yield fully independent sets of counts unless127

the overdispersion parameter is known (10).128

S.3. Optimization procedure129

Recall the p-value bound derived in Proposition 1 for the test statistic S = f⊤X̃c, restated below for convenience, where we130

constrain 0 ≤ f ≤ 1:131

2 exp
(
− 2S2

∥c∥2(1− γ)

)
. [17]132

For simplicity, we shift and rescale f to be bounded as |f | ≤ 1, which does not change the structure of the problem: an optimal133

solution for the original problem can be obtained by modifying the solution to the shifted and rescaled problem.134

S.3.A. Reformulating the optimization problem (proof of Lemma 1). Recalling the containment lemma in the main text:135

Lemma 2 (Restatement of Lemma 1). The set of optimal solutions for the p-value bound can be expressed as(
argmax

0≤f≤1,∥c∥2≤1
f⊤X̃c

)
⊆ argmin

0≤f≤1,∥c∥2≤1
2 exp

(
−

2
(
f⊤X̃c

)2

1− 1
M

〈
c,
√

n
〉2

)

We prove this lemma by decomposing c into the part parallel to
√

n ≜
√

X⊤1 and the part orthogonal to
√

n, i.e.136

c = c(1) + α
√

n where c(1) ⊥
√

n and α ∈ R. This yields an objective value of137
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(
f⊤X̃c

)2

∥c∥2 − 1
M

(
c⊤√n

)2 =
(
f⊤ (X̃ (c(1) + α

√
n
)))2

∥c(1) + α
√

n∥2 − 1
M

(
α
√

n
⊤√

n
)2

=
(
f⊤ (X̃c(1) + αX̃

√
n
))2

∥c(1)∥2 + α2∥
√

n∥2 − 1
M

(
α∥
√

n∥2
)2

=
(
f⊤X̃c(1))2

∥c(1)∥2 + α2M − 1
M

(αM)2

=
(
f⊤X̃c(1))2

∥c(1)∥2 [18]

As

X̃
√

n =
(

X − 1
1⊤X1

X11⊤X
)

diag(1/
√

n)
√

n =
(

X − 1
1⊤X1

X11⊤X
)

1 = 0

Thus, any component of c in the direction of
√

n does not contribute to the numerator, and cancels out in the denominator,
and so an optimal solution can be obtained by simply optimizing over c orthogonal to

√
n. Since the denominator is equal to

∥c∥2, and the numerator and denominator both scale quadratically in ∥c∥, we can simply optimize the numerator subject to
∥c∥ ≤ 1 to identify a pair of optimal f , c, as:

argmax
c∈RJ ,f∈[0,1]I

(
f⊤X̃c

)2

∥c∥2 − 1
M

(
c⊤√n

)2 ⊇ argmax
f∈[0,1]I ,∥c∥2≤1

(
f⊤X̃c

)2 [19]

⊇ argmax
f∈[0,1]I ,∥c∥2≤1

f⊤X̃c. [20]

where the last line follows as ∥c∥ ≤ 1 =⇒ ∥− c∥ ≤ 1. This proves Lemma 1.138

To optimize Eq. (20), we begin by enlarging the constraint set of f to be [−1, 1]I for symmetry (an optimal f for the139

original problem can be obtained from such a f̃ by considering f = (1 + f̃)/2 and f = (1− f̃)/2, optimizing c ∝ X̃⊤f , and140

comparing their objective values). For fixed c, f is then optimized as f = sign(X̃c), where sign(x) is +1 if x > 0, 0 if x = 0,141

and −1 if x < 0. c is always optimized as c ∝ X̃⊤f . Rolling these updates together, since the sign of an entry doesn’t change142

based on scaling we can write our iterates {f (t)} as143

f (t+1) = sign
(
X̃X̃⊤f (t)) , [21]144

where the iterates {c(t)} are implicitly computed as c(t) ∝ X̃⊤f (t).145

S.3.B. Iterative testing of contingency tables. Recalling the initial intuition for the OASIS test, where there are two groups146

of samples each with a characteristic probability distribution over the rows, the optimal c vector in this case partitions the147

samples by type (positive on one group of samples and negative on the other). However, these scalar-valued vectors c are148

limited by their one dimensionality, and so a natural question is whether OASIS can identify more than 2 clusters within a149

table. In genomics contexts this translates to detecting subclusters or multiple cell-types.150

Considering the matrix viewpoint of OASIS, the test statistic can be thought of as determining whether the centered and151

right normalized contingency table has a single sufficiently large direction of deviation. We show that a simple extension of152

OASIS allows for detection of how many ways the contingency table significantly deviates from the null, through a statistical153

stopping condition.154

Consider that one initial partitioning vector c(1) is identified, for example distinguishing Delta vs Omicron samples in the155

running SARS-CoV-2 example, and we want to determine if there are additional statistically significant ways of partitioning156

this data not along this same direction c(1). One way of accomplishing this is by attempting to identify new vectors c, f which157

yield a significant p-value bound, requiring that this new vector c be orthogonal to the previously found vector c(1). With158

SARS-CoV-2, this could be a vector separating Omicron BA.1 and BA.2. The constraint c⊥c(1) maintains the convexity of the159

optimization problem. This naturally generalizes to multiple orthogonality constraints where c is restricted to be orthogonal to160

a subspace. As discussed, OASIS’s initial test statistic can be thought of as identifying one direction of substantial signal.161

Restricting this new c to be orthogonal to the first one is analogous to identifying the second largest singular value and162

its corresponding right singular vector in the case of the SVD. Thus, this iterative procedure of finding c orthogonal to all163

previously found c and terminating when this no longer yields a significant p-value bound parallels analyzing the spectrum of164

X̃ until a significant drop-off occurs. In this iterative setting, the optimizing c is constructed as165

c⋆ = argmax
∥c∥2≤1,

c⊥c(1)

f⊤X̃c =⇒ c∗ ∝ X̃⊤f − f⊤X̃c(1)

∥c(1)∥2
2

c(1). [22]166

f is constructed as before, with iterates constructed as f = sign(X̃c).167
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Algorithm 1 OASIS-iter

1: Input: Contingency table X
2: # Split data randomly into train and test portions
3: Xtrain, Xtest ← splitDataset(X)
4: for i = 1, 2, . . . do
5: # Run OASIS-opt with constraint: c(i) ⊥ c(j) ∀j < i
6: c(i), f (i) ← OASIS-perp(Xtrain, {c(j)}i−1

j=1)
7: # Compute OASIS p-value bound
8: p(i) ← pvBound(Xtest, f (i), c(i))
9: if p(i) > 0.05 then

10: Break
11: return [c(1), c(2), . . .], [f (1), f (2), . . .], [p(1), p(2), . . .]

S.3.C. Asymptotic p-value. The asymptotic p-value provided in Corollary 3.1 leads to the following optimization objective:168

argmax
f ,c

(
f⊤X̃c

)2

∥c∥2σ̂2
f

. [23]169

Here, σ̂2
f =

∑
i
p̂if

2
i −
(∑

i
p̂ifi

)2 =
∑

i
p̂i(fi − p̂⊤f)2 = f⊤ (diag(p̂)− p̂p̂⊤) f and p̂ ≜ 1

M
X1. Note that p̂ > 0 , as otherwise170

these rows would not exist in X. For a fixed f , the optimal c is easily computed as c⋆ ∝ X̃⊤f⋆, by Cauchy-Schwarz. This171

allows us to reduce the optimization problem to that of optimizing over f by dual norm characterizations as172

max
f ,c

(
f⊤X̃c

)2

∥c∥2σ̂2
f

= max
f

∥∥X̃⊤f
∥∥2

σ̂2
f

. [24]173

We show that an optimal f for this objective can be computed efficiently as an eigenvector problem. Defining vmax(A) as174

the principal eigenvector of a symmetric matrix A (selecting an arbitrary one if the maximum eigenvalue has multiplicity175

greater than 1), we state the following Proposition.176

Proposition 4. An optimal f⋆ for Eq. (24) can be constructed as

f⋆ = diag(p̂)−1/2vmax
(
diag(p̂)−1/2X̃X̃⊤ diag(p̂)−1/2) .

Proof. Observe that the matrix used in the computation of σ̂2
f is positive semidefinite, and that restricting f⊥p̂ the resulting

operator is positive definite:

diag(p̂)− p̂p̂⊤ ⪰ 0
diag(p̂) ≻ 0

To identify an optimal f for Eq. (24), we show that the objective is scale and shift invariant with respect to f . Formally,177

defining the maximization objective of Eq. (24) as178

h(f) ≜

∥∥X̃⊤f
∥∥2

σ̂2
f

, [25]179

we claim that for any β ∈ R, h(f + β1) = h(f). It is clear that

σ̂2
f+β1 =

∑
i

p̂i(fi + β − p̂⊤(f + β1))2 =
∑

i

p̂i(fi − p̂⊤f)2 = σ̂2
f , [26]

and since 1⊤X1 = M ,

(f + β1)⊤X̃ = f⊤X̃ + β1⊤
(

X − 1
M

X11⊤X
)

diag(1/
√

X⊤1)

= f⊤X̃ + β

(
1⊤X − 1⊤X1

M
1⊤X

)
diag(1/

√
X⊤1)

= fX̃. [27]

Combining eqs. (26) and (27) together yields that180

h(f + β1) = h(f). [28]181
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Additionally, the maximization objective is scale invariant. For any scalar κ ̸= 0:

h(κf) = max
f

∥X̃⊤(κf)∥2

(κf)⊤
(
diag(p̂)− p̂p̂⊤) (κf)

= max
f

κ2∥X̃⊤f∥2

κ2f⊤ (diag(p̂)− p̂p̂⊤) f

= h(f) [29]

Since the numerator and denominator both scale quadratically in the magnitude of f , the denominator (σ̂2
f ) can instead be

treated as a constraint, i.e.

max
f

∥X̃⊤f∥2

σ̂2
f

= max
f :σ̂2

f
≤1
∥X̃⊤f∥2 [30]

= max
f :f⊤ diag(p̂)f≤1,f⊤p̂=0

f⊤X̃X̃⊤f [31]

The right hand side of Eq. (30) is clearly at most the left hand side, and an optimal f for the left hand side can be rescaled182

so that σ̂2
f = 1, yielding a feasible f for the right hand side with the same objective value. Eq. (31) follows from the shift183

invariance in Equations (26) and (27).184

We now show that this can be reformulated as an eigenvector problem. Defining D = diag(p̂) and y = D1/2f :

max
f :f⊤ diag(p̂)f≤1

f⊤p̂=0

f⊤X̃X̃⊤f = max
y:∥y∥2≤1

y⊤D−1/2p̂=0

y⊤D−1/2X̃X̃⊤D−1/2y

≤ max
y:∥y∥2≤1

y⊤D−1/2X̃X̃⊤D−1/2y

= ∥D−1/2X̃X̃⊤D−1/2∥. [32]

The upper bound is due to removing the orthogonality constraint. The final equality is attained by taking y as the principal
eigenvector of the given matrix scaled to have unit norm, with objective value equal to the largest eigenvalue λ⋆ as below:

y⋆ = vmax
(
D−1/2X̃X̃⊤D−1/2) , [33]

λ⋆ = λmax
(
D−1/2X̃X̃⊤D−1/2) . [34]

This upper bound in Eq. (32) is attained with equality, as for this optimizing y⋆, y⋆⊥p̂:

p̂⊤D−1/2y⋆ = p̂⊤D−1/2
( 1

λ⋆
D−1/2X̃X̃⊤D−1/2y⋆

)
= 1

λ⋆
p̂⊤D−1X̃X̃⊤D−1/2y⋆

= 1
λ⋆

1⊤X̃X̃⊤D−1/2y⋆

= 0. [35]

Thus, since the unconstrained optimum lies within the constraint set, it is also the constrained optimum. An optimizing f for185

Eq. (30) can then be constructed as186

f⋆ = diag(p̂)−1/2vmax
(
diag(p̂)−1/2X̃X̃⊤ diag(p̂)−1/2) . [36]187

Since the constructed y has ∥y∥ = 1, σ̂2
f = 1. Thus, this f⋆ is also optimal for the original p-value objective in Eq. (23).188

To construct an optimal solution for Eq. (23), we observe that by Cauchy-Schwarz for any fixed f the maximum is attained189

when c ∝ X̃⊤f . Thus, using the computed f⋆ above and taking c⋆ as190

c⋆ = X̃⊤f⋆ [37]191

yields an optimal solution for Eq. (23).192

A previous version of this work stated that the optimal f could be computed as a principal right eigenvector of the matrix193

D−1X̃X̃⊤. This is equivalent (assuming without loss of generality that the principal eigenvalue has multiplicity 1):194
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f = D−1X̃X̃⊤f

f = D−1/2(D−1/2X̃X̃⊤D−1/2)D1/2f

D1/2f = (D−1/2X̃X̃⊤D−1/2)D1/2f

D1/2f = vmax
(
D−1/2X̃X̃⊤D−1/2)

f = D−1/2vmax
(
D−1/2X̃X̃⊤D−1/2)

as desired. We provide a method for modifying this vector to improve its finite sample p-value bound performance in195

Section S.3.C.1, and provide computational details on optimizing f in Section S.3.D.1.196

S.3.C.1. Modification for finite-sample bound. The f optimizing the asymptotic p-value, derived in the previous section, will in197

general be suboptimal for the finite sample p-value bound. However, if the objective is to optimize the finite-sample bound, the198

asymptotically optimal f⋆ can be used as an initialization. One simple approach would be to binarize the vector as f ′
i = 1199

if f⋆
i ≥ 0, and 0 otherwise. For this f ′, the optimal c can be identified as c ∝ X̃⊤f ′. Introducing randomness, f⋆ can be200

randomly rounded to 0, 1I with probabilities proportional to the corresponding entry of f (after normalizing f⋆ vector to201

[0, 1]I), allowing for multiple trials and a better final objective value.202

S.3.D. More computationally intensive optimization methods. Analyzing the reformulated finite-sample optimization problem,203

observe that the form of the finite-sample p-value bound objective is simply a quadratic program:204

max
f∈[0,1]I

f⊤X̃X̃⊤f . [38]205

Since X̃X̃⊤ ≳ 0 is positive semi-definite, this is an integer constrained quadratic program. This is a known combinatorial206

optimization problem, and specialized algorithms for optimizing it have been devised. One well-known approach is based on207

semidefinite programming (SDP) relaxations, relaxing the vector f into an I × I matrix optimization variable A and optimizing208

max
A≳0,Aii=1∀i

Tr
(
X̃X̃⊤A

)
, [39]209

where Tr denotes the matrix Trace operator. The objective value of Eq. (39) upper bounds that of Eq. (38). We can convert210

the solution to Eq. (39) to an integer solution via Goemans-Williamson rounding (11), which picks a random vector v on the211

unit sphere in RI , and assigns f i = 1 if Aiv ≥ 0 and f i = −1 otherwise. This attains an expected approximation ratio of at212

least 2/π, for Eq. (38). Multiple random v can be selected to slightly improve the resulting solution.213

In practice however, solving an SDP is computationally intensive; in the biological setting of interest, contingency tables have214

many rows due to sequencing error in observing the targets. This makes methods whose sample complexities scale superlinearly215

in the number of rows too computationally intensive to use. Future work on computationally efficient methods with provable216

approximation guarantees can be readily utilized in this optimization framework; the primary contribution of OASIS is in its217

formulation of minimizing the p-value as an optimization problem, for which we propose an alternating maximization-based218

solution which empirically yields good performance in an efficient manner.219

S.3.D.1. Empirical performance. We study the performance of these different optimization methods by simulating the “strong220

signal” setting described in Section S.6.A. The tables generated have 12 rows and 10 columns, and a clear two group structure,221

with signal focused in the first two rows of the tables. When run on 1000 random tables, the aforementioned SDP relaxation222

followed by rounding attained OPT 88% of the time. Alternating maximization yields similarly good performance, attaining223

OPT over 82% of the time. Computing the asymptotically optimal c, f and rounding (Section S.3.C.1) attains OPT 72% of224

the time on this synthetic dataset. Computing f , c from the SVD of X̃ yields OPT 0% of the time, even if we postprocess f by225

rounding its entries226

While solving the SDP relaxation yields slightly better performance than alternating maximization, it is significantly more227

computationally intensive and requires more complicated machinery (cvxpy (12)). To test the different methods’ computational228

complexities, we increase the counts per column from 10 to 100 to make sure that all rows have counts. We then test for various229

numbers of rows, to show the poor scaling of SDP solvers. Results are described in Table S2. The asymptotic approach identifies230

the principal eigenvector of D−1/2X̃X̃⊤D−1/2 where D = diag(p), which we naively compute with an eigendecomposition.231

However, using power iteration, only matrix vector products with X̃, X̃⊤ are required, which can be much more efficient.232

S.3.E. Comparison with the SVD. The SVD is frequently used for matrix decomposition and interpretation tasks, but doesn’t233

inherently minimize the p-value bound of Proposition 1 or yield desirable partitionings. Mathematically, the SVD computes234

argmax
c,f

f⊤X̃c

∥f∥2∥c∥2
,

as opposed to the p-value bound objective of

argmax
c,f

f⊤X̃c

∥f∥∞∥c∥2
.
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An optimal f exists at a corner point, and that if entries of X̃c are not equal to 0 then this optimizing f is unique up to the235

absolute value (f and 1− f yielding the same objective value). For any f with entries not in {0, 1}, at least as good of an236

objective value can be attained by binarizing f according to the entries of X̃c. As discussed in the previous section, computing237

f , c from the SVD of X̃ yields OPT 0% of the time, even if we postprocess f by rounding (binarizing) its entries, as it is238

still not optimizing the desired objective. We take a closer look at a toy example where an SVD does not yield the desired239

partitioning is shown in Figure S8.240

S.4. SARS-CoV-2 analysis details241

The SARS-CoV-2 analysis was based on dehosted sequencing data of nasopharyngeal swabs with coinfections available under242

accession PRJNA817806 (2). SPLASH contingency tables were tested using OASIS-opt with a 25% train/test data split. We243

then utilize anchors whose BY corrected p-value bound is less than 0.05, whose effect size (when c⋆ is binarized) is in the top244

10% of anchors, and have a total number of counts M > 1000. This yields 2495 anchors. We then iterate over these 2495245

anchors, and rerun the alternating maximization procedure to generate c⋆, f⋆ on the full table. Beyond the aforementioned246

thresholds, there are additional potential avenues towards filtering that we did not utilize or fine-tune, including how balanced247

the clustering is (ensure that the table is not simply one deviating column), how similar a c vector is to others (not detect248

splits due to SNPs), and reducing similar anchors (noting that one single base-pair mutation may yield up to k significant249

anchors that are one base-pair offsets of each other).250

The alignment was performed using Bowtie (13). We used four SARS-CoV-2 reference genomes for the strains circulating251

during this time period. We manually constructed “archetype” genomes for Delta, Omicron BA.1, and Omicron BA.2 by252

editing the Original (Wuhan) reference (NCBI assembly NC_045512.2) to contain all (and only) the defining mutations of that253

strain, detailed and made publicly available in (5). A bowtie index comprised of the four SARS-CoV-2 genomes was constructed254

(bowtie-build on a FASTA file containing four reads, one for each assembly). We then construct a FASTA file from the anchors255

passing the above filtering steps, and their targets which comprise > 5% of the total counts for that anchor. This FASTA file is256

aligned to the bowtie index using (-v 0 -a) options to ensure that we only get exact matches, and record all possible matches.257

S.4.A. Embedding-aggregation. To aggregate the c(a) vectors obtained from experiments on different anchors a (different
tables), one natural objective is

c⋆ = argmax
∥v∥≤1

∑
a

⟨c(a), v⟩2

= argmax
∥v∥≤1

∥Cv∥2 .

Here, we stacked the c(a) vectors to obtain a matrix C. Analyzing this objective, an optimizing v is attained by the principal258

right singular vector of C. To visualize the data further, we also plot the second singular vector, which can be understood as259

finding a vector with maximal sum of squared inner products with c(a) subject to being orthogonal to the first c identified, and260

see that this separates Omicron BA.1 from BA.2.261

We provide additional analysis in Figure S9, where we show the spectrum of the embedding-aggregation matrix, the p-values262

generated by OASIS-iter, and263

S.4.B. Counts-aggregation. Counts-aggregation iteratively identifies orthogonal c vectors on the stacked contingency tables. To264

merge the tables, we discard all targets that have fewer than 10 counts in a given table. Then, we normalize each table by265

1/
√

M , its total number of counts, to ensure that high count tables do not completely outweigh low count ones, and stack the266

resulting tables together. This yields a visually similar clustering to embedding-aggregation, but does not perfectly predict267

with c(1) ≷ 0 whether the sample has Delta or not. There is still perfect classification accuracy on c(1) for predicting whether268

a sample has Delta or not, and 91% accuracy for predicting from c(1) and c(2) whether a sample has Omicron BA.1 as its269

primary strain or not (correctly classified 94/103).270

For predicting target strain, of the 51,557 anchor-target pairs (rows of Xagg), we filtered for those targets which constitute271

at least 5% of the total counts for that anchor. Then, we label a target as Delta if it maps to the Delta assembly and neither of272

the Omicron ones, and Omicron if it maps to at least one of the Omicron assemblies but not the Delta one. This yields 4836273

sufficiently abundant anchor-target pairs which map, constituting 2,479 of the 2,495 anchors tested.274

S.5. OASIS extensions275

In this section we discuss several extensions of OASIS.276

S.5.A. Metadata-based construction of f , c. OASIS is stated generally, and treats the rows as the set [I] and the columns277

as the set [J ], with no additional information regarding shared structure. However, considering the motivating biological278

application, rows have additional information (the associated target sequence in {A, T, C, G}27 (5)). Considering this, one279

potential direction to construct more biologically meaningful inference is to ensure that similar sequences have similar fi values.280

This can be accomplished by constructing f to be Lipschitz with respect to the Levenshtein distance between the targets of the281

associated rows. From a different direction, to improve interpretability, regularization can be imposed on f in the optimization282

formulations to yield sparser vectors resulting in more parsimonious descriptions of deviations between samples.283
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Similarly, in the presence of sample metadata (e.g. cell-type) in the form of a vector c̃ ∈ [−1, 1]J , the user may wish to284

incorporate this information into constructing c. In the simplest case, the metadata is fully trusted, and we want to see if this285

sample partitioning yields a significant p-value bound. In this case, c̃ is utilized, along with the optimizing f⋆ from the split286

data, for inference.287

One additional approach of potential interest is if metadata c̃ is given, but we are still free to reweight samples: not all288

samples are equally representative. If we require that each cj retains the same sign as c̃j , then we can formulate this as:289

c⋆ = argmax
c : ∥c∥≤1,
cj c̃j ≥0 ∀ j

∣∣f⊤X̃c
∣∣ . [40]290

While the overall objective is non-convex, it is still biconvex. The maximization of f is the same as before, and c is now291

maximized as, defining S⃗ = f⊤X̃:292

cj ∝
{

Sj if c̃jSj ≥ 0,

0 if c̃jSj < 0.
or cj ∝

{
−Sj if c̃jSj ≤ 0,

0 if c̃jSj > 0.
[41]293

This enables efficient approximate optimization via alternating maximization. Many other forms of metadata (e.g. category of294

cell-type beyond just binary) can yield different metadata-aided approaches, and can be framed as optimization problems that295

admit efficient alternating maximization solutions.296

S.5.B. OASIS as a coefficient of correlation. OASIS can also be used to test the dependence between two random variables.297

Consider observations of two real valued random variables (X, Y ), where we observe draws from the joint distribution (Xi, Yi)298

and want to test against the null where X and Y are independent. One recent non-parametric measure of dependence was299

proposed, xicor (14), with good theoretical properties and empirical performance. OASIS can also be used to test independence300

by quantizing the random variables (e.g. into deciles) and constructing a contingency table from these categorical (quantized)301

observations. For any quantization, OASIS can yield a finite-sample valid p-value bound against the null of independence.302

This empirically performs quite well, and can yield an effect size estimate comparable to xicor, as shown in Figure S16. The303

example functions used are detailed in (14) and are plotted at left, showing that OASIS has additional power against balanced,304

structured alternatives, such as circular and heteroscedastic.305

S.5.C. Bernstein-based p-value bounds. The finite-sample valid p-value bounds provided in Proposition 1 suffer from the306

fact that they do not incorporate the variance of fZ where Z ∼ p, and simply rely on the boundedness of fZ . One natural307

concentration inequality that utilizes both the boundedness of a random variable as well as its variance is Bernstein’s inequality,308

of which an empirical variant was derived in (15). An improved p-value bound can potentially be obtained by bounding309

the true variance σ2
f with high probability by some function of the empirical variance σ̂2

f on the training set, and utilizing310

Bernstein’s inequality instead of Hoeffding’s, applied to the same test statistic. Preliminary analysis shows that in low count311

regimes this approach yields much worse bounds, as the variance estimate concentrates much slower than the mean estimate,312

but improved bounds and analyses could yield better performance.313

S.5.D. Tensor analysis. In computational genomics, it is of high priority to discover effects or partitionings that are reproducible.314

In the setting of (5) this motivates going beyond treating each table independently, and instead analyzing the anchor by sample315

by target tensor. OASIS’s framework enables this, where f and c can be generated and optimized jointly.316

Note that more generally OASIS, with its simple linear structure, suggests a simple test for tensors. If we have a 3317

dimensional tensor, we can construct and analyze a test statistic similar to OASIS by centering the tensor, appropriately318

normalizing by sampling depth, then taking inner products along each of the 3 dimensions to reduce to a scalar.319

S.6. Additional discussion320

For brevity and flow we defer some additional plots from the main text to here.321

S.6.A. Comparison of OASIS and X2 in planted setting. In this section we define and provide additional simulations (Figure S1)322

for the example in main text Figure 1. We define a class of alternatives parameterized by their total number of counts M and323

a corruption parameter ϵ as follows (the number of rows and columns are fixed as 12 and 10 respectively). In our uncorrupted324

planted model with ϵ = 0, the probability vector for the first half (5) of the samples is the first standard basis vector p(j) = e1325

for j = 1, . . . , J/2, and the latter half of the samples have p(j) = e2 for j = J/2 + 1, . . . , J . To vary between structured326

and unstructured signal, we mix each column’s probability distribution with another probability distribution q(j), which is327

generated independently for each column. Concretely,328

p(j) =
{

e1 + ϵq(j) if j ≤ J/2,

e2 + ϵq(j) if j > J/2.
[42]329

The observed matrix is generated by drawing X(j) ∼ multinomial(M/J, p(j)), independently for each of the J columns. Each330

q(j) was independently generated by taking each entry to be independently uniformly distributed between [0, 1], and then331

normalized to a valid probability distribution.332
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Considering in more detail the specifics of the simulations, in subplot C) we showed two tables highlighting the shortcomings333

of Pearson’s X2 test. In both examples, power is hampered by the large number of rows. If the number of rows with334

nonzero counts doubles, and the value of the test statistic changes minimally, then the p-value X2 provides will decrease335

dramatically (square root of the original p-value, 10−10 → 10−5. Additionally, X2 normalizes by the square root of the row336

sums, downweighting abundant rows and upweighting rare rows (which often arise from sequencing errors).337

This is a critical drawback, as seen in the strong signal setting: because the first two rows are abundant, X2 downweights338

their deviations, and yields only a moderately significant p-value. In the weak signal setting, even though no one row constitutes339

a large deviation, X2 upweights the deviation in each row, and sums, yielding a similarly significant p-value. In contrast,340

OASIS identifies the strong and reproducible deviation in the the first setting, yielding an extremely significant p-value bound341

by focusing on the difference in expression of the first two rows. In the weak signal setting, OASIS struggles to find a strong342

separation between the samples, and only yields a slightly significant p-value bound. A spectral analysis of Xcorr for the two343

tables is shown in Figure S1‌c, highlighting the flat spectrum of the weak signal table and concentrated spectrum of the strong344

signal table.345

S.6.B. Robustness against simulated noise. OASIS provides robustness against many undesirable alternatives, beyond just346

negative binomial overdispersion. We provide simulations showing OASIS’s robustness against corruption of each individual347

column’s probability distribution, and additionally show OASIS’s improved robustness to deviation of one sample in our348

approximate power calculation in Section S.7. In all settings, OASIS-opt (OASIS-opt in legends) was run with 5 random splits,349

each with 25% training data. OASIS-rand (OASIS in legends) was run with 50 c vectors were drawn uniformly at random from350

{−1, +1}J and 10 f vectors uniformly at random from {0, 1}I , and all 500 pairs were tested.351

In our simulations we need to generate distributions over targets. The simplest option is to simply take a uniform distribution352

over the targets. Modelling the more realistic setting where some targets are more likely than others, we can also generate a353

vector p̃ where each entry is drawn independently from some distribution, and renormalize this to a probability distribution,354

p = p̃/∥p̃∥1. In our simulations we utilize two base distributions. One obvious parameter free choice is a uniform distribution.355

To model the fact that some rows are much more abundant than others we also simulate with an exponential distribution. We356

select a rate parameter of 5 for this, arbitrarily.357

S.6.B.1. Negative binomial overdispersion. As discussed, OASIS is robust to negative binomial overdispersion, as modelled in (16).358

Under the statistical null, for a common row distribution p, if the number of observations in each column is Poisson distributed359

with rate λ, then the observed counts satisfy Xi,j ∼ Pois(λpi), independently drawn for each entry. However, as shown by (16),360

sequencing data is overdispersed in practice, and counts should be modelled as negative binomials. For an overdispersion361

parameter θ (where θ = 0 corresponds to the true null), we thus generate synthetic data as Xij ∼ Pois(Γ(λpi/θ, θ)). Following362

the trends depicted in (16), we model our overdispersion parameter as a function of the expected number of counts to be363

observed n, approximated as θ(n) = 3/n if x < 150, and θ(n) = 0.02 otherwise. In these plots, the number of observations per364

column was varied from 10 to 1000 in log-scale through 10 equally spaced points. For the tables we show one index which365

shows the full dynamic range, index 6/10 with a value of exp(ln(10) + 5
9 (ln(1000)− ln(10))) ≈ 129.366

In both settings, with uniform or exponential target distributions (Figures S3 and S4), OASIS provides significantly better367

control of the discovery rate against this uninteresting alternative stemming from overdispersion.368

S.6.B.2. Robustness again ℓ1 corruption. In this setting, we study an alternative where each column is uniformly distributed, but is369

then mixed (with weight ϵ) with a probability distribution q(j), which is generated independently for each column. Concretely,370

p(j) = (1− ϵ)1
r

1 + ϵq(j), [43]371

where the synthetic data is generated by taking a Poisson number of observations from each column, multinomial with that372

column’s probability vector p(j), independently for each column. To avoid additional parameters, a uniform target distribution373

was used as the true null. q(j) were generated independently by taking each entry to be independent and uniformly distributed374

between [0, 1] and normalizing. This is illustrated in Figure S5.375

In simulations, we observe that OASIS is extremely robust to these types of perturbations; whereas X2 immediately calls376

that these tables deviate from the null, OASIS does not prioritize these unstructured deviations and maintains control of the377

discovery rate for much larger corruption magnitudes, especially for larger tables.378

S.6.C. Power against simulated alternatives. OASIS has power against alternatives with unique per-sample expression (motivated379

by V(D)J recombination) like those in Figure S7, and can be shown to have more power against splicing-type alternatives380

(Figure S5) than the X2 test in some settings.381

S.6.C.1. Two-group setting. Here we show OASIS’s power against alternative splicing type alternatives across a broader range of382

parameters. Alternative tables were generated by taking two groups of samples of equal size, and defining the two group’s383

probability distributions as, for k = 1, 2384

p
(k)
i =

{
1− ϵ + ϵ/I if i = k,

ϵ/I otherwise.
[44]385
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This indicates that p(1) has most of its counts in the first row, and p(2) in the second. The number of observations per sample386

is drawn independently from a Poisson distribution with mean 20 for each sample. Figure S6 shows that OASIS can have more387

power than X2 in a variety of parameter regimes.388

S.6.C.2. Unique per-sample expression. In this setting, the probability distribution of column j ∈ [J ] is p(j) ∈ [0, 1]I , with I = J :389

p
(j)
i =

{
(1− ϵ) + ϵ/r if i = j,

ϵ/r otherwise.
[45]390

This setting is illustrated in Figure S7, where a corruption of ϵ = 0 corresponds to pure signal, and ϵ = 1 corresponds to a391

uniform target distribution for all columns (no signal). We provide simulation results for this setting in Figure S7, where in392

most settings Pearson’s X2 has more power than OASIS, but not by a significant margin.393

S.7. Power analysis394

Providing exact power calculations of OASIS and X2 under different alternatives is difficult, as the random multinomial draws395

affect both X and E. Even asymptotic analyses would require more advanced tools from random matrix theory. To provide396

intuition for the power profile of OASIS relative to X2, we instead perform approximate power calculations in a toy setting.397

Concretely, we assume that we observe a scaled version of the underlying alternative matrix, and compute OASIS and X2
398

p-values for this observed X. We show that OASIS indeed has substantial power in many common settings, and can be more399

powerful than X2 in certain regimes. We conjecture that while OASIS may not exhibit the optimal asymptotic rate against400

all classes of alternatives, e.g. the unique per-sample expression example, it does have power going to 1 as the number of401

observations goes to infinity across a broad class of alternatives.402

In our power computations, we additionally assume that OASIS identifies an optimal pair of c, f . It is reasonable to assume403

that this occurs in the asymptotic regime, and further since OASIS’s test statistic is bilinear in c, f , its p-value bound is404

continuous in these parameters, and so OASIS only needs to identify a pair of near optimal c, f to yield a similar p-value405

bound.406

The X2 p-value for k degrees of freedom is asymptotically distributed as N (k, 2k). Since the X2 test statistic is X2 =407 ∥∥∥diag(
√

M/X1)X̃
∥∥∥2

F
, plugging in k = (I − 1)× (J − 1), and examining large values of the test-statistic,408

PX2 ≈ exp
(
− X2

4IJ

)
. [46]409

S.7.A. Two-group alternative. Here we assume for simplicity that all nj are equal, and that the clusters are of equal sizes. We
describe the results in the context of differentially regulated alternative splicing, but the analysis holds for general 2-group
alternatives with the below structure. For samples j = 1, . . . , J/2, the target (row) distribution is p(1), and for the second half
of columns p(2). In this setting we have:

X = n
(
p(1) [1⊤

J/2 0⊤
J/2
]

+ p(2) [0⊤
J/2 1⊤

J/2
])

and thus
E = n

(
p(1) + p(2)

2

)
1⊤

J

To simplify our results, we utilize the symmetric chi-squared distance between two probability distributions χ2(p, q) =
2
∑

i

(pi−qi)2

pi+qi
. The Pearson X2 statistic is then

X2 =
∑
i,j

(Xi,j − Ei,j)2

Ei,j

= n
∑

i,j<J/2

(
p

(1)
i − p

(1)
i

+p
(2)
i

2

)2

(
p

(1)
i + p

(2)
i

)
/2

+ n
∑

i,j≥J/2

(
p

(2)
i − p

(1)
i

+p
(2)
i

2

)2

(
p

(1)
i + p

(2)
i

)
/2

= nJ

2
∑

i

(
p

(1)
i − p

(2)
i

)2

p
(1)
i + p

(2)
i

= M

4 χ2 (p(1), p(2)) [47]

For disjoint p(1), p(2), the χ2 distance is equal to 1. From the (I − 1)× (J − 1) degrees of freedom, this yield an approximate410

p-value of411
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PX2 ≈ exp

(
−

M2 (χ2 (p(1), p(2)))2

16I × J

)
For OASIS, a pair of optimal c and f can be constructed where c is +1 for the first J/2 components, and −1 for the latter

half, and f is sign
(
p(1) − p(2)). Then, the OASIS test statistic is

S =
J/2∑
j=1

√
njcj(f⊤p(1) − µ̄) +

J∑
j=J/2+1

cj
√

nj(f⊤p(2) − µ̄)

(a)=
J/2∑
j=1

√
nf⊤ (p(1) − p(2))

=
√

MJ

2 f⊤ (p(1) − p(2))
(b)=
√

MJ

2 δTV(p(1), p(2)) [48]

where in (a) we used the fact that all nj = n were the same and that the clusters were equally balanced, and so the opposing412

signs of cj cancelled the effect of µ̄. In (b) we used the optimal f = sign(p(1) − p(2)).413

S.7.A.1. Summary. The X2 p-value can be approximated as414

PX2 ≈ exp
(
− M2

I × J

(
χ2 (p(1), p(2)))2

)
. [49]415

OASIS has significant power against alternative splicing-type alternatives. Assuming that OASIS identifies the optimal c, f ,416

which will be the case asymptotically, it will yield a p-value bound of417

POASIS ≤ 2 exp
(
−M

4 δ2
TV
(
p(1), p(2))) . [50]418

Assuming the total variation distance and χ2 distance between the distributions are constant, OASIS has more power than419

X2 when I × J ≥M ; this is often the case we are in, where there are many rows with very low counts. Assumptions on the420

balanced classes can be alleviated by using a class-weighted mean estimate, which computes the mean f value over samples421

with cj > 0, and averages this with the mean f value over samples with cj < 0, requiring a different theoretical analysis.422

S.7.B. Time series. Consider a simple time series setting, where at time t = 0 cells have target distribution p(1), at time
t = T distribution p(2), and their distributions vary smoothly in between, i.e. at time t they have the mixture distribution
p(1) + t(p(2) − p(1)) = (1 − t)p(1) + tp(2). This can model microbial evolution in bulk RNA-seq data, cell-cycle in single
cell RNA-seq, and many other settings. For T + 1 evenly spaced time intervals (T is assumed to be odd), define the vector
t = [0, 1/T, . . . , (T − 1)/T, 1]. We observe that, for n observations per column, our expected data matrix X and expected
matrix E are

X =
(
p(1)(1− t)⊤ + p(2)t⊤)n,

E = n

2 (p(1) + p(2))1⊤.

Pearson’s X2 test statistic is:

X2 = M

∥∥∥diag(1/
√

X1)(X − E) diag(1/
√

X⊤1)
∥∥∥2

F

= nM

∥∥∥∥diag(1/
√

X1)
(
p(1) − p(2))(1

21− t
)⊤
∥∥∥∥2

F

= nM

I∑
i=1

(
p

(1)
i − p

(2)
i

)2

M
2

(
p

(1)
i + p

(2)
i

) ∥∥∥1
21− t

∥∥∥2

2

= M

12 χ2 (p(1), p(2))+ o(T ), [51]
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simplifying the Frobenius norm of a rank one matrix.
∥∥ 1

2 1− t
∥∥2

2
= (T +1)(T +2)

12T
= T

12 + o(T ). This leads to an approximate
p-value of

PX2 ≈ exp
(
− M2

48I × T

(
χ2 (p(1), p(2)))2

)

We claim that a pair of optimal (c, f) can be constructed as

c = 1
2 − t,

f = sign(p(1) − p(2).

This yields

S =
√

nf⊤ (p(2) − p(1))(t− 1
21
)⊤

c

= 2
√

nδTV(p(1), p(2))
∥∥∥t− 1

21
∥∥∥2

= 2
√

nδTV(p(1), p(2)) (T + 1)(T + 2)
12T

This gives OASIS a p-value bound of

POASIS ≤ 2 exp
(
− 2S2

∥c∥2∥f∥2
∞

)
≤ 2 exp

(
−n(T + 1)δ2

TV(p(1), p(2))/6
)

= 2 exp
(
−Mδ2

TV(p(1), p(2))/6
)

[52]

S.7.B.1. Summary. X2 provides an approximate asymptotic p-value of

PX2 ≈ exp

(
−

M2 (χ2 (p(1), p(2)))2

I × T

)
≈ exp

(
−M

(
χ2 (p(1), p(2)))2

× n

I

)
.

OASIS yields a p-value bound of

POASIS ≤ exp
(
−Mδ2

TV(p(1), p(2))/6
)

[53]

This setting displays the same behavior as in alternative splicing, where OASIS can yield improved performance when n
I

is423

small.424

S.7.C. Unique per-sample expression. In this setting, the alternative matrix is c× c, where the j-th sample expresses target
(row) j with probability 1− α, and with probability α is uniform over the rest of the c− 1 rows. The number of observations
per column are assumed to be the same and c is even. Formally, the alternative matrix A is as below:

A =
(

1− c

c− 1α
)

Ic + α

c− 111⊤

X = A diag (n)

E = 1
c

11⊤ diag (n)

In this setting, Pearson’s X2 statistic is

X2 =
∑

ij

(Xij − Eij)2

Eij

=
∑

j

n2
j ((1− α)− 1

c
)2

nj/c
+
∑
i ̸=j

n2
j

(
α

c−1 −
1
c

)2

nj/c

= c
(

1− α− 1
c

)2∑
j

nj + c
(

α

c− 1 −
1
c

)2∑
i ̸=j

nj

= cM(1− α− 1/c)2 + c(c− 1)M
(

α

c− 1 −
1
c

)2

︸ ︷︷ ︸
negligible

. [54]
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Thus, for fixed c, the X2 p-value can be approximated as

PX2 ≈ exp(−M2(1− α)4)

Analyzing OASIS, we assume that it identifies an optimal pair of f , c, where since nj are balanced

fi =
{

1 if 1 ≤ i ≤ c/2
0 if c/2 < i ≤ c

and cj =
{

1 if 1 ≤ j ≤ c/2
−1 if c/2 < j ≤ c

constitute an optimal pair. Since nj = M/c for all j, µ̄ = 1/2, and

µ̂j =
{

1− c
c−1

α
2 if 1 ≤ i ≤ c/2,

c
c−1

α
2 if c/2 < i ≤ c.

This yields

S =
∑

j

cj
√

nj (µ̂j − µ̄)

=
∑

j

√
M/c

1
2

(
1− c

c− 1α
)

=
√

cM
1
2

(
1− c

c− 1α
)

[55]

and a corresponding p-value bound of

POASIS ≤ exp
(
− S2

∥c∥2
2

)
= exp

(
−M

4

(
1− c

c− 1α
)2
)
≈ exp

(
−M (1− α)2)

S.7.C.1. Summary. In this toy-setting of unique per-sample expression, X2 will yield a p-value of425

PX2 ≈ exp
(
−M2(1− α)4) . [56]426

Comparatively, assuming OASIS identifies an optimal pair (c, f), its p-value bound can be approximated as427

POASIS ≤ exp
(
−M

4

(
1− c

c− 1α
)2
)
≈ exp

(
−M(1− α)2) . [57]428

While this is worse for constant α and M tending to infinity, OASIS still has power going to 1 as M increases.429

S.7.D. One deviant sample. Consider the setting where one sample is maximally deviating, i.e. the observed matrix is:

X =
[

0 n . . . n
n 0 . . . 0

]
.

Then, the expected matrix is430

E =
[

n(1− 1/J) n(1− 1/J) . . . n(1− 1/J)
n/J n/J . . . n/J

]
.

Expressing the summation as grouped by X00, X10, X0,1:, X1,1:

X2 = (n(1− 1/J))2

n(1− 1/J) + (n− n/J)2

n/J
+ (J − 1) (n− n(1− 1/J))2

n(1− 1/J) + (J − 1) (n/J)2

n/J

= n(1− 1/J) + nJ(1− 1/J)2 + n/J + n(1− 1/J)
= nJ

Thus, the Pearson X2 test will yield an approximate p-value of

PX2 ≈ exp
(
− (nJ)2

2(2J)2

)
= exp

(
−n2/8

)
Comparatively, OASIS will choose f = [1 0]⊤, which yields Sj =

√
n/J for j = 2, . . . , n and S1 = −

√
n(1 − 1/J). This

yields an optimizing c = [−(1− 1/J) 1/J . . . 1/J ] with ∥c∥2 = 1− 1/J . The test statistic is then S =
√

n∥c∥2 Thus,

POASIS ≤ exp(−S2/∥c∥2) = exp(−n).
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S.7.D.1. Summary. X2 provides a p-value of431

PX2 ≈ exp
(
− (nJ)2

2(2J)2

)
= exp

(
−n2/8

)
, [58]432

in comparison to OASIS-opt’s p-value bound of433

POASIS ≤ exp(−S2/∥c∥2) = exp(−n). [59]434

This shows how X2 can be significantly overpowered against alternatives where only one column deviates.435

S.7.E. Conclusions from power analysis. As can be seen, there are several regimes where the Pearson X2 test has less power436

than OASIS, primarily when the table is sparse, i.e. M
I×J

is small. This highlights one of the difficulties with the X2 test; its437

p-value depends heavily on the number of rows present, even if many of them are inconsequential.438

S.8. Supplemental figures439
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(a) (b)

(c)

1

Fig. S1. Following Figure 1D, this plot shows the performance of OASIS-opt and X2 over the class of 2-group alternatives defined in Eq. (42). (a) shows an empirical
achievability curve, where the y-axis indicates how structured versus unstructured the alternative is, and the x-axis indicates the total number of counts in the table. The more
up and to the left a curve is, the better. For any alternative (any ϵ ∈ [0, 1]), a statistical test should reject the null with enough observations. For a given number of counts,
we performed binary search to identify the largest ϵ for which over half of the p-values (bounds) were less than 1E − 10. Empirically, OASIS is more likely to reject highly
structured tables with lower counts, whereas Pearson’s X2 test is more likely to reject unstructured tables with moderate counts. OASIS-opt is run with 5 random splits as in
Figure 1D, which we denote as OASIS-split, and we additionally show results (labelled OASIS) when only 1 random split is used. (b) plots an ECDF of p-values in the two
settings for different methods. Performing 5 random splits removes the tail of the p-value bounds, generally improving performance. The flat behavior between adjacent data
points for OASIS-opt is due to the data-splitting: an increase in the number of observations does not necessarily translate to an increase in the number of observations in the
test data. (c) shows the spectrum of Xcorr for the two example tables in main text Figure 1c. X2 yields a similar p-value for the two tables, as the sum of the squared singular
values is similar. OASIS prioritizes the “strong signal” table with the more concentrated spectrum.
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(a) (b)

(c) (d)

1

Fig. S2. Distribution of the normalized OASIS test statistic S

σ̂f ∥c∥
√

1−γ
(right). As predicted by Proposition 3 this follows a Gaussian distribution, leading to uniformly

distributed asymptotic p-values (left). The synthetic tables generated have few counts, but the approximation is still extremely good. Each plot shows 100k randomly generated
tables with 5 rows, 8 columns, and a random target distribution (each entry i.i.d. uniform, normalized). Column counts for simulations in the first row are independently drawn
from a Poisson with mean 10, while the second row has mean 30. For each trial a random p was generated, {nj} were drawn randomly from Poisson distributions, and X

was generated from this null. Then, c and f were independently randomly generated, where the coordinates of f were i.i.d. Ber(1/2), and the coordinates of c were i.i.d.
U([−1, 1]). This process was repeated until a table with σ̂f > 0 and γ < 1 was generated to yield a valid run (as otherwise the test statistic is identically 0). KS distance
(maximum distance between OASIS’s asymptotic p-value’s ECDF and the uniform distribution of .0079 for n = 10 counts per column, .0038 for n = 30 counts per column.
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Fig. S3. Simulated data for negative binomial overdispersion. Null target distribution generated from exponential distributions, described in Section S.6.B.1. OASIS has
significantly better control of the false discovery rate than the X2 test, and requires substantially fewer samples per column to control the FDR. The 3x3 grid of plots displays
results for tables varying in number of columns (10, 50, 400 from left to right) and number of rows (5, 20, 100 from top to bottom).
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1

Fig. S4. Simulated data for negative binomial overdispersion. Null target distribution is uniform over rows. OASIS has significantly better control of the false positive rate than
the X2-test, and requires substantially fewer samples per column to control the FDR. The 3x3 grid of plots displays results for tables varying in number of columns (10, 50, 400
from left to right) and number of rows (5, 20, 100 from top to bottom).
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0 10.5

Uniform
(no signal)

Random corruption

High

Low

1

Fig. S5. Simulated data for independent ℓ1 corruption of each column (Eq. (43)). At bottom, a diagram showing tables under different corruption magnitudes ϵ. Number of
observations in each column is Poisson distributed with mean 100, independent across columns. Observations are drawn independently, and are multinomially distributed for
each column. The 3x3 grid of plots displays results for tables varying in number of columns (10, 50, 100 from left to right) and number of rows (20, 10, 500 from top to bottom).
X2 has significant power against this alternative, even though it represents contamination and a “biological null”.
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Fig. S6. Simulated data for alternative splicing-type alternative (Eq. (44)). Number of observations in each column is Poisson distributed with mean 20. The 3x3 grid of plots
displays results for tables varying in number of columns (10, 50, 100 from left to right) and number of rows (20, 100, 400 from top to bottom). OASIS generally has more power
than X2.
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Fig. S7. Simulated data for unique per-sample expression alternative (Eq. (45)). Number of observations in each column is Poisson distributed with the given mean,
independent across columns. Detailed probabilistic model in Eq. (45). The 3x3 grid of plots displays results for tables varying in number of rows (10, 25, 100 from top to
bottom) and mean number of observations per column (10, 20, 50 from left to right). X2 has more power, but all methods perform well.
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(a) (b)

(c)

1

Fig. S8. SVD does not identify the visually clear planted structure in the toy example, while OASIS does. Shown in (c) is the contingency table X with two groups of columns,
one which expresses rows 1-5 (the left 6 columns), and the other which expresses rows 6-10 (the right 14 columns). The values in these entries is approximately 40. However,
there is a confounding final row, which randomly groups the columns into two new groups, and yields counts either 160 or 0. The last row should be considered noise, as this
signal does not match any other row’s expression. Multinomial sampling provides slight noise to make this more realistic. Both methods call this table as significant: an extreme
example chosen for clarity of exposition. The latent structure is identified by an embedding f which takes value 1 on the first 5 rows, -1 on the next 5, and 0 (i.e., disregarding),
the final row. OASIS, both from its asymptotic-optimized c (OASIS-asymp) and its finite-sample bound optimized c (OASIS-opt), perfectly identify the latent clustering. However,
an SVD restricts to an ℓ2 constraint, and since the last row has more counts, it is selected as the dominant component in the SVD-based f . (b) plots the embeddings identified
by the two methods, subtracting .5 from OASIS-opt’s f , so that it centers around 0. The SVD-based f does identify the row groupings, but utilizes only half the dynamic range
for the first 10 rows, assigning the last row a value of 0.76, where all other components have magnitude at most 0.28. OASIS more clearly identifies the row structure, with the
asymptotic objective forcing the bottom row to a value less than 9 × 10−4 in magnitude where all other components have a magnitude of at least 0.17. OASIS-opt utilizes
the full dynamic range for the first 10 rows. (a) plots c, highlighting that the SVD-identified c cannot identify the latent structure. OASIS-opt identifies the clustering in a well
separated manner, and the asymptotic optimized c yields even greater separation (as it fully discounts the last “noisy” row).
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1

Fig. S9. Analysis of 100,914 tables generated by SPLASH (5) from SARS-CoV-2 data (2). (a,b) show the spectrum of the C matrix from embedding-aggregation for
SARS-CoV-2 data, illustrating why a 2D embedding is sufficient. (c) plots the negative log of the p-value bounds for counts-aggregation for SARS-CoV-2. All are 0, up to
machine precision, due to the large number of counts. Thus, while for smaller matrices significance testing provides a good cutoff, for larger tables one may still need to find an
“elbow” in the curve. As can be seen, after the second index (the elbow) the remaining points follow a linear trend, indicating that only 2 components should be utilized. This
threshold can be programatically identified by looking at the ratio of successive log p-value bounds, and finding the maximum. (d) Plots the empirical CCDF of absolute cosine
similarities between the binarized sample embeddings per table (c for OASIS, principal right singular vector from correspondence analysis for X2) and ground truth vector
indicating whether a patient (sample) has Delta or not. Only tables that a method declares significant after multiple hypothesis correction are used. The tables that X2 rejects
do not yield signal that correlates well with the ground truth; for example, the 0.5 and 0.9 quantiles of these empirical distributions are 0.22 and 0.66 for OASIS, as opposed to
0.10, 0.52 for X2. This plot additionally shows that the improved predictive power of OASIS with respect to sample metadata is primarily driven by the tables OASIS prioritizes;
when performing correspondence analysis on the tables OASIS rejects, similar results are obtained, but when analyzing all calls made by Pearson’s X2, many have worse
correspondence with sample metadata.
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Fig. S10. Top 2 tables in terms of OASIS-opt p-value bound, not called by OASIS-rand. Both tables yield a vector c with a binarized absolute cosine similarity of 0.76 with
ground truth metadata (was the patient infected with Delta or not).
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Fig. S11. 2 tables with X2 q-values of 0, not called by OASIS-opt (q-value > 0.05). Since there were more than 2 tables with a X2 q-value of 0, we chose the two with the
smallest OASIS-opt p-value bounds. The output 1D embedding by correspondence analysis yields an absolute cosine similarity of 0.15 and 0.02 with ground truth (whether a
patient has Delta or not). Even when extended to 2 dimensions, the clusters do not separate.
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Fig. S12. All 5 tables in OASIS-opt’s reduced list of anchors (effect size in the top 10%, M > 1000, significant post BY correction OASIS-opt p-value bound), not called by
X2. First is 482 × 100, 3688 counts, cosine similarity of 0.2. Second is 98 × 77, with 2540 counts, cosine similarity of 0.61. Third is 74 × 71, 1486 counts, cosine similarity
of 0.69. Fourth is 67 × 69, 1299 counts, cosine similarity of 0.62. Fifth is 88 × 91, 1256 counts, 0.63 cosine similarity.
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Target 1
Target 2

Target 1
Target 2

Fig. S13. BLAT (17) to SARS-CoV-2 genome via UCSC genome browser (18). For each target, we align the anchor concatenated with the target, where for each of these two
anchors, only 2 targets had abundance greater than 5%. Note that these targets do not come immediately after the anchor, but are taken a fixed distance ahead (called the
lookahead distance (5)). In both examples, target 1 takes a value fi = 1, and target 2 takes a value fi = 0. The reported 93% agreement predicts that fi = 1 corresponds
to Delta and fi = 0 corresponds to Omicron. Thus, target 1 is predicted to be Delta, and target 2 to be Omicron. Not shown in the first example, analyzing the raw reads from
these samples shows that those from Delta samples follow the genome exactly, whereas those from Omicron samples exhibit a 6 basepair deletion in this gap, leading to the
resulting contingency table. This deletion is not annotated in the UCSC genome browser, but corresponds to a known Omicron deletion. In the second example, we observe the
same behavior (Omicron has a larger gap between anchor and target), this time due to an annotated Variant of Concern (VOC), a deletion.
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1

Fig. S14. Subplots (a,b) show 2D embeddings of M. tuberculosis data. The second dimension does not help with sub-sub-lineage classification. Plots (c,d) show the spectrum
of the C matrix from embedding-aggregation.
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1

Fig. S15. OASIS, unaware of the underlying multi-group structure, is able to give a statistically valid stopping criterion for subclustering. We show evaluation in a planted setting
with 3 groups, 10 rows, and 20 columns. Counts per column are Poisson distributed: (a) shows mean 20 observations per column, (b) shows mean 30. We plot the number of
identified c vectors using OASIS-iter; finding orthogonal c(k) until p-value is no longer significant. OASIS correctly identifies the number of clusters in 55% of simulations,
increasing to 69% with mean 30 observations per column. OASIS is only derived as a test on contingency tables, but this simple analysis shows its utility in other applications
such as subclustering.
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Fig. S16. Comparison of OASIS-opt and xicor (14). OASIS asymptotic p-value used, 25% train test split. Each row represents a different setting, where the left column shows
the noiseless problem instance y = f(x), the middle column shows the magnitude of the correlation coefficient averaged over 1000 iterations per point, and the right column
shows the fraction of time the null was rejected. For OASIS, the middle column shows the effect size, and the right column shows the rejection fraction utilizing the asymptotic
p-value. The quantization level q, which maps the input continuous-valued random variable to a discrete categorical one, is varied across trials. This is performed independently
for the row and column random variables, and binned into q bins of equal counts (1/q quantiles).
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S.9. Supplemental tables440

num rows num cols X2 OASIS-rand OASIS-opt
5 10 0.370 0.005 0.007

50 0.765 0.009 0.006
400 0.995 0.001 0.057

10 10 0.792 0.011 0.015
50 1.000 0.007 0.046
400 1.000 0.010 0.309

20 10 0.999 0.065 0.080
50 1.000 0.058 0.213
400 1.000 0.100 0.866

100 10 1.000 0.871 0.978
50 1.000 0.983 1.000
400 1.000 0.994 1.000

Table S1. Power at λ ≈ 129, noise model as in (16). Exponentially distributed target distribution, described in text. Full plots in Figure S3.

number of rows (I) SDP+rounding Alternating maximization
Asymptotically-optimal

(eigenvector + rounding)
12 14.5 0.86 0.20
24 194 1.2 0.25
48 - 1.26 0.59
96 - 1.31 5.9
192 - 1.48 16.7

Table S2. Computational time (in seconds) for computing c, f using the stated method, on 1000 matrices. As can be seen, the SDP solver
quickly becomes infeasible. Forming the matrix X̃X̃⊤ also becomes costly as the number of rows increases. Alternating maximization
stays efficient and performant. Timing results generated on a MacBook Air (M2, 2022), runs declared as a failure after 5 minutes.
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