SUPPLEMENTAL MATERIAL

UCC Smart Study Group

Maarten-Jan Cramer¹, Hendrik M. Nathoe¹, Manon G. van der Meer¹, Gert J. de Borst², Martin Teraa², Michiel L. Bots³, Maarten van Smeden³, Marielle H. Emmelot-Vonk⁴, Pim A. de Jong⁵, A Titia Lely⁶, Niels P. van der Kaaij⁷, Jaap Kappelle⁸, Ynte M. Ruigrok⁸, Marianne C. Verhaar⁹, Jannick A.N. Dorresteijn¹⁰, Frank L.J. Visseren¹⁰

¹Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands

²Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands ³Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, The Netherlands

⁴Department of Geriatrics, University Medical Center Utrecht, Utrecht, The Netherlands

⁵Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands

⁶Department of Obstetrics, Birth Centre Wilhelmina Children's Hospital, University Medical Center Utrecht, Division Women and Baby, Utrecht University, Utrecht, The Netherlands

⁷Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands

⁸Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands

⁹Department of Nephrology and Hypertension and Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands

¹⁰Department of Vascular Medicine, Utrecht University, Utrecht, Utrecht, The Netherlands

NCDC Consortium

Pieter Jelle Visser^{1,2}, Almar A.L. Kok³, Martijn Huisman⁴, M. Arfan Ikram⁵, Frank J. Wolters^{5,6}, Edo Richard^{7,8}, Eric P. Moll van Charante^{8,9}, Miranda T. Schram^{10,11,12,13}, Thomas T. van Sloten¹⁴, W.M. Monique Verschuren^{15,16}, Astrid C.J. Nooyens¹⁶, Peter P. de Deyn¹⁷, Wiesje M. van der Flier^{2,4}, P. Eline Slagboom¹⁸, Marian Beekman¹⁸, Mirjam I. Geerlings^{9,15}

¹Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands

²Alzheimer Center, Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands

³Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands

⁴Department of Epidemiology and Biostatistics, Amsterdam UMC Location VUmc, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

⁵Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands

⁶Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands

⁷Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands

⁸Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

⁹Department of General Practice, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

¹⁰Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands

¹¹School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands

¹²School for Mental Health and Neuroscience MHENS, Maastricht University, Maastricht, The Netherlands

¹³Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands

¹⁴Vascular Medicine and Endocrinology, UMC Utrecht, Utrecht, The Netherlands

¹⁵Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, The Netherlands

¹⁶Center for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, The Netherlands

¹⁷Laboratory of Neurochemistry and Behavior, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium

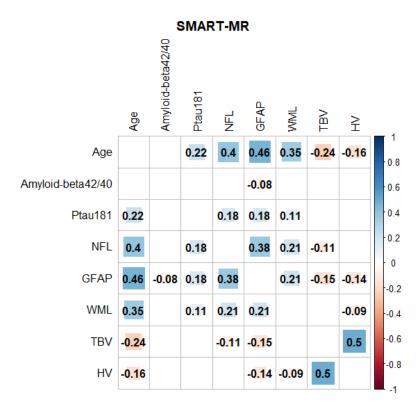
¹⁸Department of Molecular Epidemiology, Leiden University Medical Center, The Netherlands

Table S1. Prevalence of arterial diseases in the study sample.

	N (%)
Cerebrovascular disease	192 (26%)
Coronary artery disease	489 (65%)
Peripheral arterial disease	151 (20%)
Abdominal aortic aneurysm	49 (7%)

Plasma levels (per SD increase)	White matter hyperintensity volume, B (95% Cl), p-value	Total brain volume, B (95% CI), p-value	Hippocampal volume, B (95% Cl), p-value
Model 1			
Αβ40	0.12 (0.02; 0.022), <i>p</i> = 0.018	-1.88 (-4.71; 0.96), <i>p</i> = 0.194	-0.11 (-0.17; -0.05), <i>p</i> = 0.001
Αβ42	0.09 (-0.01; 0.18), <i>p</i> = 0.071	-3.61 (-6.26; -0.96), <i>p</i> = 0.008	-0.06 (-0.12; 0.00), <i>p</i> = 0.051
Αβ42/Αβ40*	-0.06 (-0.16; 0.03), p = 0.194	-0.45 (-3.16; 2.27), p = 0.747	0.03 (-0.03; 0.09), p =0.271
Model 2			
Αβ40	0.12 (0.01; 0.22), <i>p</i> = 0.025	-1.49 (-4.31; 1.33), <i>p</i> = 0.300	-0.11 (-0.18; -0.05), <i>p</i> = 0.001
Αβ42	0.08 (-0.02; 0.17), <i>p</i> = 0.102	-3.46 (-6.08; -0.83), <i>p</i> = 0.010	-0.06 (-0.12; 0.00), <i>p</i> = 0.048
Αβ42/Αβ40*	-0.07 (-0.17; 0.02), p = 0.144	-0.36 (-3.01; 2.29), p = 0.791	0.03 (-0.03; 0.09), p = 0.310

Table S2. Associations between Aβ40 and Aβ42 and MRI markers of CSVD.


Model 1 is adjusted for age, sex, education, and intracranial volume. Model 2 adds diabetes mellitus, hypertension, smoking status, and alcohol use. White matter lesion volume is log-transformed. * = including $1/A\beta40$ and $A\beta42$ as main effects in the model. SD = standard deviation, $A\beta$ = amyloid-beta, CI = confidence interval.

Plasma levels (per SD increase)	Number of infarcts, OR (95% Cl), p-value	Lacunar infarcts, OR (95% Cl), p-value	Cortical infarcts, OR (95% Cl), p-value
Model 1			
Αβ40	1.00 (0.83; 1.20), <i>p</i> = 0.958	0.93 (0.76; 1.14), <i>p</i> = 0.492	1.16 (0.91; 1.47), <i>p</i> = 0.228
Αβ42	1.05 (0.88; 1.25), <i>p</i> = 0.620	1.05 (0.87; 1.28), <i>p</i> = 0.602	1.23 (0.98; 1.54), <i>p</i> = 0.080
Αβ42/Αβ40*	1.18 (0.84; 1.67), p = 0.344	1.32 (0.80; 2.20), p = 0.279	0.99 (0.77; 1.26), p = 0.909
Model 2			
Αβ40	0.96 (0.79; 1.16), <i>p</i> = 0.644	0.87 (0.70; 1.07), <i>p</i> = 0.185	1.12 (0.88; 1.44), <i>p</i> = 0.356
Αβ42	1.01 (0.84; 1.21), <i>p</i> = 0.933	0.99 (0.81; 1.21), <i>p</i> = 0.896	1.21 (0.95; 1.53), <i>p</i> = 0.126
Αβ42/Αβ40*	1.20 (0.79; 1.83), p = 0.384	1.39 (0.80; 2.41), p = 0.242	0.97 (0.77; 1.23), p = 0.814

Table S3. Associations between A β 40 and A β 42 and infarcts.

Model 1 is adjusted for age, sex, and education. Model 2 adds diabetes mellitus, hypertension, smoking status, and alcohol use. White matter lesion volume is log-transformed. * = including $1/A\beta40$ and $A\beta42$ as main effects in the model. SD = standard deviation, $A\beta$ = amyloid-beta, OR = odds ratio, CI = confidence interval.

Figure S1. Correlation matrix between age, AD plasma markers, and MRI markers of vascular pathology.

Pearson correlation coefficients are shown. Bolded coefficients are significant at p < 0.05. NFL = neurofilament light, GFAP = glial fibrillary acidic protein, WML = white matter lesions, TBV = total brain volume, HV = hippocampal volume.