# **Supporting Information**

# 3D Printable Modular Soft Elastomers from Physically Crosslinked Homogeneous Associative Polymers

Myoeum Kim<sup>1,†</sup>, Shifeng Nian<sup>1,†</sup>, Daniel A. Rau<sup>1,†</sup>, Baiqiang Huang<sup>1</sup>, Jinchang Zhu<sup>1</sup>, Guillaume Freychet<sup>4</sup>, Mikhail Zhernenkov<sup>4</sup>, Li-Heng Cai<sup>1,2,3,\*</sup>

<sup>1</sup>Soft Biomatter Laboratory, Department of Material Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA

<sup>2</sup>Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA

<sup>3</sup>Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA

<sup>4</sup>National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY 11973, USA

\* Corresponding author. Email: liheng.cai@virginia.edu; ORCID: 0000-0002-6806-0566

<sup>†</sup>Equal contribution

### **Corresponding author contact:**

Dr. Li-Heng Cai 228 Wilsdorf Hall University of Virginia 395 McCormick Road Charlottesville, VA 22904 Tel: 434-924-2512 Fax: 434-982-5660

## **Table of Contents**

| SI Materials and Methods                                                                                                                                               | 3    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure S1. <sup>1</sup> H NMR spectra of raw mix of ARGET ATRP of HA                                                                                                   | 7    |
| Figure S2. <sup>1</sup> H NMR spectra of raw mix of ARGET ATRP of HA and AAPA                                                                                          | 8    |
| Figure S3. <sup>1</sup> H NMR spectra of reversible middle block, HA <sub>239</sub> - <i>r</i> -AAPA <sub>23</sub>                                                     | 9    |
| Figure S4. <sup>1</sup> H NMR spectra of sample TR1, BnMA <sub>15</sub> - <i>b</i> -HA <sub>251</sub> - <i>b</i> -PBnMA <sub>15</sub>                                  | 10   |
| Figure S5. <sup>1</sup> H NMR spectra of sample TR2, BnMA <sub>18</sub> - <i>b</i> -(HA <sub>239</sub> - <i>r</i> -AAPA <sub>23</sub> )- <i>b</i> -PBnMA <sub>18</sub> | 11   |
| Figure S6. Dependence of heat capacity, $C_p$ , of the LAL polymer with $\lambda$ =0.25 and $f$ =31% measured by differential scanning calorimetry                     | 12   |
| Figure S7. Dependence of crossover frequency on fraction of associative group for LAL polymers with $f$ around 11%.                                                    | 13   |
| Figure S8. Relationship between loss factor and frequency                                                                                                              | 14   |
| Figure S9. Frequency dependence of shear moduli of LAL polymers for printing                                                                                           | 15   |
| Figure S10. Yield-stress behavior of LAL polymer at 170 °C.                                                                                                            | 16   |
| Figure S11. Creep-recovery measurements of LAL polymer with=0.25 and f=31%                                                                                             | 17   |
| Figure S12. Ashby-type plot comparing LAL polymers to solvent-free and DIW printable polymer composites.                                                               | 18   |
| Figure S13. Ashby-type plot of thermoplastic polymers for different additive manufacturing techniques.                                                                 | . 19 |
| Figure S14. The self-assembled polymer networks are reprocessable                                                                                                      | 20   |
| Figure S15. Dependence of modulus of LAL polymers on temperature                                                                                                       | 21   |
| Table S1. Summary of synthesis conditions of all middle block and triblock polymers                                                                                    | 22   |
| Table S2. List of data points and references for Fig. 5d.                                                                                                              | 23   |
| Table S3. Molecular parameters and mechanical properties of LAL polymers for 3D printing                                                                               | 24   |
| Table S4. List of data points and references for Fig. S12.                                                                                                             | 25   |
| Table S5. List of data points and references for Fig. S13                                                                                                              | 26   |
| Table S5. List of data points and references for Fig. S13 (continued).                                                                                                 | 27   |
| Table S5. List of data points and references for Fig. S13 (continued).                                                                                                 | 28   |
| Movie S1. DIW printing a honeycomb structure                                                                                                                           | 29   |
| Movie S2. DIW printing a cubic gyroid structure.                                                                                                                       | 30   |
| Movie S3. Cyclic compression test of a printed cubic gyroid.                                                                                                           | 31   |
| UNIT spectra                                                                                                                                                           | 32   |

#### **SI Materials and Methods**

**Polymer synthesis and characterization.** The synthesis of a linear-associative-linear (LAL) triblock copolymer consists of two steps: (1) the reversible middle block, and then (2) using the middle block as a macro-initiator to grow the two end linear blocks. For both steps, we use activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP).<sup>1</sup> We synthesize the reversible block by copolymerizing hexyl acrylate (HA) with 5-acetamidopentyl acrylate (AAPA), which carries an amide group at one of its two ends and serves as the sticky monomer. The reaction conditions for the synthesis are summarized in **Table S1**. Below we describe the detailed synthesis protocols.

Step I. Synthesis of sticky monomer 5-acetamido pentyl acrylate (AAPA). AAPA is synthesized based on previously described methods.<sup>2,3</sup> First, a flask is charged with 5-amino-1-pentanol (25 g, 242.3 mmol) and ethyl acetate (250 mL). Acetic anhydride (28.1 g, 275.4 mmol) is added dropwise with vigorous stirring under nitrogen. After finishing the addition of acetic anhydride, the reaction mixture is stirred at room temperature for 2 hours followed by the addition of methanol (80 mL) and K<sub>2</sub>CO<sub>3</sub> (28 g, 202.6 mmol). The mixture is vigorously stirred for another 15 min followed by the filtration of undissolved solid if any. The filtered solution is concentrated by a rotary evaporator (Buchi R-205) to obtain 5-acetamido-1- pentanol (AAPA, 30.5 g) with a yield of 87.1%. The success for the synthesis of AAPA is confirmed by <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ =3.53 (t, 2H), 3.14 (q, 2H), 1.89 (s, 3H), 1.47 (m, 4H), 1.32 (m, 4H).

Second, a flask is charged with 5-acetamido-1- pentanol (3.34 g, 23.0 mmol), acrylic acid (2.48 g, 34.5 mmol), EDC (7.27 g, 37.9 mmol), *N*,*N*-diisopropylethylamine (4.9 g, 37.9 mmol) and dichloromethane (100 mL). The reaction is stirred at room temperature for 48 h under nitrogen. Then the reaction mixture is diluted with another 100 mL dichloromethane. Then the solution is sequentially washed with aqueous solutions of NaOH (1.0 M, 100 mL), aqueous solution of HCl (1.0 M, 100 mL), saturated aqueous solutions of NaHCO<sub>3</sub> (150 mL) and saturated aqueous solution of NaCl (150 mL) The organic supernatant is dried with Na<sub>2</sub>SO<sub>4</sub> for 12 h and then concentrated by a rotary evaporator to obtain the crude product. The crude product is purified by passing through a silica column using ethyl acetate/hexanes = 1/9 (v/v) as eluent. 5-acetamido pentyl acrylate (AAPA) (3.6 g) is obtained with a yield of 78.6%. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ =6.37 (d, 1H),

6.11 (dd, 1H), 5.82 (d, 1H), 5.58 (s, 1H), 4.15 (t, 2H), 3.23 (q, 2H), 1.96 (s, 3H), 1.68 (m, 2H), 1.53 (m, 2H), 1.39 (m, 2H).

Step II-a. Synthesis of control middle block poly(hexyl acrylate) (PHA). A 25 mL Schlenk flask is charged with 2f-BiB (23 mg, 0.064 mmol), HA (5 g, 32.0 mmol) and anisole (6 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. Then, we add 160  $\mu$ L catalyst solution, containing 6.4×10<sup>-2</sup> mmol Me<sub>6</sub>TREN and 6.4×10<sup>-3</sup> mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterward, the reducing agent, Sn(EH)<sub>2</sub> (52 mg, 0.128 mmol) in 200  $\mu$ L anisole, is quickly added to the reaction mixture using a glass pipet. We seal the flask and then immerse it in an oil bath at 70°C to start the reaction. We monitor the reaction by taking out a small amount of mixture every 30 mins to determine the conversion using proton NMR and stopped the reaction after 126 min. Based on <sup>1</sup>H NMR, the conversion is 50.2% and the degree of polymerization (DP) is 251.

The rest of the reaction mixture is diluted with THF and passed through a neutral aluminum oxide column to remove the catalyst. The collected solution is concentrated by a rotary evaporator. We use methanol to precipitate the polymer, re-dissolve the sediment in THF to make a homogenous solution and repeat this precipitation procedure another 2 times to ensure that all unreacted monomers and impurities are completely removed. After purification, the sample is dissolved in THF and transferred to a glass vial and dried in the hood for 16 h, then transferred to a vacuum oven (Thermo Fisher, Model 6258) at room temperature for 24 h to completely remove the solvent.

Step II-b. Synthesis of reversible middle block with 8.8% of sticky monomers. A 25 mL Schlenk flask is charged with 2f-BiB (22.4 mg, 0.062 mmol), HA (4.38 g, 28.0 mmol), AAPA (0.62 g, 3.11 mmol) and anisole (6 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. Then, we add 155  $\mu$ L catalyst solution, containing  $6.2 \times 10^{-2}$  mmol Me<sub>6</sub>TREN and  $6.2 \times 10^{-3}$  mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterwards, the reducing agent, Sn(EH)<sub>2</sub> (50.4 mg, 0.125 mmol) in 200  $\mu$ L anisole, is quickly added to the reaction mixture using a glass pipet. We seal the flask and then immerse it in an oil bath at 80°C to start the reaction. The reaction is monitored by taking out a small amount of mixture to determine the conversion using proton NMR and stopped after 109

min. From proton NMR, the conversion is 52.4% and the total degree of polymerization (DP) is 262. The purification procedure is the same as the synthesis of controlled middle block. After purification, from <sup>1</sup>H NMR, the DP of HA is 239, the DP of AAPA is 23, the ratio of reversible bond is 8.8%.

Step II-c. Example of the synthesis of the reversible middle block with 25% of sticky monomers. A 25 mL Schlenk flask is charged with 2f-BiB (21.5 mg, 0.060 mmol), HA (3.5 g, 22.4 mmol), AAPA (1.5 g, 7.53 mmol) and anisole (6 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. Then, we add 150 µL catalyst solution, containing  $6.0 \times 10^{-2}$  mmol Me<sub>6</sub>TREN and  $6.0 \times 10^{-3}$  mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterwards, the reducing agent, Sn(EH)<sub>2</sub> (48.4 mg, 0.12 mmol) in 200 µL anisole, is quickly added to the reaction mixture using a glass pipet. We seal the flask and then immerse it in an oil bath at 80°C to start the reaction. The reaction is monitored by taking out a small amount of mixture to determine the conversion using <sup>1</sup>H NMR and stopped after 100 min. From <sup>1</sup>H NMR, the conversion is 48.0% and the DP is 240. The purification procedure is similar to the synthesis of the control middle block. The only difference is that a co-solvent is used for precipitation; the co-solvent is a mixture of hexanes and diethyl ether with a volume ratio 3:1, which is a good solvent for both HA and AAPA but not for the reversible middle block. After purification, from <sup>1</sup>H NMR, the DP of HA is 180, the DP of AAPA is 60, and the percentage of sticky monomers is 25% or  $\lambda = 0.25$ .

Step III-a. Synthesis of the control triblock copolymer PBnMA-PHA-PBnMA. A 25 mL Schlenk flask is charged with benzyl methacrylate (BnMA, 705 mg, 4 mmol), macroinitiator (40 kg/mol, 800 mg, 0.02 mmol) and anisole (4 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. We add 40  $\mu$ L catalyst solution, containing  $1.6 \times 10^{-2}$  mmol Me<sub>6</sub>TREN and  $1.6 \times 10^{-3}$  mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterwards, reducing agent, Sn(EH)<sub>2</sub> (25.9 mg, 0.064 mmol) in 150  $\mu$ L anisole, is quickly added to the reaction mixture using a glass syringe. Then, we seal the flask and immerse it in an oil bath at 60°C. The reaction is monitored by taking out a small amount of mixture to determine the DP of PBnMA using <sup>1</sup>H NMR. The reaction is stopped after 120 min. The reaction mixture is diluted in THF and passed through a neutral aluminum oxide

column to remove the catalyst, and the collected solution is concentrated by a rotavapor. We use methanol for precipitation three times; this completely removes all unreacted monomers and impurities. After purification, the sample is dissolved in dichloromethane and transferred to a glass vial and dried in the hood for 16 h, then the vial is put in a vacuum oven at room temperature for 24 h to completely remove the solvent. After purification, from <sup>1</sup>H NMR, the DP of PBnMA on each end is 15.

Step III-b. Synthesis of LAL triblock copolymers with 8.8% of sticky monomers in the middle block. A 25 mL Schlenk flask is charged with BnMA (583 mg, 3.31 mmol), macroinitiator (42 kg/mol, 700 mg, 0.017 mmol) and anisole (3.3 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. We add 33  $\mu$ L catalyst solution, containing  $1.3 \times 10^{-2}$  mmol Me<sub>6</sub>TREN and  $1.3 \times 10^{-3}$  mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterwards, reducing agent, Sn(EH)<sub>2</sub> (21.5 mg, 0.053 mmol) in 150  $\mu$ L anisole, is quickly added to the reaction mixture using a glass syringe. Then, we seal the flask and immerse it in an oil bath at 60°C. The reaction is monitored by taking out a small amount of mixture to determine the DP of PBnMA using proton NMR. The reaction is stopped after 103 min. The purification procedure is the same as the synthesis of controlled triblock copolymer. After purification, from <sup>1</sup>H NMR, the DP of PBnMA on each end is 18.

Step III-c. Example of synthesis of LAL triblock copolymers with 25% of sticky monomers in middle block. A 25 mL Schlenk flask is charged with BnMA (529 mg, 3 mmol), macroinitiator (40 kg/mol, 610 mg, 0.015 mmol) and anisole (3 mL). We dissolve Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF to make a catalyst solution. We add 30  $\mu$ L catalyst solution, containing  $1.2 \times 10^{-2}$  mmol Me<sub>6</sub>TREN and  $1.2 \times 10^{-3}$  mmol CuCl<sub>2</sub>, to the mixture and bubble it with nitrogen for 30 min to remove oxygen. Afterwards, reducing agent, Sn(EH)<sub>2</sub> (19.4 mg, 0.048 mmol) in 150  $\mu$ L anisole, is quickly added to the reaction mixture using a glass syringe. Then, we seal the flask and immerse it in an oil bath at 60°C. The reaction is monitored by taking out a small amount of mixture to determine the DP of PBnMA using proton NMR. The reaction is stopped after 61 min. The purification procedure is the same as the synthesis of controlled triblock copolymer. After purification, from <sup>1</sup>H NMR, the DP of PBnMA on each end is 16.

<sup>1</sup>**H NMR characterization.** We use <sup>1</sup>H NMR to determine the conversion of HA and AAPA and the volume fraction of PBnMA. Chemical shifts for <sup>1</sup>H NMR spectra are reported in parts per million compared to a singlet at 7.26 ppm in CDCl<sub>3</sub>.

Conversion of HA monomers for the control middle block. The conversion is calculated based on the conversion of HA monomers to the polymer poly(hexyl acrylate) (PHA), which is measured by the NMR spectra of the raw reaction mixture, as shown in **Fig. S1**. The area of peak **a** at 4.18 ppm,  $A_{\text{HA}}$ , corresponds to two H on the methylene group connected with the oxygen atom in HA monomer. The area of peak **a**' at 4.08 ppm,  $A_{\text{PHA}}$ , corresponds to two H on the methylene group connected with the oxygen atom in HA repeating unit of PHA. The conversion of HA equals to  $A_{\text{PHA}} \times 100\% / (A_{\text{HA}} + A_{\text{PHA}})$ . For example, for the reaction in **Fig. S1**, the conversion of HA is  $1.01 \times 100\% / (1 + 1.010) = 50.2\%$ . Because the molar ratio between HA monomer and initiator is 500, the degree of polymerization (DP) of PHA is  $500 \times 50.2\% = 251$ .



Figure S1. <sup>1</sup>H NMR spectra of raw mix of ARGET ATRP of HA.

*Example of conversion of HA and AAPA for reversible middle block.* The total conversion is calculated based on the conversion of HA and AAPA to the polymer poly(HA-*r*-AAPA), which is measured by the NMR spectra of the raw reaction mixture, as shown in **Fig. S2**. The area of peak **a**  $A_{\text{HA}}$  and peak **b**  $A_{\text{AAPA}}$  at 4.18 ppm corresponds to two H on the methylene group connected with the oxygen atom in HA and AAPA monomers, respectively. The area of peak **a'**  $A_{\text{PHA}}$  and **b'**  $A_{\text{PAAPA}}$  at 4.06 ppm corresponds to two H on the methylene group connected with the oxygen atom in HA and AAPA monomers, respectively. The area of peak **a'**  $A_{\text{PHA}}$  and **b'**  $A_{\text{PAAPA}}$  at 4.06 ppm corresponds to two H on the methylene group connected with the oxygen atom in HA and AAPA repeating units, respectively. The total conversion of HA and AAPA equals to  $(A_{\text{PHA}}+A_{\text{PAAPA}}) \times 100\% / (A_{\text{HA}}+A_{\text{PHA}}+A_{\text{AAPA}}+A_{\text{PAAPA}})$ . The total conversion of HA and AAPA in **Fig. S2** equals to  $1.103 \times 100\% / (1+1.103) = 52.4\%$ . For this polymerization, the molar ratio between HA and AAPA and initiator is 500. Therefore, the total DP and P(HA-*r*-AAPA) is 500 × 52.4\% = 262.



Figure S2. <sup>1</sup>H NMR spectra of raw mix of ARGET ATRP of HA and AAPA.

*Example for the calculation of the fraction of reversible groups in reversible middle block.* In Fig. S3, the area of peak a  $A_{PHA-O}$  and peak b  $A_{PAAPA-O}$  at 4.00 ppm corresponds to two H on the

methylene group connected with the oxygen atom in HA and AAPA repeating units, respectively. The area of peak **c**  $A_{PAAPA-N}$  at 3.24 ppm corresponds to two H on the methylene group connected with the nitrogen atom in AAPA repeating units. The fraction of reversible groups equals to  $A_{PAAPA-N} \times 100\% / (A_{PHA-O}+A_{PAAPA-O})$ . The fraction of reversible groups in **Fig. S3** equals to  $0.087 \times 100\% / 1 = 8.7\%$ . For this middle block copolymer, the total DP for P(HA-*r*-AAPA) is 262. Therefore, the DP of AAPA is  $262 \times 8.7\% = 23$ , the DP of HA is 262-23 = 239.



Figure S3. <sup>1</sup>H NMR spectra of reversible middle block, HA<sub>239</sub>-*r*-AAPA<sub>23</sub>.

Calculation of DP and volume fraction of end block PBnMA for the control triblock copolymer. The volume fraction of PBnMA is determined based on the NMR spectra of purified triblock copolymers. For example, in **Fig. S4**, the area of peak **a** at 4.86 ppm,  $A_{PBnMA}$ , corresponds to the two H on the methylene group of BnMA repeating unit of PBnMA. The area of peak at 4.01 ppm,  $A_{PHA}$ , corresponds to two H on the methylene group connected with the oxygen atom in HA repeating unit of PHA. Therefore, the DP of PBnMA is  $n_{BnMA} = n_{HA} \times (A_{PBnMA}/2)/(A_{PHA}/2) = 30$ , in which  $A_{BnMA} = 0.121$ ,  $A_{PHA} = 1.000$ , and the DP of PHA is  $n_{HA} = 251$ . The volume fraction of PBnMA is given by  $f = (n_{BnMA} \times m_{BnMA}/d_{PBnMA})/(n_{BnMA} \times m_{BnMA}/d_{PBnMA} + n_{HA} \times m_{HA}/d_{PHA}) \times 100\% = 10.4\%$ , in which the density of PBnMA is 1.179 g/mL, the density of PHA is 1.04 g/mL, the mass of a BnMA monomer  $m_{BnMA} = 176.21$  g/mol, and that of a HA monomer  $m_{HA} = 156.23$  g/mol.



Figure S4. <sup>1</sup>H NMR spectra of sample TR1, BnMA<sub>15</sub>-*b*-HA<sub>251</sub>-*b*-PBnMA<sub>15</sub>.

*Example of calculation of DP and volume fraction of end block PBnMA for reversible triblock copolymers.* The volume fraction of PBnMA is determined based on the NMR spectra of purified triblock copolymers. For example, in **Fig. S5**, area of peak **c** at 4.87 ppm is  $A_{PBnMA}$ , corresponding to the two H on the methylene group of BnMA repeating unit. Area of peak at 4.01 ppm is the total area **a**  $A_{PHA}$  and **b**  $A_{PAAPA}$ , corresponds to two H on the methylene group connected with the oxygen atom in HA and AAPA repeating units, respectively. Therefore, the degree of polymerization of PBnMA is  $n_{BnMA} = n_{HA} \times (A_{PBnMA}/2)/((A_{PHA} + A_{PAAPA})/2) = 36$ , in which  $A_{BnMA} = 0.139$ ,  $A_{PHA} + A_{PAAPA} = 1.000$ , and the DP of HA is  $n_{HA} = 239$ , DP of AAPA is  $n_{AAPA} = 23$ . The volume fraction of PBnMA is given by  $f = (n_{BnMA} \times m_{BnMA}/d_{PBnMA})/(n_{BnMA} \times m_{BnMA}/d_{PBnMA} + n_{HA} \times m_{HA}/d_{PHA} + n_{AAPA} \times m_{AAPA}/d_{PAAPA}) \times 100\% = 11.5\%$ , in which the density of PBnMA is 1.179 g/mL, the density of PHA and PAAPA is 1.04 g/mL, the mass of a BnMA monomer  $m_{BnMA} = 176.21$  g/mol, the mass of a HA monomer  $m_{HA} = 199.25$  g/mol.



Figure S5. <sup>1</sup>H NMR spectra of sample TR2, BnMA<sub>18</sub>-*b*-(HA<sub>239</sub>-*r*-AAPA<sub>23</sub>)-*b*-PBnMA<sub>18</sub>.



Figure S6. Dependence of heat capacity,  $C_p$ , of the LAL polymer with  $\lambda$ =0.25 and f=31% measured by differential scanning calorimetry.

In the self-assembled network, **(a)** the melting of the PBnMA is 202 °C, and **(b)** the glass transition temperature of PBnMA is 54 °C.



Figure S7. Dependence of crossover frequency on fraction of associative group for LAL polymers with *f* around 11%.



Figure S8. Relationship between loss factor and frequency.

LAL polymers with  $\lambda = 0.25$  and different *f*. Dashed line indicates the frequency associated with the peak of the loss factor, which is determined by the fraction of reversible bonds and thus a constant regardless of the volume fraction of the end blocks.



Figure S9. Frequency dependence of shear moduli of LAL polymers for printing.



Figure S10. Yield-stress behavior of LAL polymer at 170 °C.

The stress sweep reveals a yielding at a critical stress ( $\epsilon_y$ ) defined as the crossover of G' and G". The measurement is performed at a fixed oscillatory frequency of 1 rad/sec with increasing shear stress.



Figure S11. Creep-recovery measurements of LAL polymer with=0.25 and *f*=31%.

(a, b) The polymer is applied by a constant shear stress of 200 Pa at various temperatures. (c) The polymer is applied to different shear stresses at 20 °C.



# Figure S12. Ashby-type plot comparing LAL polymers to solvent-free and DIW printable polymer composites.

The mechanical properties are based on tensile breaking strain and Young's modulus. Closed circles: our modular soft elastomers for DIW printing; other symbols: literature data (**Table S4**).



# Figure S13. Ashby-type plot of thermoplastic polymers for different additive manufacturing techniques.

The mechanical properties are based on tensile breaking strain and Young's modulus. Closed circles: our modular soft elastomers for DIW printing; other symbols: literature data (**Table S5**).



### Figure S14. The self-assembled polymer networks are reprocessable.

(a) Optical images of a chopped polymer (sample TV2; upper) and that reprocessed using solvent (dichloromethane) (lower). (b) Stress-strain curves of the original (circles) and the reprocessed (squares) polymers under uniaxial tensile tests at a fixed strain rate of 0.01/sec.



Figure S15. Dependence of modulus of LAL polymers on temperature.

(a) Dependence of shear modulus (G' at 0.1 rad/sec and 0.5% strain) on temperature. (b) Dependencies of both storage (filled symbols) and loss (empty symbols) moduli on temperature. All measurements are performed at a fixed oscillatory shear strain of 0.5% and frequency of 1 rad/sec.

### Table S1. Summary of synthesis conditions of all middle block and triblock polymers.

(1) Catalyst is made by dissolving Me<sub>6</sub>TREN (92 mg, 0.4 mmol) and CuCl<sub>2</sub> (5.4 mg, 0.04 mmol) in 1 mL DMF. (2) The reaction temperature is 80 °C for all middle block polymers and is 60 °C for all triblock polymers.

|        | Middle block |                |                     |                  |                               |                 |               | Triblock     |                |                               |                  |                               |                 |               |
|--------|--------------|----------------|---------------------|------------------|-------------------------------|-----------------|---------------|--------------|----------------|-------------------------------|------------------|-------------------------------|-----------------|---------------|
| Sample | HA<br>(mmol) | AAPA<br>(mmol) | Initiator<br>(mmol) | Catalyst<br>(µL) | Sn(EH) <sub>2</sub><br>(mmol) | Anisole<br>(mL) | Time<br>(min) | Conv.<br>(%) | BnMA<br>(mmol) | Macro-<br>initiator<br>(mmol) | Catalyst<br>(µL) | Sn(EH) <sub>2</sub><br>(mmol) | Anisole<br>(mL) | Time<br>(min) |
| TV1    | 32           | 0              | 0.064               | 160              | 0.128                         | 6               | 126           | 50.2         | 4              | 0.020                         | 40               | 0.064                         | 4               | 120           |
| TV2    | 28           | 3.11           | 0.062               | 156              | 0.125                         | 6               | 109           | 52.4         | 3.31           | 0.017                         | 33               | 0.053                         | 3.3             | 103           |
| TV3    | 22.4         | 7.52           | 0.000               | 150              | 0.110                         | (               | 100           | 49.0         | 3              | 0.015                         | 30               | 0.048                         | 3               | 61            |
| TR1    | 22.4         | 1.53           | 0.060               | 150              | 0.119                         | 6               | 100           | 48.0         | 3.46           | 0.017                         | 20               | 0.020                         | 3.5             | 183           |
| TR2    | 22.4         | 7.52           | 0.060               | 150              | 0.110                         | 6               | 122           | 50           | 4.35           | 0.014                         | 44               | 0.070                         | 4.5             | 166           |
| TR3    | 22.4         | 1.55           | 0.060               | 130              | 0.119                         | 0               | 133           | 30           | 4.65           | 0.015                         | 47               | 0.074                         | 4.7             | 190           |

| Printing<br>Method            | Symbol<br>Shape  | Materials            | Symbol<br>color | Young's<br>modulus<br>(kPa) | Tensile<br>strain<br>(%) | Reference<br>number         |
|-------------------------------|------------------|----------------------|-----------------|-----------------------------|--------------------------|-----------------------------|
|                               |                  |                      |                 | 94                          | 385                      |                             |
|                               |                  | Polydimethylsiloyane |                 | 90                          | 295                      | Virmibesealu                |
|                               |                  | (PDMS)               | Black           | 85                          | 350                      | et al <sup>4</sup>          |
|                               |                  | (I DIVID)            |                 | 84                          | 270                      | et di.                      |
|                               |                  |                      |                 | 80                          | 260                      |                             |
| Post UV                       | Diamond          |                      |                 | 5,909                       | 55                       |                             |
| curing                        | (\$)             |                      |                 | 2,000                       | 90                       |                             |
|                               |                  | Acrylic polymer      | Red             | 1,200                       | 110                      | Su et al <sup>5</sup>       |
|                               |                  | reryne porymer       | Red             | 1,000                       | 120                      | Bu et al.                   |
|                               |                  |                      |                 | 500                         | 150                      |                             |
|                               |                  |                      |                 | 94                          | 317                      |                             |
|                               |                  | Bottle brush         | Green           | 25.8                        | 200                      | Vie et al <sup>6</sup>      |
|                               |                  | polymers             | Green           | 23.1                        | 310                      | Ale et al.                  |
|                               |                  |                      |                 | 40,000                      | 70                       |                             |
|                               | Hexagram<br>(\$) |                      | Black           | 13,300                      | 120                      | Volpe et al. <sup>7</sup>   |
|                               |                  |                      |                 | 6,670                       | 420                      |                             |
|                               |                  |                      |                 | 700                         | 230                      |                             |
|                               |                  |                      |                 | 400                         | 470                      |                             |
|                               |                  |                      |                 | 100                         | 240                      |                             |
| High T                        |                  |                      |                 | 40,000                      | 20                       | Kim et al. <sup>8</sup>     |
| night i                       |                  | Liquid crystal       | Red             | 32,630                      | 19                       |                             |
|                               |                  |                      |                 | 8,000                       | 180                      |                             |
| curing                        |                  |                      |                 | 5,000                       | 190                      |                             |
| cumg                          |                  |                      |                 | 1,500                       | 66                       |                             |
|                               |                  |                      | Groop           | 750                         | 80                       | W/                          |
|                               |                  |                      | Gleen           | 400                         | 88                       | wang et al.                 |
|                               |                  |                      |                 | 400                         | 82                       |                             |
|                               |                  |                      |                 | 10,000                      | 70                       |                             |
|                               |                  |                      | Blue            | 500                         | 115                      | Ambulo et al. <sup>10</sup> |
|                               |                  |                      |                 | 500                         | 90                       |                             |
| High T<br>printing +          | Triangle         | LCE                  |                 | 1,000                       | 280                      | Davidson et                 |
| post-<br>thermal<br>treatment | $(\Delta)$       | LCE                  | Black           | 500                         | 320                      | al. <sup>11</sup>           |

Table S2. List of data points and references for Fig. 5d.

| Samples                    | Processing<br>methods | Tensile strain | Tensile strength<br>(kPa) | Toughness (kJ/m <sup>3</sup> ) |
|----------------------------|-----------------------|----------------|---------------------------|--------------------------------|
| $\lambda = 0.25, f = 0.31$ | Printed               | 1.25           | 1,190                     | 939                            |
| $\lambda = 0.25, f = 0.31$ | Molded (Cast)         | 0.92           | 1,186                     | 872                            |
| $\lambda = 0, f = 0.31$    | Printed               | 1.15           | 239                       | 132                            |
| $\lambda = 0, f = 0.31$    | Molded (Cast)         | 0.74           | 368                       | 227                            |

Table S3. Molecular parameters and mechanical properties of LAL polymers for 3D printing

| Printing<br>Method                                | Symbol<br>Shape | Materials                           | Symbol<br>color | Young's<br>modulus<br>(kPa)                            | Tensile<br>strain (%) | Reference<br>number              |  |
|---------------------------------------------------|-----------------|-------------------------------------|-----------------|--------------------------------------------------------|-----------------------|----------------------------------|--|
|                                                   |                 |                                     | -               | 3,600                                                  | 150                   |                                  |  |
|                                                   |                 |                                     |                 | 500                                                    | 550                   |                                  |  |
|                                                   |                 |                                     | Black           | 400                                                    | 480                   | Zhou et al. <sup>12</sup>        |  |
|                                                   |                 |                                     |                 | 800                                                    | 400                   |                                  |  |
|                                                   |                 |                                     |                 | 150                                                    | 2,000                 |                                  |  |
|                                                   |                 |                                     |                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                       |                                  |  |
|                                                   |                 | PDMS + silica                       |                 | 4,615                                                  | 26                    |                                  |  |
| D                                                 | Square          | composites                          | Dlug            | 1,974                                                  | 76                    | Eard at al 13                    |  |
| Post thermal                                      |                 | _                                   | Diue            | 1,970                                                  | 66                    | Fold et al.                      |  |
| treatment                                         |                 |                                     |                 | 1,600                                                  | 75                    |                                  |  |
|                                                   |                 |                                     | 256 39          | 39                                                     |                       |                                  |  |
|                                                   |                 |                                     | Green           | 11,510                                                 | 77                    | Durban et                        |  |
|                                                   |                 |                                     |                 | 3,610                                                  | 362                   |                                  |  |
|                                                   |                 |                                     |                 | Green 3,610 362<br>400 528                             |                       | al.                              |  |
|                                                   |                 | PDMS + PTFE<br>composites           | Red             | 260                                                    | 390                   | Zheng et al. <sup>15</sup>       |  |
|                                                   |                 |                                     |                 | 180                                                    | 430                   |                                  |  |
|                                                   |                 |                                     |                 | 155                                                    | 460                   |                                  |  |
| High T                                            | Hexagram        | LCE + Liquid<br>metal<br>composites | Black           | 20,000                                                 | 180                   | Kotikian et<br>al. <sup>16</sup> |  |
| printing + post                                   | (勾)             | Polycarbonate +                     |                 | 20,000                                                 | 144                   |                                  |  |
| UV curing                                         |                 | graphite composites                 | Red             | 542,000                                                | 25                    | Brook et al. <sup>17</sup>       |  |
| High T<br>printing +<br>post-thermal<br>treatment | Triangle        | Fiber reinforced                    | Dlask           | 172,500                                                | 10                    | Liu et al. <sup>18</sup>         |  |
|                                                   | (\(\Delta\))    | composites                          | Diack           | 566                                                    | 500                   |                                  |  |
| UV-assisted                                       |                 | Epoxy and                           |                 | 19,500                                                 | 50                    |                                  |  |
| printing+ post-                                   | Pentagram       | acrylic polymer                     | Black           | 13,000                                                 | 63                    | Chen et al. <sup>19</sup>        |  |
| thermal                                           | (☆)             | + silica                            | DIACK           | 5,000                                                  | 58                    |                                  |  |
| treatment                                         | × ´             | composites                          |                 | 800                                                    | 60                    |                                  |  |

Table S4. List of data points and references for Fig. S12.

| Printing<br>Method | Symbol<br>Shape | Materials        | Symbol<br>color                                   | Young's<br>modulus<br>(kPa) | Tensile<br>strain<br>(%) | Reference<br>number          |
|--------------------|-----------------|------------------|---------------------------------------------------|-----------------------------|--------------------------|------------------------------|
|                    |                 |                  |                                                   | 34,000                      | 206                      |                              |
|                    |                 |                  |                                                   | 35,000                      | 150                      |                              |
|                    |                 |                  |                                                   | 33,000                      | 493                      |                              |
|                    |                 |                  |                                                   | 35,000                      | 166                      | Coorgonoulog                 |
|                    |                 |                  | Black                                             | 35,000                      | 161                      | deorgopoulos                 |
|                    |                 |                  |                                                   | 34,000                      | 494                      | et al.                       |
|                    |                 |                  |                                                   | 84,000                      | 183                      |                              |
|                    |                 | Thermoplastic    |                                                   | 98,000                      | 150                      |                              |
|                    |                 | polyurethane     |                                                   | 144,000                     | 360                      |                              |
|                    |                 | (TPU)            |                                                   | 2,370                       | 1777                     |                              |
|                    |                 |                  | Red                                               | 4,400                       | 905                      | Shin et al <sup>21</sup>     |
|                    |                 |                  | Red                                               | 3,360                       | 952                      | Shin et al.                  |
|                    |                 |                  |                                                   | 13,700                      | 1003                     |                              |
|                    |                 |                  |                                                   | 4,200                       | 912.8                    |                              |
|                    | Square<br>(□)   |                  | Blue 6,000<br>7,300<br>15,000                     | 1013.2                      | Ship at al $2^2$         |                              |
|                    |                 |                  |                                                   | 7,300                       | 1206.7                   | Shill et al.                 |
|                    |                 |                  |                                                   | 15,000                      | 1099.8                   |                              |
|                    |                 | Styrene ethylene | Styrene ethylene<br>butylene styreneI004705011050 | 100                         | 470                      | Commente                     |
|                    |                 |                  |                                                   | 100                         | 50                       | Georgopoulos                 |
| Demosition         |                 | butylene styrene |                                                   | 110                         | Ct al.                   |                              |
| Deposition         |                 | (SEBS) F         | Durpla                                            | 1,470                       | 850                      | Khondoker et                 |
| (EDM)              |                 |                  | Tuple                                             | 1,270                       | 875                      | al. <sup>24</sup>            |
| (FDM)              |                 |                  |                                                   | 3,329,000                   | 3                        |                              |
|                    |                 |                  |                                                   | 3,152,000                   | 3                        |                              |
|                    |                 |                  |                                                   | 2,674,000                   | 3.5                      |                              |
|                    |                 |                  |                                                   | 2,650,000                   | 20                       |                              |
|                    |                 |                  |                                                   | 2,828,000                   | 3.5                      |                              |
|                    |                 | TPU/             |                                                   | 2,465,000                   | 5                        | Wang et                      |
|                    |                 | polylactic acid  | Magenta                                           | 2.342.000                   | 45                       | al. <sup>25</sup>            |
|                    |                 | (PLA)            |                                                   | 2.589.000                   | 10                       |                              |
|                    |                 |                  |                                                   | 2 203 000                   | 38                       |                              |
|                    |                 |                  |                                                   | 1 871 000                   | 270                      |                              |
|                    |                 |                  |                                                   | 2 280 000                   | 175                      |                              |
|                    |                 |                  |                                                   | 2,280,000                   | 175                      | -                            |
|                    |                 |                  |                                                   | 1,317,000                   | 41<br>7 0                |                              |
|                    |                 |                  |                                                   | 240,000                     | /.0                      | {                            |
|                    |                 | Polyhydroxy      |                                                   | 240,000                     | /.4                      | 0.1. 0.                      |
|                    |                 | urethanes        | Orange                                            | 225,000                     | /.0                      | Schimpf et al. <sup>26</sup> |
|                    |                 | (PHUs)           |                                                   | 378,000                     | 4.83                     |                              |
|                    |                 |                  |                                                   | 1,430,000                   | 3.8                      |                              |
|                    |                 |                  |                                                   | 700,000                     | 7                        |                              |

Table S5. List of data points and references for Fig. S13.

| Printing<br>Method            | Symbol<br>Shape        | Materials        | Symbol<br>color | Young's<br>modulus<br>(kPa) | Tensile<br>strain<br>(%) | Reference<br>number                  |
|-------------------------------|------------------------|------------------|-----------------|-----------------------------|--------------------------|--------------------------------------|
|                               |                        |                  |                 | 50,000                      | 15                       | -                                    |
|                               |                        | Polycaprolactone | Light           | 51,000                      | 15.7                     |                                      |
|                               |                        | (PCL)            | blue            | 51,000                      | 16.8                     | Joe et al. <sup>27</sup>             |
|                               |                        | (102)            | 0140            | 49.000                      | 16                       | <u>,</u>                             |
|                               |                        |                  |                 | 49.000                      | 27                       |                                      |
| Fused                         |                        |                  |                 | 890                         | 48                       |                                      |
| Deposition                    | Square                 |                  |                 | 950                         | 45                       |                                      |
| Modeling                      | $(\Box)$               |                  | T • 1 /         | 850                         | 45                       |                                      |
| (FDM)                         |                        | Polyurea         | Light           | 700                         | 42                       | Niu et al. <sup>28</sup>             |
|                               |                        |                  | green           | 690                         | 48                       |                                      |
|                               |                        |                  |                 | 800                         | 40                       |                                      |
|                               |                        |                  |                 | 9,000                       | 46                       |                                      |
|                               |                        | Ethylene-vinyl   | Yellow          | 10,220                      | 600                      | Kumar et                             |
|                               |                        |                  |                 | 11,930                      | 450                      |                                      |
|                               |                        | acciaic (EVA)    |                 | 13,860                      | 370                      | d1.                                  |
|                               | Triangle $(\triangle)$ | TPU/PCL          | Black           | 40,330                      | 470                      | Ravichandran<br>et al. <sup>30</sup> |
|                               |                        |                  |                 | 61,060                      | 410                      |                                      |
| Direct-ink                    |                        |                  |                 | 961,530                     | 375                      |                                      |
| Writing                       |                        |                  |                 | 1,084,280                   | 410                      |                                      |
| (DIW)                         |                        |                  |                 | 153,860                     | 440                      |                                      |
|                               |                        |                  | Red             | 126,300                     | 338.5                    | Ravichandran                         |
|                               |                        |                  |                 | 85,750                      | 114.67                   | et al. <sup>31</sup>                 |
|                               |                        |                  | Black           | 22,000                      | 195                      | Hupfeld et                           |
|                               |                        |                  | Diatik          | 32,500                      | 210                      | al. <sup>32</sup>                    |
|                               |                        |                  |                 | 50,000                      | 380                      | 22                                   |
|                               |                        | TPU              | 5 1             | 85,000                      | 410                      |                                      |
|                               |                        |                  | Red             | 220,000                     | 15                       | Do et al. <sup>33</sup>              |
| Powder<br>bed fusion<br>(PBF) | Hexagram               |                  |                 | 400,000                     | 15                       |                                      |
|                               | (卒)                    |                  |                 | 700,000                     | 12                       |                                      |
|                               |                        |                  |                 | 1,480,000                   | 13                       | -                                    |
|                               |                        |                  |                 | 1,600,000                   | 18                       |                                      |
|                               |                        | Delevenide       | Dlue            | 1,700,000                   | 20                       | Chen et al. <sup>34</sup>            |
|                               |                        | Polyamide        | ыше             | 1,830,000                   | 18                       |                                      |
|                               |                        |                  |                 | 1,000,000                   | 29                       |                                      |
|                               |                        |                  |                 | 1,000,000                   | 32                       | 4                                    |
|                               |                        |                  |                 | 1,900,000                   | 32                       |                                      |

Table S5. List of data points and references for Fig. S13 (continued).

| Printing<br>Method  | Symbol<br>Shape  | Materials | Symbol<br>color | Young's<br>modulus<br>(kPa) | Tensile<br>strain<br>(%) | Reference<br>number       |  |
|---------------------|------------------|-----------|-----------------|-----------------------------|--------------------------|---------------------------|--|
| Dourdon             |                  |           |                 | 14,300                      | 60.5                     |                           |  |
| bed fusion<br>(PBF) | Hexagram<br>(\$) | Polyester | Green           | 9,700                       | 1.3                      | <b>D</b> ugg at $a1^{35}$ |  |
|                     |                  |           |                 | 11,300                      | 36.1                     | Ryse et al.               |  |
|                     |                  |           |                 | 5,900                       | 7.5                      |                           |  |

Table S5. List of data points and references for Fig. S13 (continued).

Movie S1. DIW printing a honeycomb structure.

Movie S2. DIW printing a cubic gyroid structure.

Movie S3. Cyclic compression test of a printed cubic gyroid.



<sup>1</sup>H NMR of 5-acetamino-1-pentanol.



<sup>1</sup>H NMR of 5-acetaminopentyl acrylate.



7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 11 NMR of HA<sub>251</sub>.



<sup>1</sup>H NMR of HA<sub>180</sub>-*r*-AAPA<sub>60</sub>.



<sup>1</sup>H NMR of HA<sub>188</sub>-*r*-AAPA<sub>62</sub>.





<sup>1</sup>H NMR of sample TV1, BnMA<sub>20</sub>-*b*-(HA<sub>180</sub>-*r*-AAPA<sub>60</sub>)-*b*-PBnMA<sub>20</sub>.





#### References

- Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. *Proc. Natl. Acad. Sci. U. S. A.* 2006, *103* (42), 15309–15314. https://doi.org/10.1073/pnas.0602675103.
- (2) Zhao, B.; Xu, S.; Zheng, S. Synthesis, Self-Assembly and Self-Healing Properties of Organic–Inorganic ABA Triblock Copolymers with Poly(POSS Acrylate) Endblocks. *Polym. Chem.* 2019, 10 (19), 2424–2435. https://doi.org/10.1039/C9PY00094A.
- (3) Chen, Y. L.; Kushner, A. M.; Williams, G. A.; Guan, Z. B. Multiphase Design of Autonomic Self-Healing Thermoplastic Elastomers. *Nat. Chem.* **2012**, *4* (6), 467–472. https://doi.org/10.1038/nchem.1314.
- Yirmibesoglu, O. D.; Simonsen, L. E.; Manson, R.; Davidson, J.; Healy, K.; Menguc, Y.; Wallin, T. Multi-Material Direct Ink Writing of Photocurable Elastomeric Foams. *Commun. Mater.* 2021, 2 (1), 82. https://doi.org/10.1038/s43246-021-00186-3.
- (5) Su, S.; He, T.; Yang, H. 3D Printed Multilayer Dielectric Elastomer Actuators. *Smart Mater. Struct.* **2023**, *32* (3), 35021. https://doi.org/10.1088/1361-665X/acb677.
- Xie, R.; Mukherjee, S.; Levi, A. E.; Reynolds, V. G.; Wang, H.; Chabinyc, M. L.; Bates, C. M. Room Temperature 3D Printing of Super-Soft and Solvent-Free Elastomers. *Sci. Adv.* 2020, *6* (46), eabc6900. https://doi.org/10.1126/sciadv.abc6900.
- (7) Volpe, R. H.; Mistry, D.; Patel, V. V; Patel, R. R.; Yakacki, C. M. Dynamically Crystalizing Liquid-Crystal Elastomers for an Expandable Endplate-Conforming Interbody Fusion Cage. *Adv. Healthc. Mater.* 2020, 9 (1), 1901136. https://doi.org/https://doi.org/10.1002/adhm.201901136.
- (8) Kim, K.; Guo, Y.; Bae, J.; Choi, S.; Song, H. Y.; Park, S.; Hyun, K.; Ahn, S. K. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. *Small* 2021, 17 (23), 1–10. https://doi.org/10.1002/smll.202100910.
- (9) Wang, Z.; Wang, Z.; Zheng, Y.; He, Q.; Wang, Y.; Cai, S. Three-Dimensional Printing of Functionally Graded Liquid Crystal Elastomer. *Sci. Adv.* 2020, 6 (39). https://doi.org/10.1126/sciadv.abc0034.
- (10) Ambulo, C. P.; Burroughs, J. J.; Boothby, J. M.; Kim, H.; Shankar, M. R.; Ware, T. H. Four-Dimensional Printing of Liquid Crystal Elastomers. *ACS Appl. Mater. Interfaces* 2017, 9 (42), 37332–37339. https://doi.org/10.1021/acsami.7b11851.
- (11) Davidson, E. C.; Kotikian, A.; Li, S.; Aizenberg, J.; Lewis, J. A. 3D Printable and Reconfigurable Liquid Crystal Elastomers with Light-Induced Shape Memory via Dynamic Bond Exchange. *Adv. Mater.* **2020**, *32* (1), 1905682. https://doi.org/10.1002/adma.201905682.
- (12) Zhou, L.; Gao, Q.; Fu, J.; Chen, Q.; Zhu, J.; Sun, Y. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Appl. Mater. Interfaces 2019, 11 (26), 23573–23583. https://doi.org/10.1021/acsami.9b04873.
- (13) Ford, M. J.; Loeb, C. K.; Pérez, L. X. P.; Gammon, S.; Guzorek, S.; Gemeda, H. B.; Golobic, A. M.; Honnell, A.; Erspamer, J.; Duoss, E. B.; Wilson, T. S.; Lenhardt, J. M. 3D Printing of Transparent Silicone Elastomers. *Adv. Mater. Technol.* **2022**, 7 (5), 2100974. https://doi.org/https://doi.org/10.1002/admt.202100974.
- (14) Durban, M. M.; Lenhardt, J. M.; Wu, A. S.; Iv, W. S.; Bryson, T. M.; Perez-perez, L.; Nguyen, D. T.; Gammon, S.; Smay, J. E.; Duoss, E. B.; Lewicki, J. P.; Wilson, T. S. Custom 3D Printable Silicones with Tunable Stiffness. *Macromol. Rapid Commun.* 2018, *39* (4),

1700563. https://doi.org/10.1002/marc.201700563.

- (15) Zheng, R.; Chen, Y.; Chi, H.; Qiu, H.; Xue, H.; Bai, H. 3D Printing of a Polydimethylsiloxane/Polytetrafluoroethylene Composite Elastomer and Its Application in a Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2020, 12 (51), 57441–57449. https://doi.org/10.1021/acsami.0c18201.
- (16) Kotikian, A.; Truby, R. L.; Boley, J. W.; White, T. J.; Lewis, J. A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. *Adv. Mater.* 2018, *30* (10), 1–6. https://doi.org/10.1002/adma.201706164.
- (17) Brooks, S.; Cartwright, Z.; Merckle, D.; Weems, A. C. 4D Aliphatic Photopolymer Polycarbonates as Direct Ink Writing of Biodegradable, Conductive Graphite-Composite Materials. *Polym. Compos.* 2021, 42 (10), 5134–5143. https://doi.org/https://doi.org/10.1002/pc.26211.
- (18) Liu, W.; Peeke, L. M.; Periyasamy, M.; Campbell, R. R.; Hickner, M. A. Additive Manufacturing of Silicone Composite Structures with Continuous Carbon Fiber Reinforcement. *Polym. Eng. Sci.* **2023**, *63* (6), 1716–1724. https://doi.org/https://doi.org/10.1002/pen.26318.
- (19) Chen, K.; Zhang, L.; Kuang, X.; Li, V.; Lei, M.; Kang, G.; Wang, Z. L.; Qi, H. J. Dynamic Photomask-Assisted Direct Ink Writing Multimaterial for Multilevel Triboelectric Nanogenerator. Adv. Funct. Mater. 2019, 29 (33), 1903568. https://doi.org/10.1002/adfm.201903568.
- (20) Georgopoulou, A.; Sebastian, T.; Clemens, F. Thermoplastic Elastomer Composite Filaments for Strain Sensing Applications Extruded with a Fused Deposition Modelling 3D Printer. *Flex. Print. Electron.* 2020, 5 (3), 35002. https://doi.org/10.1088/2058-8585/ab9a22.
- (21) Shin, E. J.; Jung, Y. S.; Choi, H. Y.; Lee, S. Synthesis and Fabrication of Biobased Thermoplastic Polyurethane Filament for FDM 3D Printing. J. Appl. Polym. Sci. 2022, 139 (40), e52959. https://doi.org/https://doi.org/10.1002/app.52959.
- (22) Shin, E. J.; Park, Y.; Jung, Y. S.; Choi, H. Y.; Lee, S. Fabrication and Characteristics of Flexible Thermoplastic Polyurethane Filament for Fused Deposition Modeling Three-Dimensional Printing. *Polym. Eng. Sci.* 2022, 62 (9), 2947–2957. https://doi.org/https://doi.org/10.1002/pen.26075.
- (23) Georgopoulou, A.; Egloff, L.; Vanderborght, B.; Clemens, F. A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing. *Actuators*. 2021. https://doi.org/10.3390/act10050102.
- (24) Khondoker, M. A. H.; Sameoto, D. Direct Coupling of Fixed Screw Extruders Using Flexible Heated Hoses for FDM Printing of Extremely Soft Thermoplastic Elastomers. *Prog. Addit. Manuf.* 2019, 4 (3), 197–209. https://doi.org/10.1007/s40964-019-00088-4.
- Wang, J.; Zhang, Y.; Sun, W.; Chu, S.; Chen, T.; Sun, A.; Guo, J.; Xu, G. Morphology Evolutions and Mechanical Properties of In Situ Fibrillar Polylactic Acid/Thermoplastic Polyurethane Blends Fabricated by Fused Deposition Modeling. *Macromol. Mater. Eng.* 2019, 304 (7), 1900107. https://doi.org/https://doi.org/10.1002/mame.201900107.
- (26) Schimpf, V.; Max, J. B.; Stolz, B.; Heck, B.; Mülhaupt, R. Semicrystalline Non-Isocyanate Polyhydroxyurethanes as Thermoplastics and Thermoplastic Elastomers and Their Use in 3D Printing by Fused Filament Fabrication. *Macromolecules* 2019, 52 (1), 320–331. https://doi.org/10.1021/acs.macromol.8b01908.
- (27) Joe, J.; Shin, J.; Choi, Y.-S.; Hwang, J. H.; Kim, S. H.; Han, J.; Park, B.; Lee, W.; Park, S.;

Kim, Y. S.; Kim, D.-G. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly(ε-Caprolactone). *Adv. Sci.* **2021**, *8* (24), 2103682. https://doi.org/https://doi.org/10.1002/advs.202103682.

- (28) Niu, W.; Zhang, Z.; Chen, Q.; Cao, P.-F.; Advincula, R. C. Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers. ACS Mater. Lett. 2021, 3 (8), 1095–1103. https://doi.org/10.1021/acsmaterialslett.1c00132.
- (29) Kumar, N.; Jain, P. K.; Tandon, P.; Pandey, P. M. The Effect of Process Parameters on Tensile Behavior of 3D Printed Flexible Parts of Ethylene Vinyl Acetate (EVA). J. Manuf. Process. 2018, 35, 317–326. https://doi.org/10.1016/j.jmapro.2018.08.013.
- (30) Ravichandran, D.; Kakarla, M.; Xu, W.; Jambhulkar, S.; Zhu, Y.; Bawareth, M.; Fonseca, N.; Patil, D.; Song, K. 3D-Printed in-Line and out-of-Plane Layers with Stimuli-Responsive Intelligence. *Compos. Part B Eng.* 2022, 247, 110352. https://doi.org/https://doi.org/10.1016/j.compositesb.2022.110352.
- (31) Ravichandran, D.; Ahmed, R. J.; Banerjee, R.; Ilami, M.; Marvi, H.; Miquelard-Garnier, G.; Golan, Y.; Song, K. Multi-Material 3D Printing-Enabled Multilayers for Smart Actuation via Magnetic and Thermal Stimuli. *J. Mater. Chem. C* 2022, *10* (37), 13762–13770. https://doi.org/10.1039/D2TC01109C.
- (32) Hupfeld, T.; Wegner, A.; Blanke, M.; Doñate-Buendía, C.; Sharov, V.; Nieskens, S.; Piechotta, M.; Giese, M.; Barcikowski, S.; Gökce, B. Plasmonic Seasoning: Giving Color to Desktop Laser 3D Printed Polymers by Highly Dispersed Nanoparticles. *Adv. Opt. Mater.* 2020, *8* (15), 2000473. https://doi.org/https://doi.org/10.1002/adom.202000473.
- (33) Do, N. B.; Imenes, K.; Aasmundtveit, K. E.; Nguyen, H.-V.; Andreassen, E. Thermal Conductivity and Mechanical Properties of Polymer Composites with Hexagonal Boron Nitride— A Comparison of Three Processing Methods: Injection Moulding, Powder Bed Fusion and Casting. *Polymers*. 2023. https://doi.org/10.3390/polym15061552.
- (34) Chen, A. Y.; Chen, A.; Wright, J.; Fitzhugh, A.; Hartman, A.; Zeng, J.; Gu, G. X. Effect of Build Parameters on the Mechanical Behavior of Polymeric Materials Produced by Multijet Fusion. Adv. Eng. Mater. 2022, 24 (9), 2100974. https://doi.org/https://doi.org/10.1002/adem.202100974.
- (35) Vande Ryse, R.; Edeleva, M.; Van Stichel, O.; D'hooge, D. R.; Pille, F.; Fiorio, R.; De Baets, P.; Cardon, L. Setting the Optimal Laser Power for Sustainable Powder Bed Fusion Processing of Elastomeric Polyesters: A Combined Experimental and Theoretical Study. *Materials*. 2022. https://doi.org/10.3390/ma15010385.