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Abstract: Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to
the paucity of reliable biomarkers for early detection and therapeutic targeting. Existing
blood protein biomarkers for PDAC often suffer from replicability issues, arising from
inherent limitations such as unmeasured confounding factors in conventional
epidemiologic study designs. To circumvent these limitations, we use genetic
instruments to identify proteins with genetically predicted levels to be associated with
PDAC risk. Leveraging genome and plasma proteome data from the INTERVAL study,
we established and validated models to predict protein levels using genetic variants.
By examining 8,275 PDAC cases and 6,723 controls, we identified 40 associated
proteins, of which 16 are novel. Functionally validating these candidates by focusing on
two selected novel protein-encoding genes, GOLMA1 and B4GALT1, we demonstrated
their pivotal roles in driving PDAC cell proliferation, migration, and invasion.
Furthermore, we also identified potential drug repurposing opportunities for treating
PDAC.
Significance:
PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of
causal protein markers hampers progress in developing effective early detection
strategies and treatments. Our study identifies novel causal proteins using genetic
instruments and subsequently functionally validates selected novel proteins. This dual
approach enhances our understanding of PDAC etiology and potentially opens new
avenues for therapeutic interventions.
Keywords: Biomarkers, protein, genetics, pancreatic cancer, risk
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 83 

Abstract 84 

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to the 85 

paucity of reliable biomarkers for early detection and therapeutic targeting. Existing blood 86 

protein biomarkers for PDAC often suffer from replicability issues, arising from inherent 87 

limitations such as unmeasured confounding factors in conventional epidemiologic study 88 

designs. To circumvent these limitations, we use genetic instruments to identify proteins with 89 

genetically predicted levels to be associated with PDAC risk. Leveraging genome and plasma 90 

proteome data from the INTERVAL study, we established and validated models to predict 91 

protein levels using genetic variants. By examining 8,275 PDAC cases and 6,723 controls, we 92 

identified 40 associated proteins, of which 16 are novel. Functionally validating these candidates 93 

by focusing on two selected novel protein-encoding genes, GOLM1 and B4GALT1, we 94 

demonstrated their pivotal roles in driving PDAC cell proliferation, migration, and invasion. 95 

Furthermore, we also identified potential drug repurposing opportunities for treating PDAC.  96 

Significance: 97 

PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of causal 98 

protein markers hampers progress in developing effective early detection strategies and 99 

treatments. Our study identifies novel causal proteins using genetic instruments and subsequently 100 

functionally validates selected novel proteins. This dual approach enhances our understanding of 101 

PDAC etiology and potentially opens new avenues for therapeutic interventions. 102 

Keywords: Biomarkers, protein, genetics, pancreatic cancer, risk 103 

 104 
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 106 

Introduction 107 

Pancreatic cancer is the seventh leading cause of cancer deaths in industrialized countries 108 

with pancreatic ductal adenocarcinoma (PDAC) making up over 90% of pancreatic cancer cases 109 

(1). According to GLOBOCAN 2020 cancer statistics, pancreatic cancer is the 14th most 110 

common cancer type with 495,773 new cases in 2020. There are almost the same number of 111 

deaths caused by pancreatic cancer (466,003 deaths) in 2020, accounting for 4.7% of all cancer 112 

related deaths (2). Owing to its often asymptomatic or non-specific symptoms during early 113 

stages, a majority of patients are usually diagnosed in advanced stages. This results in 80-90% of 114 

pancreatic tumors being unresectable upon diagnosis, leading to a dismal prognosis: a mere 9% 115 

five-year survival rate after diagnosis (1). Given these dire statistics, there is an urgent need to 116 

identify effective biomarkers for screening or early detection in high-risk populations. Equally 117 

crucial is the development of improved therapeutic strategies to improve PDAC outcome.  118 

Currently, serum cancer antigen (CA) 19-9 is the only diagnostic biomarker for 119 

pancreatic cancer approved by the U.S. FDA. However, elevated levels of CA 19-9 are related to 120 

other conditions, and its performance as a diagnostic tool for pancreatic cancer is far from ideal 121 

(3): it has a poor positive predictive value (0.5-0.9%), along with restricted specificity (82-90%) 122 

and sensitivity (79-81%). Previous studies have also reported several other circulating blood 123 

protein biomarkers that are potentially associated with pancreatic cancer risk, such as CA242, 124 

PIVKA-II, and PAM4 (4-7). However, results from existing studies often involving small sample 125 

sizes and findings are inconsistent. It is well known that the conventional epidemiologic study 126 

design measuring levels of proteins directly may be subject to selection bias and residual or 127 
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unmeasured confounding, which could also contribute to the inconsistent findings in the existing 128 

literature. 129 

An alternative design of using genetic instruments may decrease many limitations of 130 

existing studies, due to the nature of random assortment of alleles from parents to offspring 131 

during gamete formation (8,9). Inspired by transcriptome-wide association study (TWAS), one 132 

may build comprehensive genetic prediction models for each protein to capture the prediction 133 

value of multiple single nucleotide polymorphisms (SNPs). Unlike conventional TWAS type of 134 

methods, which typically focus solely on cis-acting variants, our study enhanced statistical power 135 

by integrating both cis- and trans-acting elements into our genetic prediction models. 136 

Furthermore, as TWAS or PWAS results imply causality under stringent valid instrumental 137 

variable assumptions, we further functionally validated two novel proteins.  138 

In the current study, we applied such a study design to identify novel proteins associated 139 

with PDAC risk. To our knowledge, this is the first large-scale proteome wide association study 140 

(PWAS) using comprehensive protein genetic prediction models as instruments to assess the 141 

associations between genetically predicted blood concentrations of proteins and PDAC risk. We 142 

used data for 8,275 cases and 6,723 controls of European descent from the Pancreatic Cancer 143 

Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). 144 

Beyond identifying novel proteins, we functionally validated two of them. Moreover, we 145 

generated a list of drugs targeting the identified proteins which may serve as candidates for drug 146 

repurposing of PDAC.  147 

 148 

Methods 149 

Protein genetic prediction model development and validation 150 
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We leveraged the genome and plasma proteome data of healthy European subjects 151 

included in the INTERVAL study to establish (subcohort1) and validate (subcohort2) protein 152 

genetic prediction models. The details of the INTERVAL study data have been published 153 

previously (10-14). Briefly, participants were generally healthy. The SOMAscan assay was used 154 

to collect the relative levels of 3,620 plasma proteins or complexes. Quality control (QC) was 155 

performed at both the sample and SOMAmer level. Approximately ~830,000 genetic variants 156 

were measured on the Affymetrix Axiom UK Biobank genotyping array. Standard sample and 157 

variant QC were conducted. SNPs were phased using SHAPEIT3 and imputed using a combined 158 

1000 Genomes Phase 3-UK10K reference panel, which resulted in over 87 million imputed 159 

variants. The SNPs were further filtered using criteria of 1) imputation quality of at least 0.7, 2) 160 

minor allele count of at least 5%, 3) Hardy Weinberg Equilibrium (HWE) p≥5×10-6, (4) missing 161 

rates < 5%, and (5) presenting in the 1000 Genome Project data for European populations. 162 

Overall there were 4,662,360 variants passing these criteria. 163 

In subcohort 1 (N=2,481), as described elsewhere (10), protein concentrations were log 164 

transformed and adjusted for age, sex, duration between blood draw and processing, and the top 165 

three principal components. For the rank-inverse normalized residuals of each protein, we 166 

followed the TWAS/FUSION framework to establish prediction models, using nearby variants 167 

(within 100kb) of potentially associated SNPs as candidate predictors (15). A false discovery rate 168 

(FDR) < 0.05 was used to determine potentially associated SNPs in cis regions (within 1 Mb of 169 

the transcriptional start site (TSS) of the gene encoding the target protein of interest) and P-value 170 

≤ 5×10-8 was used to determine potentially associated SNPs in trans regions. We only included 171 

strand unambiguous SNPs. Four methods of best linear unbiased predictor (blup), elastic net, 172 

LASSO, and top1 were used to develop the models. For each protein of interest, the model 173 
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showing the most significant cross-validation P-value among those developed using the four 174 

methods was selected. For protein prediction models with R2≥0.01, external validation was 175 

conducted using genetic and protein data of subcohort 2 (N=820). Briefly, predicted protein 176 

expression levels were estimated by applying the developed protein prediction models to the 177 

genetic data, which were further compared with the measured levels for each protein of interest. 178 

Proteins with a model prediction R2 of ≥ 0.01 in subcohort1 and a correlation coefficient of ≥ 0.1 179 

in subcohort2 were selected for association analysis with PDAC risk.  180 

 181 

Examine associations of genetically predicted protein levels with PDAC risk 182 

To investigate the associations between genetically predicted circulating protein levels 183 

and PDAC risk, the validated protein genetic prediction models were applied to the summary 184 

statistics from a large GWAS of PDAC risk. In the present work, we used data from GWAS 185 

conducted in the PanScan and PanC4 consortia downloaded from the database of Genotypes and 186 

Phenotypes (dbGaP), including 8,275 PDAC cases and 6,723 controls of European ancestry. 187 

Detailed information on this dataset has been included elsewhere (16-18). Briefly, four GWAS 188 

studies, namely, PanScan I, PanScan II, PanScan III, and PanC4, were genotyped using the 189 

Illumina HumanHap550, 610-Quad, OmniExpress, and OmniExpressExome arrays, respectively. 190 

Standard QC procedures were performed according to the consortia guidelines (17). Study 191 

participants who were related to each other, had sex discordance, had genetic ancestry other than 192 

Europeans, had a low call rate (less than 98% and 94% in PanC4 and PanScan, respectively), or 193 

had missing information on age or sex were excluded. Duplicated SNPs, and those with a high 194 

missing call rate (at least 2% and 6% in PanC4 and PanScan, respectively) or with violations of 195 

Hardy-Weinberg equilibrium (HWE) (P < 1×10-4 and P < 1×10-7 in PanC4 and PanScan, 196 
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respectively), were also removed. Regarding SNP data from PanC4, those with minor allele 197 

frequency < 0.005, with more than two discordant calls in duplicate samples, with more than one 198 

Mendelian error in HapMap control trios, and those with sex difference in allele frequency > 0.2 199 

or in heterozygosity > 0.3 for autosomes/XY in European descendants were further removed. We 200 

performed genotype imputation using Minimac3 after prephasing with SHAPEIT from a 201 

reference panel of the Haplotype Reference Consortium (r1.1 2016) (19,20). We retained 202 

imputed SNPs with an imputation quality of ≥0.3. The associations between individual genetic 203 

variants and PDAC risk were further estimated adjusting for age, sex and top principal 204 

components. The TWAS/FUSION framework was used to assess the protein-PDAC risk 205 

associations, by leveraging correlations between variants included in the prediction models based 206 

on the phase 3, 1000 Genomes Project data for European populations (15). We used the false 207 

discovery rate (FDR) corrected P-value threshold of ≤ 0.05 to determine significant associations 208 

between genetically predicted protein concentrations and risk of PDAC.  209 

 210 

Somatic variants of genes encoding associated proteins 211 

For each of the genes encoding the proteins that are identified to be associated with PDAC 212 

risk, we evaluated potentially deleterious somatic level mutations in 150 PDAC patients included 213 

in The Cancer Genome Atlas (TCGA). The potentially deleterious somatic variants include 214 

missense mutations, splice site mutations, nonstop mutations, nonsense mutations, frameshift 215 

mutations, in-frame mutations and translation start site mutations.  216 

The somatic level genetic changes were called using MuTect2 217 

(doi: https://doi.org/10.1101/861054) and deposited to the TCGA data portal. The enrichment of 218 

proportion of assessed genes containing such somatic level genetic events compared with the 219 

https://doi.org/10.1101/861054
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proportion of all protein-coding genes across the genome was evaluated using socscistatistics 220 

online website (https://www.socscistatistics.com/tests/ztest/default2.aspx). 221 

Ingenuity Pathway Analysis (IPA) and Protein-Protein Interaction (PPI) analysis 222 

To further assess whether genes encoding the identified PDAC associated proteins are 223 

enriched in specific pathways, molecular and cellular functions, and networks, we performed the 224 

enrichment analysis using Ingenuity Pathway Analysis (IPA) software (21). The "enrichment" 225 

score (Fisher exact test P value) that measures overlap of observed and predicted regulated gene 226 

sets was generated for each of the tested gene sets. The most significant pathways and functions 227 

with an enrichment P value less than 0.05 were reported. We also built protein-protein 228 

interaction (PPI) network using STRING database version 11.5 (https://string-db.org/) with 229 

0.400 confidence level (22). The STRING database integrates different curated databases 230 

containing information on known and predicted functional protein–protein associations.  231 

Drug repurposing analysis  232 

For the identified proteins, we further assessed whether there is any evidence supporting 233 

their potential roles in PDAC by using the OpenTargets (23). Focusing on those showing a 234 

potential relevance, we further mined evidence of their targeting drugs using the DrugBank (24) 235 

database. We also conducted molecular docking analysis for the identified proteins and 236 

corresponding candidate drug agents (25). Specifically, we downloaded the 3D structure of 237 

targeted proteins from Protein Data Bank (PDB) (26) with source code 1CPB, 3CDZ, 1IGR, 238 

3DFK, 5NO06, and drug agents from the PubChem database (27). We further worked out 239 

molecular docking between each of the proteins and the corresponding meta-drug agents to 240 

calculate the binding affinity scores (kcal/mol) for each pair of proteins and drugs. 241 

https://www.socscistatistics.com/tests/ztest/default2.aspx
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 242 

In vitro functional validation of genes encoding selected associated novel proteins 243 

Cell Lines and Culture Condition 244 

      Human pancreatic cancer cell lines PANC-1 and SU.86.86 were obtained from ATCC 245 

(American Type Culture Collection). All cells were cultured in vitro in DMEM (Dulbecco’s 246 

modified eagle medium) high glucose medium (Gibco, Novato, CA, United States) supplemented 247 

with 10% (v/v) fetal bovine serum (FBS) (Gibco). Cells were incubated at 37°C with 5% CO2. 248 

 249 

Western blotting 250 

      Post 72-hour silencing, we processed control, B4GALT1-silenced, and GOLM1-silenced 251 

cells for Western blotting. Cells were lysed using RIPA buffer, and equal protein amounts were 252 

separated on 10% or 12% SDS polyacrylamide gels, then transferred onto PVDF membranes. To 253 

prevent non-specific antibody binding, membranes were blocked with 5% milk in TBS with 0.1% 254 

Tween for an hour. They were then probed with anti-B4GALT1, anti-GOLM1, and anti-GAPDH 255 

antibodies, followed by their respective HRP-conjugated secondary antibodies. Signal detection 256 

was performed using Pierce™ ECL Western Blotting Substrate and images were captured and 257 

analyzed using Odyssey FC and ImageStudio Software. 258 

 259 

Quantitative Real-Time PCR (qPCR) 260 

      Total RNA was extracted from cells using TRNzol reagent according to the manufacturer's 261 

protocol. The concentration of RNA was determined using a UV spectrophotometer. 262 

Subsequently, 2 mg of total RNA was reverse transcribed into cDNA using the iScript™ cDNA 263 

Synthesis Kit. qPCR analysis was performed on the CFX96™ Real-Time PCR Detection System 264 
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using the iTaq™ Universal SYBR® Green Supermix. The aim was to detect the expression levels 265 

of three genes: B4GALT1, GOLM1, and GAPDH mRNAs. Specific primer pairs were used for 266 

each gene. For B4GALT1, the forward sequence was GTATTTTGGAGGTGTCTCTGCTC and 267 

the reverse sequence was GGGCGAGATATAGACATGCCTC. For GOLM1, the forward 268 

sequence was ATCACCACAGGTGAGAGGCTCA and the reverse sequence was 269 

ACTTCCTCTCCAGGTTGGTCTG. For the housekeeping gene GAPDH, the forward sequence 270 

was GTCTCCTCTGACTTCAACAGCG and the reverse sequence was 271 

ACCACCCTGTTGCTGTAGCCAA. During the qPCR analysis, melting curves were generated 272 

to detect primer-dimer formation and confirm the specificity of the gene-specific peaks for each 273 

target. To ensure accurate quantification, the expression data were normalized to the amount of 274 

GAPDH mRNA expressed. 275 

 276 

Transfection of siRNA  277 

      The transfection of small-interfering RNA (siRNA) was performed using specific human 278 

siRNAs targeting GOLM1 (SASI_Hs01_00223155), B4GALT1 (SASI_Hs01_00080445), and the 279 

MISSION siRNA universal negative control, all of which were obtained from Sigma-Aldrich (St. 280 

Louis, MO). Cells were seeded in 6-well plates at a density of 1.5x105 cells per well and 281 

subsequently transfected with the siRNAs at a concentration of 40 nM. The transfection procedure 282 

utilized the lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, United States) following the 283 

manufacturer's recommended guidelines. Gene silencing at both mRNA and protein levels was 284 

typically observed 72 h post-transfection. As such, the cells were collected and subjected to assays 285 

at the 72-hour time point to assess the efficacy of gene silencing. 286 

 287 
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Cell Proliferation Assay 288 

      To observe cell proliferation, cells were transfected with Mock siRNA, siGOLM11 and 289 

siB4GAL1 (40 nM). At 24 h after transfection, the cells were trypsinized and seeded into 96-well 290 

plates (Corning, NY, United States) at a density of 5000 cells/well in 200 ul media. The plates 291 

were incubated in a 37°C humidified incubator. On each day for [3-(4,5-dimethylthiazol-2-yl)-5-292 

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) assay. 293 

 294 

In vitro invasion assay 295 

      Cell invasion was assessed following transfection with Mock siRNA, siGOLM11, and 296 

siB4GAL1 (40 nM). A modified Boyden chamber method was employed. Matrigel (BD 297 

Biosciences) was coated on the upper chamber of Transwell inserts (Corning, 8 μm pore size) at a 298 

concentration of 300 μg/ml, allowing gel formation for 2 hours at 37°C. Cells (5 x 10^4) were then 299 

suspended in 200 μl of serum-free medium and added to the upper chamber. The lower chamber 300 

contained 600 μl of medium with 10% FBS, acting as a chemoattractant. Following 24 hours of 301 

incubation at 37°C, non-invading cells on the upper membrane surface were gently removed using 302 

a cotton swab. Cells that invaded the lower membrane surface were fixed with 4% 303 

paraformaldehyde and stained with 0.1% crystal violet. Invasion was quantified by counting the 304 

stained cells on the underside of the membrane using a light microscope (10 random fields at 200x 305 

magnification). All experiments were performed in triplicate to ensure robustness of the findings. 306 

 307 

Wound Scratch assay 308 

      After 24 hours of transfection with Mock siRNA, siGOLM11, and siB4GAL1, PANC-1 309 

and SU.86.86 cells were cultured in a 96-well plate to form a monolayer. Using BioTek's 310 
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AutoScratchTM Wound Making Tool, straight scratches were carefully created on the cell 311 

monolayer to mimic wounds, following the equipment manual's instructions. Time-lapse images 312 

of the scratches were captured at specific intervals (e.g., 0 hours, 12 hours, 24 hours, etc.) using 313 

the CytationTM 5 Cell Imaging Multi-Mode Reader. Subsequently, image analysis software was 314 

employed to quantify the closure of the wounds at each time point. Statistical analysis was 315 

performed to compare the wound closure rates at different time points, and the results were 316 

presented graphically. 317 

 318 

Results  319 

The overall workflow of this study is shown in Figure 1. Of the proteins assessed, we 320 

were able to develop prediction models for 1,864 proteins with a prediction performance 321 

R2≥0.01. In the external validation step, 1,389 of them further demonstrated a correlation 322 

coefficient of ≥ 0.1 for predicted expression and measured expression levels. Of such proteins, 323 

we observed significant associations between genetically predicted expression levels of 40 324 

proteins and PDAC risk at a false discovery rate (FDR) p-value of ≤ 0.05 (Figure 2, Tables 1 325 

and 2). Of the associated proteins, 16 are novel ones that have not been reported in previous 326 

studies (Table 1). Positive associations were observed for 10 of these proteins, and inverse 327 

associations were observed for six proteins (Table 1). The other 24 associated proteins have 328 

been previously reported in our study using pQTL as instruments (28) (Table 2). These include 329 

10 that demonstrated positive associations and 14 that showed inverse associations.  330 

For the other proteins that were reported in our previous study using pQTL as instruments 331 

(28), while did not show a significant association after FDR correction in the current study 332 

(Supplementary Table 1), except for sTie-2, the directions of effect were consistent in the 333 
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current study compared with those in the published work. Among them, for eight proteins, their 334 

associations were at P<0.05 in the current work using protein genetic prediction models as 335 

instruments (Supplementary Table 1).  336 

Based on a comparison of exome-sequencing data of tumor tissue and tumor-adjacent 337 

normal tissue obtained from 150 TCGA PDAC patients, the somatic level changes of potentially 338 

functional variants/mutations were observed in at least one patient for 10 of the 39 genes encoding 339 

identified associated proteins (Supplementary Table 2). This proportion (10/39=25.64%) is 340 

significantly higher (enrichment P value < 0.00001) than the overall observed proportion of 341 

potentially functional changes across the genes encoding the proteins tested for association 342 

analyses (95/1,218 = 7.80%; here 1,218 represents the number of the genes available in TCGA 343 

analysis as part of the genes encoding the 1,389 assessed proteins).  344 

According to the IPA analysis, several cancer-related functions were enriched for the 345 

genes encoding our identified proteins (Supplementary Table 3). The top canonical pathways 346 

identified included IL-15 production (P=2.21×10-3), Heparan Sulfate Biosynthesis (Late Stages) 347 

(P=2.97×10-3), Heparan Sulfate Biosynthesis (P=3.99×10-3), Sperm Motility (P=7.73×10-3), and 348 

Dermatan Sulfate Biosynthesis (Late Stages) (P=0.01) (Figure 3). Among the related networks, 349 

the top network was cell-to-cell signaling and interaction, cardiovascular system development 350 

and function, organismal development (Supplementary Figure 1), followed by cancer, 351 

organismal injury and abnormalities, respiratory disease, free radical scavenging, cell death and 352 

survival, organismal injury and abnormalities, carbohydrate metabolism, small molecule 353 

biochemistry, cell cycle, and cancer, cell-to-cell signaling and interaction, cellular assembly and 354 

organization. Interactions among identified proteins were investigated based on STRING 355 
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database (Figure 3). In the network, KDR was predicted to interact with IGF1R, NOTCH1, 356 

MET, SEMA6A, ENG, SELP, and SELE. 357 

Based on interrogation using the OpenTargets and DrugBank database, ten of the 358 

identified proteins are supported to be relevant to PDAC (overall score >0 in OpenTargets) and 359 

are targets of existing drugs approved to be used to treat human conditions (Table 3). Our work 360 

indicates potential drug repurposing opportunities of these drug targets to other indications. The 361 

scores of molecular docking between each of the proteins and the corresponding meta-drug 362 

agents were included in Table 3.  363 

Among the 16 novel associated proteins, analysis of TGCA data also revealed potential 364 

relevance of B4GT1 and GOLM1 with tumor development (data not shown). Consequently, these 365 

two proteins were selected as the targets for experimental validation to further investigate their 366 

potential roles in PDAC development. Two gene-specific siRNAs (siGOML1 and siB4GAL1) 367 

were employed for post-transcriptional gene silencing of GOML1 and B4GAL1, resulting in the 368 

knockdown of these two genes. As depicted in Figure 4A, qPCR analysis demonstrated a 369 

significant reduction in the mRNA expression of GOML1 and B4GAL1 in PANC-1 and SU.86.86 370 

cells at 72 hours after transfection with siGOML1 or siB4GAL1 (40 nM) when compared with the 371 

untreated control group (P < 0.05). No significant difference was observed between the negative 372 

control group (NC, Mock-siRNA transfection) and the control groups (Figure 4A). This trend was 373 

also consistent in the western blot analysis (Figure 4B) in comparison with the qPCR assay, 374 

indicating that siGOML1 and siB4GAL1 effectively reduce the expression of GOML1 and 375 

B4GAL1 at both mRNA and protein levels in PANC-1 and SU.86.86 cells. 376 

To assess the biological impact of GOLM11 and B4GAL1 silencing in PANC-1 and 377 

SU.86.86 cells, cell proliferation was examined using the MTS assay over a span of five 378 
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consecutive days. As shown in Figures 4C and 4D, transfection of siGOML1 and siB4GAL1 379 

inhibited cell proliferation in both PANC-1 and SU.86.86 cells compared with the control 380 

(untransfected) and NC (Mock-siRNA transfected) groups. Furthermore, a wound healing assay 381 

demonstrated that at 12- and 24-hours post-scratch treatment, the open wound area in GOLM11 382 

and B4GAL1 siRNA-transfected cells was significantly larger than that in mock siRNA-transfected 383 

or untransfected cells (Figure 4D, 4E), implying that knockdown of GOLM11 and B4GAL1 in 384 

PANC-1 and SU.86.86 cells effectively inhibited cell migration in vitro. To investigate whether 385 

the down-regulation of GOLML1 and B4GAL1 affects the invasive capabilities of PANC-1 and 386 

SU.86.86 cells, a transwell analysis was performed. The results revealed a significant inhibition of 387 

cell invasion in PANC-1 and SU.86.86 cells upon GOLML1 or B4GAL1 silencing. The number of 388 

siGOML1 or siB4GAL1-transfected cells invading through the membrane was markedly lower 389 

than that of control-siRNA transfected cells (Fig. 4F, P < 0.05). Together, our findings suggest 390 

that GOLM1 and B4GT1 play crucial roles in PDAC cell proliferation, migration, and invasion, 391 

and their suppression could potentially serve as a therapeutic strategy for PDAC. 392 

 393 

Discussion 394 

This is the first PWAS study using comprehensive protein genetic prediction models to 395 

assess the associations between genetically predicted circulating protein concentrations and 396 

PDAC risk. Overall, we identified 40 proteins that were significantly associated with PDAC risk 397 

after FDR correction, including 16 novel proteins that have not been previously reported. Our 398 

results suggest new knowledge on the genetics and etiology of PDAC, and the newly identified 399 

proteins could serve as candidate blood biomarkers for risk assessment of PDAC, a highly fatal 400 
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malignancy. We also identified potential drug repurposing opportunities targeting the identified 401 

proteins which warrant further investigations.  402 

In previous studies, blood concentrations of specific proteins such as CA242, PIVKA-II, 403 

PAM4, S100A6, OPN, RBM6, EphA2, and OPG have been reported to be potentially associated 404 

with PDAC risk (4-7). In the INTERVAL dataset, proteins S100A6 and OPG were captured, and 405 

we were able to develop satisfactory prediction models for their levels in blood (17). We 406 

observed a significant association with the same direction for OPG (P-value = 0.03, Z-score = 407 

2.23) but not for S100A6 (P-value=0.93) with PDAC risk. Such inconsistent findings with 408 

previous studies might be explained by potential biases in previous epidemiological studies and 409 

warrant further exploration.  410 

In this large study, we identified 16 novel proteins that were associated with PDAC risk. 411 

Previous studies have suggested potential roles for some of the novel proteins in pancreatic 412 

tumorigenesis. Tie1 deficiency is reported to induce endothelial–mesenchymal transition 413 

(EndMT) and promote a motile phenotype (29). EndMT is known to present in human pancreatic 414 

tumors (29). Another study reports that TNF-α that is abundantly present in PDAC, induces 415 

EndMT and acts at least partially through TIE1 regulation in murine pancreatic tumors (30). For 416 

CPB1, immunohistochemistry of tissue microarray from PDAC patients showed that it was 417 

significantly downregulated in pancreatic tumor compared with adjacent normal pancreatic 418 

tissues (31). This aligns with the negative association between genetically predicted levels of 419 

carboxypeptidase B1 and PDAC risk observed in this study. In another study it was reported that 420 

mutations in CPB1 were associated with pancreatic cancer (32). Regarding GOLM1, one study 421 

supported that long non-coding RNA TP73-AS1 could promote pancreatic cancer progression 422 

through GOLM1 upregulation by competitively binding to miR-128-3p (33). Further 423 
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investigations are warranted to clarify roles of the identified proteins in pancreatic cancer 424 

development.  425 

Based on drug repurposing analyses, we prioritized several drugs that may serve as 426 

promising candidates for treating PDAC, such as Crizotinib, Cabozantinib, Brigatinib, 427 

Capmatinib, Tepotinib, and Tivozanib targeting Met. Previous research has supported potential 428 

link between these drugs and PDAC. For example, earlier research found that Crizotinib and 429 

Cabozantinib could decrease PDAC cell line viability in vitro (34). Cabozantinib together with 430 

photodynamic therapy had been shown to achieve local control and decrease in tumor metastases 431 

in preclinical PDAC models (35). A translational mathematical modeling study revealed that 432 

Tepotinib at a dose selection of 500 mg once daily could be effective for PDAC (36). Further 433 

work is needed to assess potential efficacy of these drug candidates in PDAC treatment.  434 

There are several strengths of this study for detecting proteins associated with PDAC 435 

risk. We developed comprehensive protein genetic prediction models as instruments, which not 436 

only potentially minimize biases commonly encountered in conventional observational study 437 

design, but also bring improved statistical power compared with the design of only using pQTLs 438 

as instruments. However, several limitations of this study need to be recognized when 439 

interpreting our findings. First, our results may still be susceptible to potential pleiotropic effects 440 

and may not necessarily infer causality. Similar to the design of transcriptome-wide association 441 

study (TWAS), our PWAS should be useful for prioritizing causal proteins; however we cannot 442 

completely exclude the possibility of false positive findings for some of the identified 443 

associations (37). Several likely reasons may induce these, such as correlated protein expression 444 

across participants, correlated genetically predicted protein expression, as well as shared genetic 445 

variants (37). Future functional investigation will better characterize whether the identified 446 
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proteins play a causal role in PDAC development. Second, since in this work the genetically 447 

regulated components of plasma protein levels were studied but not the overall measured levels, 448 

the utility of the identified proteins as risk biomarkers for PDAC remains unclear. Additional 449 

work for measuring circulating protein levels in pre-diagnostic blood samples are needed to 450 

evaluate the prediction role of these proteins in PDAC risk. Third, for our current model 451 

development design, the candidate predictors for each protein of interest merely rely on the 452 

potentially associated SNPs at a specific statistical threshold. A small proportion of proteins were 453 

excluded for downstream model construction because of the lack of such SNPs. Future work 454 

considering additional potential predictors beyond such statistics-based selection would be 455 

needed to improve the ability to evaluate additional proteins. Fourth, previous work has 456 

supported that covariates of smoking and body mass index are related to blood protein levels 457 

(38,39). In the current study using INTERVAL resources, we were not able to adjust for these 458 

covariates during model construction. Further study is thus needed to validate our results. Lastly, 459 

the current study largely focuses on Europeans for both protein genetic prediction model 460 

development and downstream association analyses with PDAC risk. Future research is warranted 461 

to study proteins associated with PDAC risk in other non-European ancestries.  462 

Our TGCA data analysis has revealed potential relevance of B4GT1 and GOLM1 in 463 

tumorigenesis and tumor progression. B4GT1 (Beta-1,4-Galactosyl transferase 1) is an enzyme 464 

primarily responsible for catalyzing the galactose transfer to specific receptor molecules within 465 

organisms (40). Its significance lies in its involvement in various essential biological processes, 466 

such as intercellular communication and cell adhesion. Furthermore, alterations in the expression 467 

level of B4GT1 have been observed in certain cancers, suggesting its potential implication in tumor 468 

initiation and development (41). This intriguing finding has led us to select B4GT1 as a priority 469 
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target for further exploration of its role in PDAC using experimental techniques. Similarly, our 470 

attention was drawn to GOLM1 (Golgi Membrane Protein 1), a membrane protein predominantly 471 

located in the Golgi apparatus, which plays a pivotal role in cellular secretion and transport 472 

processes. Recent investigations have demonstrated an upregulation of GOLM1 expression in 473 

multiple cancer types, including liver cancer, lung cancer, and pancreatic cancer. Such evidence 474 

strongly suggests that GOLM1 might exert a significant influence on the onset and progression of 475 

these malignancies (42). Consequently, we selected GOLM1 as an additional focus for verification 476 

to gain deeper insights into its involvement in PDAC. By utilizing RNAi technology to silence 477 

these genes, our experimental results corroborated the critical roles of GOLM1 and B4GT1 in 478 

driving PDAC cell proliferation, migration, and invasion. Subduing these genes holds promise as 479 

a potential therapeutic approach for PDAC treatment. 480 

In summary, using protein genetic prediction models, we identified 16 novel protein 481 

biomarker candidates for which the genetically predicted circulating levels were significantly 482 

associated with PDAC risk. Future work is needed to better characterize the potential roles of 483 

these proteins in the etiology of PDAC development, assess the predictive role of such markers 484 

in risk assessment of PDAC, and evaluate whether the potential drug repurposing opportunities 485 

we identified may improve PDAC outcomes.  486 
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 562 

Figure legends 563 

Figure 1. The overall design of this study. 564 

Figure 2. Manhattan plot of 40 identified proteins associated with PDAC risk. Proteins with blue 565 

color represent those identified in our previous work using pQTL as instruments, and proteins with 566 

red color represent novel ones identified in the current study. 567 

Figure 3. PPI network and canonical pathways of 40 identified proteins associated with PDAC 568 

risk. Network nodes represent proteins; edge thickness is proportional to the evidence for the PPI; 569 

and dashed lines represent the interaction among clusters. The enrichment of canonical pathways 570 

was determined using IPA software. 571 

Figure 4. The analysis of cell proliferation, migration and invasion on PANC-1 and SU.86.86 572 

cells with siB4GLAT1 and siGOLM1 transfection. The quantitative real-time PCR (qPCR) assay 573 

and the western blot assay (A) were used to investigate the RNAi effect of siB4GLAT1 and 574 

siGOLM1 (40 nM, 72 h) in PANC-1 and SU.86.86 cells. GAPDH were used as an internal 575 

control for qPCR analyses and western blot analyses, respectively (B,C) The effect of 576 

transfection with siB4GLAT1 and siGOLM1 (40 nM) on cell proliferation. The cells were 577 

detected by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-578 

2H-tetrazolium] assay on each day for 5 consecutive days. (D,E) Silencing of B4GLAT1 and 579 

GOLM1 inhibited migration of PANC-1 and SU.86.86 cells. Representative images of wound 580 

scratch assay performed to evaluate the motility of cells after silencing B4GLAT1 and GOLM1. 581 

After transfection, a scratch was made on cells monolayer and was monitored with microscopy 582 

every 12 hours (0, 12, and 24 h). Bar graphs show normalized wound area, calculated using Gen 583 
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5. Representative images of invasion assay. Data are represented as mean ± SD from triplicate 584 

samples, where *p < 0.01 compared to the control. (F) Effect of siB4GLAT1 and siGOLM1 585 

transfection on the invasion of PANC-1 and SU.86.86 cells. After siB4GLAT1 and siGOLM1 586 

transfection for 48 h, invasive ability of PANC-1 and SU.86.86 cells was identified by transwell 587 

assay. **P < 0.01 compared with the control cells; ##P < 0.01 compared with the mock cells; 588 

data are expressed as the mean ± SD, n = 3. 589 
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Table 1. Novel proteins with genetically predicted concentrations in plasma to be associated with pancreatic cancer risk  

 

Protein SOMAmer ID Protein full name 

Protein-

encoding 

gene 

Region for 

protein 

encoding 

gene 

Prediction model 

method 

Number of 

Predicting SNPs 

Number of 

Predicting 

SNPs-Cis* 

Number of 

Predicting 

SNPs-Trans 

Model 

internal cross 

validation R2 

Model 

external 

validation 

R2 

Z-

valuea P-valuea 

FDR P-

valueb 

IL-23 R IL23R.5088.175.3 Interleukin-23 receptor IL23R 1p31.3 elastic net 24 24 0 0.04 0.04 3.55 3.80×10-4 0.02 

sTie-1 TIE1.2844.53.2 

Tyrosine-Protein Kinase 

Receptor Tie-1, Soluble TIE1 1p34.2 lasso 18 7 11 0.22 0.28 5.67 1.46×10-8 1.22×10-6 

FA20B FAM20B.7198.197.3 

Glycosaminoglycan 

Xylosylkinase FAM20B 1q25.2 lasso 8 5 3 0.02 0.04 5.30 1.17×10-7 7.82×10-6 

FAM3D FAM3D.13102.1.3 Protein FAM3D FAM3D 3p14.2 elastic net 58 16 42 0.37 0.36 6.10 1.07×10-9 1.02×10-7 

Carboxypeptidase 

B1 CPB1.6356.3.3 Carboxypeptidase B CPB1 3q24 lasso 7 3 4 0.04 0.03 -4.55 5.38×10-6 3.00×10-4 

RAP LRPAP1.3640.14.3 

alpha-2-macroglobulin 

receptor-associated protein LRPAP1 4p16.3 elastic net 168 23 145 0.27 0.22 3.21 0.001 0.04 

Semaphorin-6A SEMA6A.7945.10.3 Semaphorin-6A SEMA6A 5q23.1 elastic net 66 44 22 0.05 0.05 -3.57 3.54×10-4 0.02 

B4GT1 B4GALT1.13381.49.3 

Beta-1,4-

galactosyltransferase 1 B4GALT1 9p21.1 elastic net 39 16 23 0.08 0.10 4.65 3.29×10-6 1.96×10-4 

GOLM1 GOLM1.8983.7.3 Golgi Membrane Protein 1 GOLM1 9q21.33 lasso 10 0 10 0.14 0.17 8.07 7.12×10-16 2.14×10-13 

QSOX2 QSOX2.8397.147.3 Sulfhydryl oxidase 2 QSOX2 9q34.3 elastic net 28 10 18 0.40 0.40 7.98 1.44×10-15 2.75×10-13 

KIN17 KIN.14643.27.3 

DNA/RNA-binding 

protein KIN17 KIN 10p14 elastic net 29 0 29 0.05 0.07 -5.52 3.31×10-8 2.60×10-6 

ISLR2 ISLR2.13124.20.3 

Immunoglobulin 

superfamily containing 

leucine-rich repeat protein 

2 ISLR2 15q24.1 elastic net 77 32 45 0.14 0.13 -3.45 5.65×10-4 0.02 

DPEP2 DPEP2.8327.26.3 Dipeptidase 2 DPEP2 16q22.1 elastic net 36 0 36 0.06 0.05 -4.01 5.97×10-5 0.003 

Chymotrypsin CTRB1.5671.1.3 Chymotrypsinogen B CTRB1 16q23.1 elastic net 85 69 16 0.23 0.24 -4.32 1.59×10-5 8.50×10-4 
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Laminin 

LAMA1.LAMB1.LAMC1.

2728.62.2 Laminin 

LAMA1, 

LAMB1, 

LAMC1 

18p11.31, 

7q31.1, 

1q25.3 elastic net 62 14 48 0.08 0.05 3.88 1.06×10-4 0.005 

TPST2 TPST2.8024.64.3 

Protein-Tyrosine 

Sulfotransferase 2 TPST2 22q12.1 elastic net 52 28 24 0.07 0.08 5.88 4.16×10-9 3.71×10-7 

* SNPs within 1MB of the protein-encoding gene  

a Associations between genetically predicted protein levels and PDAC risk after adjustment for age, sex, and top 10 principle components. 

b FDR P-value: false discovery rate (FDR) adjusted P-value; associations with a FDR p≤0.05 considered statistically significant 
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Table 2. Previously reported proteins with genetically predicted concentrations in plasma to be associated with pancreatic cancer risk  

 

Protein SOMAmer ID Protein full name 

Protein-

encoding 

gene 

Region for 

protein 

encoding 

gene 

Prediction model 

method 

Number of 

Predicting 

SNPs 

Number of 

Predicting 

SNPs-Cis* 

Number of 

Predicting 

SNPs-Trans 

Model 

internal cross 

validation R2 

Model 

external 

validation 

R2 Z-valuea P-valuea 

FDR P-

valueb 

sE-Selectin SELE.3470.1.2 E-selectin SELE 1q24.2 lasso 6 0 6 0.39 0.44 -7.88 3.33×10-15 5.47×10-13 

P-Selectin SELP.4154.57.2 P-Selectin SELP 1q24.2 lasso 11 7 4 0.26 0.27 -3.77 1.66×10-4 0.008 

LMA2L LMAN2L.8013.9.3 VIP36-like protein LMAN2L 2q11.2 top1 1 1 0 0.03 0.02 3.35 8.01×10-4 0.03 

Alkaline 

phosphatase, 

intestine ALPI.10463.23.3 

Intestinal-type alkaline 

phosphatase ALPI 2q37.1 lasso 8 0 8 0.03 0.06 -6.79 1.09×10-11 1.21×10-9 

VEGF sR2 KDR.3651.50.5 

Vascular endothelial 

growth factor receptor 2 KDR 4q12 elastic net 56 18 38 0.18 0.12 -6.21 5.22×10-10 5.37×10-8 

ADH1B ADH1B.9834.62.3 Alcohol dehydrogenase 1B ADH1B 4q23 lasso 6 0 6 0.08 0.03 3.21 0.001 0.04 

LIF sR LIFR.5837.49.3 

Leukemia inhibitory factor 

receptor LIFR 5p13.1 top1 1 0 1 0.03 0.02 -7.39 1.42×10-13 1.73×10-11 

gp130, soluble IL6ST.2620.4.2 

Interleukin-6 receptor 

subunit beta IL6ST 5q11.2 elastic net 51 21 30 0.06 0.05 -3.69 2.22×10-4 0.01 

GP116 ADGRF5.6409.57.3 

Adhesion G protein-

coupled receptor F5 ADGRF5 6p12.3 lasso 22 15 7 0.46 0.43 -4.65 3.37×10-6 1.96×10-4 

CD36 ANTIGEN CD36.2973.15.2 Platelet glycoprotein 4 CD36 7q21.11 top1 1 0 1 0.03 0.05 3.31 9.25×10-4 0.03 

Met MET.2837.3.2 

Hepatocyte growth factor 

receptor MET 7q31 blup 1,668 603 1,065 0.07 0.04 -5.06 4.27×10-7 2.72×10-5 

STOM STOM.8261.51.3 

Erythrocyte band 7 integral 

membrane protein STOM 9q33.2 lasso 5 0 5 0.11 0.05 3.31 9.18×10-4 0.03 

BGAT ABO.9253.52.3 

Histo-blood group ABO 

system transferase ABO 9q34.2 blup 2,473 2,347 126 0.72 0.72 9.18 4.20×10-20 5.62×10-17 

Notch 1 NOTCH1.5107.7.2 

Neurogenic locus notch 

homolog protein 1 NOTCH1 9q34.3 top1 1 0 1 0.01 0.02 3.29 9.97×10-4 0.04 
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Endoglin ENG.4908.6.1 Endoglin ENG 9q34.11 top1 1 0 1 0.01 0.01 -8.04 8.93×10-16 2.14×10-13 

ST4S6 

CHST15.4469.78.2 
Carbohydrate 

sulfotransferase 15 CHST15 10q26.13 

lasso 5 1 4 0.05 0.03 -8.62 6.46×10-18 4.32×10-15 

CHST15.14097.86.3 lasso 9 2 7 0.04 0.02 -8.03 9.60×10-16 2.14×10-13 

CHSTB CHST11.7779.86.3 

Carbohydrate 

sulfotransferase 11 CHST11 12q23.3 elastic net 69 46 23 0.11 0.07 3.52 4.25×10-4 0.02 

THSD1 THSD1.5621.64.3 

Thrombospondin type-1 

domain-containing protein 

1 THSD1 13q14.3 elastic net 44 27 17 0.04 0.03 -5.34 9.41×10-8 6.62×10-6 

GLCE GLCE.7808.5.3 

D-glucuronyl C5-

epimerase GLCE 15q23 lasso 11 6 5 0.36 0.34 4.18 2.94×10-5 0.002 

IGF-I sR IGF1R.4232.19.2 

Insulin-like growth factor 1 

receptor IGF1R 15q26.3 top1 1 0 1 0.01 0.02 -7.39 1.42×10-13 1.73×10-11 

Desmoglein-2 DSG2.9484.75.3 Desmoglein-2 DSG2 18q12.1 elastic net 66 44 22 0.04 0.06 5.34 9.18×10-8 6.62×10-6 

DC-SIGN CD209.3029.52.2 CD209 Antigen CD209 19p13.2 elastic net 58 26 32 0.39 0.38 8.52 1.62×10-17 7.22×10-15 

IR INSR.3448.13.2 Insulin receptor INSR 19p13.2 lasso 7 0 7 0.09 0.12 -7.53 4.98×10-14 7.40×10-12 

* SNPs within 1MB of the protein-encoding gene  

a Associations between genetically predicted protein levels and PDAC risk after adjustment for age, sex, and top 10 principle components. 

b FDR P-value: false discovery rate (FDR) adjusted P-value; associations with a FDR p≤0.05 considered statistically significant 
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Table 3. Drug repurposing opportunities  

 

Protein Protein full name 

Protein-

encoding 

gene 

OpenTargets 

information 

(overall 

score) Drugbank ID Drug name Molecular action 

Molecular docking 

score* 

sTie-1 

Tyrosine-Protein Kinase 

Receptor Tie-1, Soluble TIE1 0.006 DB12010 Fostamatinib inhibitor -6.1 

Carboxypeptidase B1 Carboxypeptidase B CPB1 0.159 DB04272 Citric acid NA -3.9 

Chymotrypsin Chymotrypsinogen B CTRB1 0.078 DB06692 Aprotinin NA MDNA 

sE-Selectin E-selectin SELE 0.023 DB01136 Carvedilol inhibitor -6.9 

P-Selectin  P-Selectin SELP 0.008 

DB01109 Heparin inhibitor -4.9 

DB08813 Nadroparin inhibitor -4.9 

DB06779 Dalteparin inhibitor -4.9 

DB15271 Crizanlizumab inhibitor 3DSNA 

VEGF sR2 

Vascular endothelial 

growth factor receptor 2 KDR 0.367 

DB06589 Pazopanib inhibitor -6.3 

DB08896 Regorafenib inhibitor -6.5 

DB09079 Nintedanib inhibitor -5.8 

DB14840 Ripretinib inhibitor -6.6 

DB00398 Sorafenib antagonist -6.6 

DB01268 Sunitinib inhibitor -5.6 

DB06595 Midostaurin antagonist inhibitor -5.1 

DB06626 Axitinib inhibitor -6.0 

DB08875 Cabozantinib antagonist -7.0 

DB08901 Ponatinib inhibitor -6.9 

DB09078 Lenvatinib inhibitor -6.1 
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DB05578 Ramucirumab antagonist 3DSNA 

DB12010 Fostamatinib inhibitor -5.3 

DB12147 Erdafitinib substrate -5.5 

DB15822 Pralsetinib inhibitor -6.9 

DB11800 Tivozanib inhibitor -6.4 

ADH1B Alcohol dehydrogenase 1B ADH1B 0.001 

DB00898 Ethanol substrate -2.8 

DB09462 Glycerin NA -3.7 

DB00157 NADH substrate -9.6 

DB01213 Fomepizole inhibitor -3.9 

Met 

Hepatocyte growth factor 

receptor MET 0.304 

DB08865 Crizotinib inhibitor -8.1 

DB08875 Cabozantinib antagonist -8 

DB12267 Brigatinib inhibitor -8.2 

DB12010 Fostamatinib inhibitor -6.7 

DB11791 Capmatinib inhibitor -8.7 

DB15133 Tepotinib inhibitor -8.3 

DB11800 Tivozanib inhibitor -8.2 

DB16695 Amivantamab antagonist antibody 3DSNA 

IGF-I sR 

Insulin-like growth factor 1 

receptor IGF1R 0.099 

DB00071 Insulin pork NA MDNA 

DB00046 Insulin lispro activator MDNA 

DB01307 Insulin detemir activator MDNA 

DB00047 Insulin glargine activator MDNA 

DB01306 Insulin aspart activator MDNA 

DB01309 Insulin glulisine activator MDNA 

DB09564 Insulin degludec activator MDNA 
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DB14751 Mecasermin rinfabate agonist MDNA 

DB09456 Insulin beef activator MDNA 

DB08804 Nandrolone decanoate inducer -5.8 

DB01277 Mecasermin agonist 3DSNA 

DB00030 Insulin human activator MDNA 

DB06343 Teprotumumab binder, antibody 3DSNA 

DB12267 Brigatinib inhibitor -5.7 

IR Insulin receptor INSR 0.013 

DB00047 Insulin glargine agonist MDNA 

DB00071 Insulin pork binder MDNA 

DB01307 Insulin detemir agonist MDNA 

DB00046 Insulin lispro agonist MDNA 

DB01306 Insulin aspart agonist MDNA 

DB01309 Insulin glulisine agonist MDNA 

DB09564 Insulin degludec agonist MDNA 

DB09129 Chromic chloride activator MDNA 

DB14751 Mecasermin rinfabate NA MDNA 

DB09456 Insulin beef agonist MDNA 

DB00030 Insulin human agonist MDNA 

DB01277 Mecasermin NA 3DSNA 

DB12267 Brigatinib binding -8.4 

DB12010 Fostamatinib inhibitor -7.5 

* a score of ≤-7 represents a good interaction between the protein and corresponding drug agent and is bolded. 

MDNA: Molecular docking not applicable 
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3DSNA: 3D structure not available. 
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Proteome-wide association study and functional validation identify novel protein markers 

for pancreatic ductal adenocarcinoma 

 

 

Dear Dr. Edmunds:  

 

My colleagues and I would like to submit this manuscript for publication consideration in 

GigaScience.  

 

As you know, pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few known 

risk factors and biomarkers. Identifying biomarkers is critical for understanding the pathogenesis 

of this deadly cancer and developing novel therapeutic approaches. Several blood protein 

biomarkers have been reported to be linked to PDAC in previous studies, however, findings are 

often inconsistent, potentially due to common biases existing in the conventional epidemiologic 

study design. One alternative study design is to use genetic instruments to identify proteins 

whose genetically predicted levels in blood are associated with PDAC risk. This is a design 

similar to the popular transcriptome-wide association study (TWAS), but focusing on protein 

expression levels, a novel design that is rarely explored. It is challenging to construct satisfactory 

genetic perdition models for protein expression levels, because there are far more pQTLs in trans 

regions than in cis regions. 

 

In this study, we applied a highly novel study to develop comprehensive protein genetic 

prediction models by considering both cis- and trans-acting elements as instruments for 

identifying novel PDAC related proteins. We leveraged genome and plasma proteome data of 

2,481 healthy European descendants included in the INTERVAL study to establish such 

prediction models. We selected models with a prediction performance of >0.01 in both internal 

and external validation for association analyses with PDAC risk, by analyzing 8,275 cases and 

6,723 controls of European descent from the Pancreatic Cancer Cohort Consortium and the 

Pancreatic Cancer Case-Control Consortium.  

 

We identified significant associations between predicted concentrations of 40 proteins and 

PDAC risk at a false discovery rate of < 0.05, including 16 novel proteins. For 29 of the genes 

encoding identified proteins, somatic level potentially functional mutations were detected in 

PDAC patients in The Cancer Genome Atlas. Relevant protein-encoding genes were also 

significantly enriched in several cancer-related pathways. We further identified drugs targeting 
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the identified proteins, which may serve as candidates for drug repurposing for treating PDAC. 

We also silenced two of the novel protein-encoding genes and observed critical roles of GOLM1 

and B4GALT1 in driving PDAC cell proliferation, migration, and invasion, by testing two 

independent cell lines. Our functional characterization further supported critical roles of 

identified novel proteins in pancreatic tumorigenesis. 

 

We believe that our manuscript should be of great interest to the scientific community served by 

GigaScience. In particular, our study could serve as an excellent model for future research that 

integrates large genomics and proteomics data to understand the genetics and biology of diseases 

in the post-GWAS era. We hope that you will find our work interesting and would be willing to 

consider it for publication in your journal. 

 

Sincerely, 

 

 

 

Lang Wu, Ph.D. 

Director, Pacific Center for Genome Research 

Associate Professor, University of Hawaii Cancer Center 

University of Hawaii 

Email: lwu@cc.hawaii.edu 


