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Abstract: Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to
the paucity of reliable biomarkers for early detection and therapeutic targeting. Existing
blood protein biomarkers for PDAC often suffer from replicability issues, arising from
inherent limitations such as unmeasured confounding factors in conventional
epidemiologic study designs. To circumvent these limitations, we use genetic
instruments to identify proteins with genetically predicted levels to be associated with
PDAC risk. Leveraging genome and plasma proteome data from the INTERVAL study,
we established and validated models to predict protein levels using genetic variants.
By examining 8,275 PDAC cases and 6,723 controls, we identified 40 associated
proteins, of which 16 are novel. Functionally validating these candidates by focusing on
two selected novel protein-encoding genes, GOLMA1 and B4GALT1, we demonstrated
their pivotal roles in driving PDAC cell proliferation, migration, and invasion.
Furthermore, we also identified potential drug repurposing opportunities for treating
PDAC.
Significance:
PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of
causal protein markers hampers progress in developing effective early detection
strategies and treatments. Our study identifies novel causal proteins using genetic
instruments and subsequently functionally validates selected novel proteins. This dual
approach enhances our understanding of PDAC etiology and potentially opens new
avenues for therapeutic interventions.
Keywords: Biomarkers, protein, genetics, pancreatic cancer, risk
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Proteome-wide association study and functional validation identify novel protein
markers for pancreatic ductal adenocarcinoma

Authors’ responses to reviewers (Page and line numbers in our responses refer to the
revised version of the manuscript with TRACK CHANGES)

Reviewer #1:

Proteome-Wide Association Study (PWAS) marks a significant advancement in
biomedical research, bears great potential in identifying protein biomarkers linked to
cancer's onset, progression, and treatment response, which are crucial for early
detection, diagnosis, and monitoring. In the present study, Jingjing et al. leverage
genome and plasma proteome data from 2,481 healthy individuals of European
descent from the INTERVAL study to develop protein genetic prediction models. Their
PWAS investigation, using these models, aims to identify potential protein markers for
cancer. They notably pinpoint two novel proteomic markers, GOLM1 and B4GALT1,
that may significantly influence pancreatic ductal adenocarcinoma cell behaviors.

In general, this pioneering PWAS work in exploring genetically predicted blood protein
concentrations and their association with PDAC risk is undeniably a breakthrough in
cancer research. However, the second part of this study, namely the process used to
screen out GOLMA1 and B4GALT1 raised some questions and concerns.

Specifically In the words from 364 to line 367. The authors claimed that "Among the 16
novel associated proteins, analysis of TGCA data also revealed potential relevance of
B4GT1 and GOLM1 with tumor development (data not shown). Consequently, these
two proteins were selected as the targets for experimental validation to further
investigate their potential roles in PDAC development."  I don't understand why they
addressed "data not shown". The absence of this crucial data and the rationale for
prioritizing these two proteins over other 14 proteins are not clear. This omission is
particularly concerning as neither B4GT1 nor GOLM1 is listed in Supplementary Table
2 as having relevant somatic mutations using TCGA data.

Response-1:
Thank you very much for your insightful comments and suggestions concerning our
paper. We agree that these points are pivotal for understanding the unique significance
of B4GT1 and GOLM1. Please allow us to provide further information to clarify these
issues.

Regarding your point on "data not shown", to substantiate our selection of B4GT1 and
GOLM1, we have now included the analysis result of TCGA data as supplementary
figures (Supplementary Fig. 2 and 3). In brief, we have conducted a comprehensive
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bioinformatic analysis leveraging data from TCGA, which clearly indicated the potential
relevance of B4GALT1 and GOLM1 with pancreatic tumor development. We apologize
for the omission in the previous version of the manuscript.

Page 12, Lines 274-286:
Gene Expression and Survival Analysis with TCGA Database
The examination of GOLM1 and B4GALT1 gene expressions in Pancreatic
Adenocarcinoma (PAAD) was conducted using GEPIA (Gene Expression Profiling
Interactive Analysis). The platform, accessible at the following web link:
http://gepia.cancer-pku.cn/, facilitated analysis with a dataset consisting of 179 tumor
samples and 171 normal controls. The focus of survival analysis was exclusively on
PAAD, leveraging TCGA data through the GEPIA web server.
Customized gene selection, normalization, and survival methodologies were
implemented to suit the unique characteristics of PAAD. Cohort thresholds were
defined, restricting dataset selection to PAAD, and survival plots were generated.
These measures were designed to precisely identify the correlation between gene
expression and survival outcomes specific to this type of cancer.

Page 18, Lines 423-439:
Among the 16 novel associated proteins, analysis of TGCA data also revealed
potential relevance of B4GT1 and GOLM1 with tumor development (Supplementary
Figure 2 and 3). The examination of GOLM1 and B4GALT1 gene expression in PADD
cancer was conducted using GEPIA (Gene Expression Profiling Interactive Analysis).
The analysis involved a dataset consisting of 179 tumor samples and 171 normal
controls. The box plot analysis revealed a statistically significant increase in GOLM1
(Supplementary Figure 2A) and B4GALT1 (Supplementary Figure 3A) expression in
the tumor samples as compared with the normal control group. GEPIA, accessible
through the following web link: http://gepia.cancer-pku.cn/, served as the platform for
this investigation. The survival analysis of GOLM1 and B4GALT1 gene expression in
PADD cancer was conducted using GEPIA. Survival plots revealed a significant
decrease in overall survival (OS) and disease-free survival (DFS) among tumor
samples exhibiting elevated GOLM1 or B4GALT1 expression (n=89) compared with
those with low expression (n=89). Employing the Log-rank test for hypothesis testing,
our findings emphasize a noteworthy correlation between heightened gene expression
and reduced OS and DFS in the PADD cancer cohort (Supplementary Figure 2B, C,
Supplementary Figure 3B, C).

I could understand that due to the novelty of PWAS, the authors are able to
successfully identified B4GT1 and GOLM1 as important markers at proteomic level.
However, through literature search, there is very limited published peer-reviewed
papers to show them play any roles in Pancreatic ductal adenocarcinoma in other
omics level, like genetics, genomics, transcriptomics.
Response-2:
Thanks for your comment. Your statement underlines a relevant point about the yet
unclear roles of B4GT1 and GOLM1 at other omics levels in pancreatic ductal
adenocarcinoma. We think that this indeed underscores the potential of our innovative
PWAS design in uncovering novel proteins that could not have been identified if we
use another design focusing on other omics level. As described above in another
response, after we identified these two proteins, when we focused on their RNA
expression levels, we could identify additional evidence at RNA levels showing their
potential relevance with PDAC.

Were the other 14 proteins subjected to similar experimental protocols, and if so, what
were the findings? This information is vital for understanding the unique significance of
B4GT1 and GOLM1 in this context.
Response-3:
Thanks for your comment. We conducted a bioinformatics analysis using the GEPIA
online TCGA tool to investigate the survival rates associated with the expression of the
16 genes encoding the novel proteins with genetically predicted concentrations in
plasma linked to PDAC risk. The findings indicate that, in pancreatic adenocarcinoma
(PAAD), GOLM1, B4GALT1, FAM20B, FAB3D, and LRPAP1 exhibit significantly
higher expression in tumor tissues, and they are associated with noteworthy survival

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



rate differences among patients. Further validation through mRNA PCR tests in normal
Human Pancreatic Duct Epithelial Cell Line and pancreatic cancer cell lines (PANC-1,
SU.86.86) revealed that only GOLM1 and B4GALT1 displayed elevated expression in
pancreatic cancer cell lines. Consequently, for subsequent biological investigations,
GOLM1 and B4GALT1 were selected due to their distinct high expression in pancreatic
cancer cell lines, suggesting their potential relevance to the pathogenesis of pancreatic
cancer.

Experimental studies to validate the role of all 16 novel proteins would be exhaustive in
terms of resources and time. Given the supportive associations of B4GALT1 and
GOLM1 revealed by the TCGA data, it was prudent to prioritize these two for
experimental validation, in the current stage of study. We believe this maybe the most
efficient strategy to follow up on a large number of candidates generated from a high-
throughput PWAS, but agree that the other 14 proteins certainly warrant further
investigation.

Finally, concerning the other 14 proteins, although they were not subjected to the same
experimental protocols, ongoing studies in our lab are focused on further analyzing
these proteins in vitro and in vivo to better understand their roles in PDAC. As these
studies were not included in the current manuscript, we would be delighted to share
our findings in an appropriate future publication.

We hope these explanations address your concerns, and we thank you again for
improving the quality of our work through your insightful comments.

Reviewer #2:

Zhu et al. constructed a series of pQTL models and used them to identify genetic
predicted serum protein markers for pancreatic ductal adenocarcinoma, followed by a
series of functional validations, which may provide valuable clues for prediction and
treatment of PDAC. I have several concerns on this study.

Major concerns:
1. This study integrated both cis- and trans-acting elements to construct pQTL models.
It would be better to provide the heritability of each pQTL model constructed and the
comparison results (such as the h2 explained and predictive performance on gene
expression) with those focus solely on cis-acting variants, as the author stated that the
integration strategy has an enhanced statistical power.

Rsponse-1:
Thank you very much for your insightful comments. We have compared h2 of the
prediction models between those with cis+trans factors and only cis genetic factors.
The results indeed showed that when involving trans-acting elements, enhanced
statistical power could be achieved.

Page 8, Lines 181-185:
We also estimated the genetic heritability of plasma proteins (the proportion of the
variation of protein levels that could be explained by potential predictors) using GCTA1.
We compared the heritability of plasma proteins when using cis+trans SNPs vs only cis
SNPs to assess whether it could capture more heritability when involving trans-SNPs.

Page 16, Lines 376-383:
We compared the heritability of the prediction models established using cis+trans and
vs cis-only predictors strategies. Here, we focused on the 490 models established
using both cis and trans SNPs in the main analysis. The results showed that 250 out of
the 490 (51.02%) models have higher estimated heritability with the cis+trans strategy
(Supplementary Table 2), and 215 proteins (43.88%) showed the same estimated
heritability between cis+trans and cis-only strategies (Supplementary Table 2). Only 25
proteins (5.10%) showed lower estimated heritability when using cis+trans strategy
(Supplementary Table 2). These results showed that trans SNPs could in general
increase heritability of the prediction models.
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2. The integration strategy is somewhat like some PGS methods (such as C+T). Would
the author consider to try some other strategies used in common PGS analysis? For
example, using LD clumping for SNPs selection, trying some other P value threshold
combinations to define and select gene- associated SNPs in cis and trans regions, and
using the bslmm strategy, which seems to be demonstrated to have decent
performance in the FUSION article.
Rsponse-2:
We thank the reviewer for the comments. We have now performed several additional
robustness analyses, including using the bslmm method, LD clumping for SNP
selection, and different p-value thresholds. The results show that our results are robust
under different methods/thresholds.

Page 10, Lines 220-233:
Robustness analyses
To further examine whether the identified significant associations from the main
analyses may be robust to different strategies, three alternative strategies were used to
test these proteins under different scenorios. Firstly, we established prediction models
using the bslmm method embedded in TWAS/FUSION software. This method was not
enabled by the default parameter due to the intensive Markov chain Monte Carlo
(MCMC) computation, although bslmm has some advantages and might increase
prediction accuracy in some conditions. Secondly, we pruned the highly correlated
SNPs and only SNPs that are weakly correlated with each other were used as potential
predictors. In the current analysis, we pruned SNPs using pruning parameters r2 = 0.1
and distance = 250 kb. Thirdly, we assessed the robustness of the significant
association results by examining different p-value cutoffs for selecting informative
trans-regions (p-value < 5×10-7, p-value < 5×10-9, and p-value < 5×10-10) as
candidate predictors for model building. The association results with a nominal p-value
< 0.05 and consistent effect direction were considered to be replicated.

Page 16, Lines 384-393:
The robustness analysis showed that all the 40 significantly PDAC-associated proteins
had the same effect directions (Supplementary Table 3). A total of 39 proteins could be
tested using the bslmm method and 37 out of 39 (94.87%) could be replicated (except
for SEMA6A and CHST11 proteins). When we removed highly correlated SNPs and
only weak correlated SNPs were used for establishing prediction models, a total of 39
prediction models were established. The association results showed that associations
of 38 out of the 39 (97.44%) proteins could be replicated (Supplementary Table 3). In
addition, three different p-value thresholds (p-value < 5×10-7, p-value < 5×10-9, and p-
value < 5×10-10) for selecting trans-SNPs were examined (Supplementary Table 3).
All the association results were consistent with those in our main analysis. The above
results showed the robustness of our main results.

3. This study selected proteins for pWAS analysis based on prediction R/R2 of pQTL
models. Would the author take the h2 of each pQTL model into consideration as the
FUSION article did?
Rsponse-3:
We thank the reviewer for the comments. The R2≥0.01was a common threshold used
in previous relevant omics integration studies. Here we also added the information of
h2 estimated using the GCTA software in the revised manuscript (main text as well as
Tables 1 and 2) 1.

Page 8, Lines 174-175:
R2≥0.01 was used as the threshold for selecting satisfactory prediction models, which
is commonly used in relevant omics integration studies.
Page 15, Lines 361-362:
The heritability of the proteins ranged from 0.001 to 0.87, with an average value of
0.14.

4. Although the author used the TWAS/FUSION framework for pQTL models
construction and protein-PDAC association assessment, it would be better to add more
description into the supplementary file on how this framework was applied to the
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current study.
Rsponse-4:
We thank the reviewer for the comments. We have now added more descriptions of the
way we performed the association assessment.

Page 9, Lines 212-216:
We calculated the PWAS test statistic Z-score = w'Z/(w'Σs,sw)1/2, where the Z is a
vector of standardized effect sizes of SNPs for a given protein (Wald z-scores), w is a
vector of prediction weights for the abundance feature of the protein being tested, and
the Σs,s is the LD matrix of the SNPs estimated from the 1000 Genomes Project as the
LD reference panel.

Reference
1.Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet 88, 76–82 (2011).
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 60 

Abstract 61 

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy, largely due to the 62 

paucity of reliable biomarkers for early detection and therapeutic targeting. Existing blood 63 

protein biomarkers for PDAC often suffer from replicability issues, arising from inherent 64 

limitations such as unmeasured confounding factors in conventional epidemiologic study 65 

designs. To circumvent these limitations, we use genetic instruments to identify proteins with 66 

genetically predicted levels to be associated with PDAC risk. Leveraging genome and plasma 67 

proteome data from the INTERVAL study, we established and validated models to predict 68 

protein levels using genetic variants. By examining 8,275 PDAC cases and 6,723 controls, we 69 

identified 40 associated proteins, of which 16 are novel. Functionally validating these candidates 70 

by focusing on two selected novel protein-encoding genes, GOLM1 and B4GALT1, we 71 

demonstrated their pivotal roles in driving PDAC cell proliferation, migration, and invasion. 72 

Furthermore, we also identified potential drug repurposing opportunities for treating PDAC.  73 

Significance: 74 

PDAC is a notoriously difficult-to-treat malignancy, and our limited understanding of causal 75 

protein markers hampers progress in developing effective early detection strategies and 76 

treatments. Our study identifies novel causal proteins using genetic instruments and subsequently 77 

functionally validates selected novel proteins. This dual approach enhances our understanding of 78 

PDAC etiology and potentially opens new avenues for therapeutic interventions. 79 

Keywords: Biomarkers, protein, genetics, pancreatic cancer, risk 80 

 81 
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 83 

Introduction 84 

Pancreatic cancer is the seventh leading cause of cancer deaths in industrialized countries 85 

with pancreatic ductal adenocarcinoma (PDAC) making up over 90% of pancreatic cancer cases 86 

(1). According to GLOBOCAN 2020 cancer statistics, pancreatic cancer is the 14th most 87 

common cancer type with 495,773 new cases in 2020. There are almost the same number of 88 

deaths caused by pancreatic cancer (466,003 deaths) in 2020, accounting for 4.7% of all cancer 89 

related deaths (2). Owing to its often asymptomatic or non-specific symptoms during early 90 

stages, a majority of patients are usually diagnosed in advanced stages. This results in 80-90% of 91 

pancreatic tumors being unresectable upon diagnosis, leading to a dismal prognosis: a mere 9% 92 

five-year survival rate after diagnosis (1). Given these dire statistics, there is an urgent need to 93 

identify effective biomarkers for screening or early detection in high-risk populations. Equally 94 

crucial is the development of improved therapeutic strategies to improve PDAC outcome.  95 

Currently, serum cancer antigen (CA) 19-9 is the only diagnostic biomarker for 96 

pancreatic cancer approved by the U.S. FDA. However, elevated levels of CA 19-9 are related to 97 

other conditions, and its performance as a diagnostic tool for pancreatic cancer is far from ideal 98 

(3): it has a poor positive predictive value (0.5-0.9%), along with restricted specificity (82-90%) 99 

and sensitivity (79-81%). Previous studies have also reported several other circulating blood 100 

protein biomarkers that are potentially associated with pancreatic cancer risk, such as CA242, 101 

PIVKA-II, and PAM4 (4-7). However, results from existing studies often involving small sample 102 

sizes and findings are inconsistent. It is well known that the conventional epidemiologic study 103 

design measuring levels of proteins directly may be subject to selection bias and residual or 104 
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unmeasured confounding, which could also contribute to the inconsistent findings in the existing 105 

literature. 106 

An alternative design of using genetic instruments may decrease many limitations of 107 

existing studies, due to the nature of random assortment of alleles from parents to offspring 108 

during gamete formation (8,9). Inspired by transcriptome-wide association study (TWAS), one 109 

may build comprehensive genetic prediction models for each protein to capture the prediction 110 

value of multiple single nucleotide polymorphisms (SNPs). Unlike conventional TWAS type of 111 

methods, which typically focus solely on cis-acting variants, our study enhanced statistical power 112 

by integrating both cis- and trans-acting elements into our genetic prediction models. 113 

Furthermore, as TWAS or PWAS results imply causality under stringent valid instrumental 114 

variable assumptions, we further functionally validated two novel proteins.  115 

In the current study, we applied such a study design to identify novel proteins associated 116 

with PDAC risk. To our knowledge, this is the first large-scale proteome wide association study 117 

(PWAS) using comprehensive protein genetic prediction models as instruments to assess the 118 

associations between genetically predicted blood concentrations of proteins and PDAC risk. We 119 

used data for 8,275 cases and 6,723 controls of European descent from the Pancreatic Cancer 120 

Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). 121 

Beyond identifying novel proteins, we functionally validated two of them. Moreover, we 122 

generated a list of drugs targeting the identified proteins which may serve as candidates for drug 123 

repurposing of PDAC.  124 

 125 

Methods 126 

Protein genetic prediction model development and validation 127 
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We leveraged the genome and plasma proteome data of healthy European subjects 128 

included in the INTERVAL study to establish (subcohort1) and validate (subcohort2) protein 129 

genetic prediction models. The details of the INTERVAL study data have been published 130 

previously (10-14). Briefly, participants were generally healthy. The SOMAscan assay was used 131 

to collect the relative levels of 3,620 plasma proteins or complexes. Quality control (QC) was 132 

performed at both the sample and SOMAmer level. Approximately ~830,000 genetic variants 133 

were measured on the Affymetrix Axiom UK Biobank genotyping array. Standard sample and 134 

variant QC were conducted. SNPs were phased using SHAPEIT3 and imputed using a combined 135 

1000 Genomes Phase 3-UK10K reference panel, which resulted in over 87 million imputed 136 

variants. The SNPs were further filtered using criteria of 1) imputation quality of at least 0.7, 2) 137 

minor allele count of at least 5%, 3) Hardy Weinberg Equilibrium (HWE) p≥5×10-6, (4) missing 138 

rates < 5%, and (5) presenting in the 1000 Genome Project data for European populations. 139 

Overall there were 4,662,360 variants passing these criteria. 140 

In subcohort 1 (N=2,481), as described elsewhere (10), protein concentrations were log 141 

transformed and adjusted for age, sex, duration between blood draw and processing, and the top 142 

three principal components. For the rank-inverse normalized residuals of each protein, we 143 

followed the TWAS/FUSION framework to establish prediction models, using nearby variants 144 

(within 100kb) of potentially associated SNPs as candidate predictors (15). A false discovery rate 145 

(FDR) < 0.05 was used to determine potentially associated SNPs in cis regions (within 1 Mb of 146 

the transcriptional start site (TSS) of the gene encoding the target protein of interest) and P-value 147 

≤ 5×10-8 was used to determine potentially associated SNPs in trans regions. We only included 148 

strand unambiguous SNPs. Four methods of best linear unbiased predictor (blup), elastic net, 149 

LASSO, and top1 were used to develop the models. For each protein of interest, the model 150 
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showing the most significant cross-validation P-value among those developed using the four 151 

methods was selected. R2≥0.01 was used as the threshold for selecting satisfactory prediction 152 

models, which is commonly used in relevant omics integration studies (16-30). For protein 153 

prediction models with R2≥0.01, external validation was conducted using genetic and protein 154 

data of subcohort 2 (N=820). Briefly, predicted protein expression levels were estimated by 155 

applying the developed protein prediction models to the genetic data, which were further 156 

compared with the measured levels for each protein of interest. Proteins with a model prediction 157 

R2 of ≥ 0.01 in subcohort1 and a correlation coefficient of ≥ 0.1 in subcohort2 were selected for 158 

association analysis with PDAC risk. We also estimated the genetic heritability of plasma 159 

proteins (the proportion of the variation of protein levels that could be explained by potential 160 

predictors) using GCTA (31). We compared the heritability of plasma proteins when using 161 

cis+trans SNPs vs only cis SNPs to assess whether it could capture more heritability when 162 

involving trans-SNPs. 163 

 164 

Examine associations of genetically predicted protein levels with PDAC risk 165 

To investigate the associations between genetically predicted circulating protein levels 166 

and PDAC risk, the validated protein genetic prediction models were applied to the summary 167 

statistics from a large GWAS of PDAC risk. In the present work, we used data from GWAS 168 

conducted in the PanScan and PanC4 consortia downloaded from the database of Genotypes and 169 

Phenotypes (dbGaP), including 8,275 PDAC cases and 6,723 controls of European ancestry. 170 

Detailed information on this dataset has been included elsewhere (17,20,32). Briefly, four 171 

GWAS studies, namely, PanScan I, PanScan II, PanScan III, and PanC4, were genotyped using 172 

the Illumina HumanHap550, 610-Quad, OmniExpress, and OmniExpressExome arrays, 173 
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respectively. Standard QC procedures were performed according to the consortia guidelines (32). 174 

Study participants who were related to each other, had sex discordance, had genetic ancestry 175 

other than Europeans, had a low call rate (less than 98% and 94% in PanC4 and PanScan, 176 

respectively), or had missing information on age or sex were excluded. Duplicated SNPs, and 177 

those with a high missing call rate (at least 2% and 6% in PanC4 and PanScan, respectively) or 178 

with violations of Hardy-Weinberg equilibrium (HWE) (P < 1×10-4 and P < 1×10-7 in PanC4 and 179 

PanScan, respectively), were also removed. Regarding SNP data from PanC4, those with minor 180 

allele frequency < 0.005, with more than two discordant calls in duplicate samples, with more 181 

than one Mendelian error in HapMap control trios, and those with sex difference in allele 182 

frequency > 0.2 or in heterozygosity > 0.3 for autosomes/XY in European descendants were 183 

further removed. We performed genotype imputation using Minimac3 after prephasing with 184 

SHAPEIT from a reference panel of the Haplotype Reference Consortium (r1.1 2016) (33,34). 185 

We retained imputed SNPs with an imputation quality of ≥0.3. The associations between 186 

individual genetic variants and PDAC risk were further estimated adjusting for age, sex and top 187 

principal components. The TWAS/FUSION framework was used to assess the protein-PDAC 188 

risk associations, by leveraging correlations between variants included in the prediction models 189 

based on the phase 3, 1000 Genomes Project data for European populations (15). We calculated 190 

the PWAS test statistic Z-score = w'Z/(w'Σs,sw)1/2, where the Z is a vector of standardized effect 191 

sizes of SNPs for a given protein (Wald z-scores), w is a vector of prediction weights for the 192 

abundance feature of the protein being tested, and the Σs,s is the LD matrix of the SNPs estimated 193 

from the 1000 Genomes Project as the LD reference panel. We used the false discovery rate 194 

(FDR) corrected P-value threshold of ≤ 0.05 to determine significant associations between 195 

genetically predicted protein concentrations and risk of PDAC.  196 
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 197 

Robustness analyses 198 

To further examine whether the identified significant associations from the main analyses 199 

may be robust to different strategies, three alternative strategies were used to test these proteins 200 

under different scenarios. Firstly, we established prediction models using the bslmm method 201 

embedded in TWAS/FUSION software. This method was not enabled by the default parameter 202 

due to the intensive Markov chain Monte Carlo (MCMC) computation, although bslmm has 203 

some advantages and might increase prediction accuracy in some conditions. Secondly, we 204 

pruned the highly correlated SNPs and only SNPs that are weakly correlated with each other 205 

were used as potential predictors. In the current analysis, we pruned SNPs using pruning 206 

parameters r2 = 0.1 and distance = 250 kb. Thirdly, we assessed the robustness of the significant 207 

association results by examining different p-value cutoffs for selecting informative trans-regions 208 

(p-value < 5×10-7, p-value < 5×10-9, and p-value < 5×10-10) as candidate predictors for model 209 

building. The association results with a nominal p-value < 0.05 and consistent effect direction 210 

were considered to be replicated. 211 

 212 

Somatic variants of genes encoding associated proteins 213 

For each of the genes encoding the proteins that are identified to be associated with PDAC 214 

risk, we evaluated potentially deleterious somatic level mutations in 150 PDAC patients included 215 

in The Cancer Genome Atlas (TCGA). The potentially deleterious somatic variants include 216 

missense mutations, splice site mutations, nonstop mutations, nonsense mutations, frameshift 217 

mutations, in-frame mutations and translation start site mutations.  218 
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The somatic level genetic changes were called using MuTect2 219 

(doi: https://doi.org/10.1101/861054) and deposited to the TCGA data portal. The enrichment of 220 

proportion of assessed genes containing such somatic level genetic events compared with the 221 

proportion of all protein-coding genes across the genome was evaluated using socscistatistics 222 

online website (https://www.socscistatistics.com/tests/ztest/default2.aspx). 223 

Ingenuity Pathway Analysis (IPA) and Protein-Protein Interaction (PPI) analysis 224 

To further assess whether genes encoding the identified PDAC associated proteins are 225 

enriched in specific pathways, molecular and cellular functions, and networks, we performed the 226 

enrichment analysis using Ingenuity Pathway Analysis (IPA) software (35). The "enrichment" 227 

score (Fisher exact test P value) that measures overlap of observed and predicted regulated gene 228 

sets was generated for each of the tested gene sets. The most significant pathways and functions 229 

with an enrichment P value less than 0.05 were reported. We also built protein-protein 230 

interaction (PPI) network using STRING database version 11.5 (https://string-db.org/) with 231 

0.400 confidence level (36). The STRING database integrates different curated databases 232 

containing information on known and predicted functional protein–protein associations.  233 

Drug repurposing analysis  234 

For the identified proteins, we further assessed whether there is any evidence supporting 235 

their potential roles in PDAC by using the OpenTargets (37). Focusing on those showing a 236 

potential relevance, we further mined evidence of their targeting drugs using the DrugBank (38) 237 

database. We also conducted molecular docking analysis for the identified proteins and 238 

corresponding candidate drug agents (39). Specifically, we downloaded the 3D structure of 239 

targeted proteins from Protein Data Bank (PDB) (40) with source code 1CPB, 3CDZ, 1IGR, 240 

https://doi.org/10.1101/861054
https://www.socscistatistics.com/tests/ztest/default2.aspx


Zhu et al. – Page 11 

 

3DFK, 5NO06, and drug agents from the PubChem database (41). We further worked out 241 

molecular docking between each of the proteins and the corresponding meta-drug agents to 242 

calculate the binding affinity scores (kcal/mol) for each pair of proteins and drugs. 243 

 244 

In vitro functional validation of genes encoding selected associated novel proteins 245 

Cell Lines and Culture Condition 246 

      Human pancreatic cancer cell lines PANC-1 and SU.86.86 were obtained from ATCC 247 

(American Type Culture Collection). All cells were cultured in vitro in DMEM (Dulbecco’s 248 

modified eagle medium) high glucose medium (Gibco, Novato, CA, United States) supplemented 249 

with 10% (v/v) fetal bovine serum (FBS) (Gibco). Cells were incubated at 37°C with 5% CO2. 250 

 251 

Gene Expression and Survival Analysis with TCGA Database 252 

 253 
The examination of GOLM1 and B4GALT1 gene expressions in Pancreatic 254 

Adenocarcinoma (PAAD) was conducted using GEPIA (Gene Expression Profiling Interactive 255 

Analysis). The platform, accessible at the following web link: http://gepia.cancer-pku.cn/, 256 

facilitated analysis with a dataset consisting of 179 tumor samples and 171 normal controls. The 257 

focus of survival analysis was exclusively on PAAD, leveraging TCGA data through the GEPIA 258 

web server. 259 

Customized gene selection, normalization, and survival methodologies were implemented 260 

to suit the unique characteristics of PAAD. Cohort thresholds were defined, restricting dataset 261 

selection to PAAD, and survival plots were generated. These measures were designed to precisely 262 

identify the correlation between gene expression and survival outcomes specific to this type of 263 

cancer. 264 

 265 
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Western blotting 266 

      Post 72-hour silencing, we processed control, B4GALT1-silenced, and GOLM1-silenced 267 

cells for Western blotting. Cells were lysed using RIPA buffer, and equal protein amounts were 268 

separated on 10% or 12% SDS polyacrylamide gels, then transferred onto PVDF membranes. To 269 

prevent non-specific antibody binding, membranes were blocked with 5% milk in TBS with 0.1% 270 

Tween for an hour. They were then probed with anti-B4GALT1, anti-GOLM1, and anti-GAPDH 271 

antibodies, followed by their respective HRP-conjugated secondary antibodies. Signal detection 272 

was performed using Pierce™ ECL Western Blotting Substrate and images were captured and 273 

analyzed using Odyssey FC and ImageStudio Software. 274 

 275 

Quantitative Real-Time PCR (qPCR) 276 

      Total RNA was extracted from cells using TRNzol reagent according to the manufacturer's 277 

protocol. The concentration of RNA was determined using a UV spectrophotometer. 278 

Subsequently, 2 mg of total RNA was reverse transcribed into cDNA using the iScript™ cDNA 279 

Synthesis Kit. qPCR analysis was performed on the CFX96™ Real-Time PCR Detection System 280 

using the iTaq™ Universal SYBR® Green Supermix. The aim was to detect the expression levels 281 

of three genes: B4GALT1, GOLM1, and GAPDH mRNAs. Specific primer pairs were used for 282 

each gene. For B4GALT1, the forward sequence was GTATTTTGGAGGTGTCTCTGCTC and 283 

the reverse sequence was GGGCGAGATATAGACATGCCTC. For GOLM1, the forward 284 

sequence was ATCACCACAGGTGAGAGGCTCA and the reverse sequence was 285 

ACTTCCTCTCCAGGTTGGTCTG. For the housekeeping gene GAPDH, the forward sequence 286 

was GTCTCCTCTGACTTCAACAGCG and the reverse sequence was 287 

ACCACCCTGTTGCTGTAGCCAA. During the qPCR analysis, melting curves were generated 288 
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to detect primer-dimer formation and confirm the specificity of the gene-specific peaks for each 289 

target. To ensure accurate quantification, the expression data were normalized to the amount of 290 

GAPDH mRNA expressed. 291 

 292 

Transfection of siRNA  293 

      The transfection of small-interfering RNA (siRNA) was performed using specific human 294 

siRNAs targeting GOLM1 (SASI_Hs01_00223155), B4GALT1 (SASI_Hs01_00080445), and the 295 

MISSION siRNA universal negative control, all of which were obtained from Sigma-Aldrich (St. 296 

Louis, MO). Cells were seeded in 6-well plates at a density of 1.5x105 cells per well and 297 

subsequently transfected with the siRNAs at a concentration of 40 nM. The transfection procedure 298 

utilized the lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, United States) following the 299 

manufacturer's recommended guidelines. Gene silencing at both mRNA and protein levels was 300 

typically observed 72 h post-transfection. As such, the cells were collected and subjected to assays 301 

at the 72-hour time point to assess the efficacy of gene silencing. 302 

 303 

Cell Proliferation Assay 304 

      To observe cell proliferation, cells were transfected with Mock siRNA, siGOLM11 and 305 

siB4GAL1 (40 nM). At 24 h after transfection, the cells were trypsinized and seeded into 96-well 306 

plates (Corning, NY, United States) at a density of 5000 cells/well in 200 ul media. The plates 307 

were incubated in a 37°C humidified incubator. On each day for [3-(4,5-dimethylthiazol-2-yl)-5-308 

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) assay. 309 

 310 

In vitro invasion assay 311 
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      Cell invasion was assessed following transfection with Mock siRNA, siGOLM11, and 312 

siB4GAL1 (40 nM). A modified Boyden chamber method was employed. Matrigel (BD 313 

Biosciences) was coated on the upper chamber of Transwell inserts (Corning, 8 μm pore size) at a 314 

concentration of 300 μg/ml, allowing gel formation for 2 hours at 37°C. Cells (5 x 10^4) were then 315 

suspended in 200 μl of serum-free medium and added to the upper chamber. The lower chamber 316 

contained 600 μl of medium with 10% FBS, acting as a chemoattractant. Following 24 hours of 317 

incubation at 37°C, non-invading cells on the upper membrane surface were gently removed using 318 

a cotton swab. Cells that invaded the lower membrane surface were fixed with 4% 319 

paraformaldehyde and stained with 0.1% crystal violet. Invasion was quantified by counting the 320 

stained cells on the underside of the membrane using a light microscope (10 random fields at 200x 321 

magnification). All experiments were performed in triplicate to ensure robustness of the findings. 322 

 323 

Wound Scratch assay 324 

      After 24 hours of transfection with Mock siRNA, siGOLM11, and siB4GAL1, PANC-1 325 

and SU.86.86 cells were cultured in a 96-well plate to form a monolayer. Using BioTek's 326 

AutoScratchTM Wound Making Tool, straight scratches were carefully created on the cell 327 

monolayer to mimic wounds, following the equipment manual's instructions. Time-lapse images 328 

of the scratches were captured at specific intervals (e.g., 0 hours, 12 hours, 24 hours, etc.) using 329 

the CytationTM 5 Cell Imaging Multi-Mode Reader. Subsequently, image analysis software was 330 

employed to quantify the closure of the wounds at each time point. Statistical analysis was 331 

performed to compare the wound closure rates at different time points, and the results were 332 

presented graphically. 333 

 334 
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Results  335 

The overall workflow of this study is shown in Figure 1. Of the proteins assessed, we 336 

were able to develop prediction models for 1,864 proteins with a prediction performance 337 

R2≥0.01. In the external validation step, 1,389 of them further demonstrated a correlation 338 

coefficient of ≥ 0.1 for predicted expression and measured expression levels. The heritability of 339 

the proteins ranged from 0.001 to 0.87, with an average value of 0.14. Of such proteins, we 340 

observed significant associations between genetically predicted expression levels of 40 proteins 341 

and PDAC risk at a false discovery rate (FDR) p-value of ≤ 0.05 (Figure 2, Tables 1 and 2). Of 342 

the associated proteins, 16 are novel ones that have not been reported in previous studies (Table 343 

1). Positive associations were observed for 10 of these proteins, and inverse associations were 344 

observed for six proteins (Table 1). The other 24 associated proteins have been previously 345 

reported in our study using pQTL as instruments (42) (Table 2). These include 10 that 346 

demonstrated positive associations and 14 that showed inverse associations.  347 

For the other proteins that were reported in our previous study using pQTL as instruments 348 

(42), while did not show a significant association after FDR correction in the current study 349 

(Supplementary Table 1), except for sTie-2, the directions of effect were consistent in the 350 

current study compared with those in the published work. Among them, for eight proteins, their 351 

associations were at P<0.05 in the current work using protein genetic prediction models as 352 

instruments (Supplementary Table 1).  353 

We compared the heritability of the prediction models established using cis+trans and vs 354 

cis-only predictors strategies. Here, we focused on the 490 models established using both cis and 355 

trans SNPs in the main analysis. The results showed that 250 out of the 490 (51.02%) models 356 

have higher estimated heritability with the cis+trans strategy (Supplementary Table 2), and 215 357 
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proteins (43.88%) showed the same estimated heritability between cis+trans and cis-only 358 

strategies (Supplementary Table 2). Only 25 proteins (5.10%) showed lower estimated 359 

heritability when using the cis+trans strategy (Supplementary Table 2). These results showed 360 

that trans SNPs could in general increase heritability of the prediction models.  361 

The robustness analysis showed that all the 40 PDAC-associated proteins had the same 362 

effect directions (Supplementary Table 3). A total of 39 proteins could be tested using the 363 

bslmm method and 37 out of the 39 (94.87%) could be replicated (except for SEMA6A and 364 

CHST11 proteins). When we removed highly correlated SNPs and only weak correlated SNPs 365 

were used for establishing prediction models, a total of 39 prediction models were established. 366 

The association results showed that associations of 38 out of the 39 (97.44%) proteins could be 367 

replicated (Supplementary Table 3). In addition, three different p-value thresholds (p-value < 368 

5×10-7, p-value < 5×10-9, and p-value < 5×10-10) for selecting trans-SNPs were examined 369 

(Supplementary Table 3). All the association results were consistent with those in our main 370 

analysis. The above results showed the robustness of our main results. 371 

Based on a comparison of exome-sequencing data of tumor tissue and tumor-adjacent 372 

normal tissue obtained from 150 TCGA PDAC patients, the somatic level changes of potentially 373 

functional variants/mutations were observed in at least one patient for 10 of the 39 genes encoding 374 

identified associated proteins (Supplementary Table 4). This proportion (10/39=25.64%) is 375 

significantly higher (enrichment P value < 0.00001) than the overall observed proportion of 376 

potentially functional changes across the genes encoding the proteins tested for association 377 

analyses (95/1,218 = 7.80%; here 1,218 represents the number of the genes available in TCGA 378 

analysis as part of the genes encoding the 1,389 assessed proteins).  379 
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According to the IPA analysis, several cancer-related functions were enriched for the 380 

genes encoding our identified proteins (Supplementary Table 5). The top canonical pathways 381 

identified included IL-15 production (P=2.21×10-3), Heparan Sulfate Biosynthesis (Late Stages) 382 

(P=2.97×10-3), Heparan Sulfate Biosynthesis (P=3.99×10-3), Sperm Motility (P=7.73×10-3), and 383 

Dermatan Sulfate Biosynthesis (Late Stages) (P=0.01) (Figure 3). Among the related networks, 384 

the top network was cell-to-cell signaling and interaction, cardiovascular system development 385 

and function, organismal development (Supplementary Figure 1), followed by cancer, 386 

organismal injury and abnormalities, respiratory disease, free radical scavenging, cell death and 387 

survival, organismal injury and abnormalities, carbohydrate metabolism, small molecule 388 

biochemistry, cell cycle, and cancer, cell-to-cell signaling and interaction, cellular assembly and 389 

organization. Interactions among identified proteins were investigated based on STRING 390 

database (Figure 3). In the network, KDR was predicted to interact with IGF1R, NOTCH1, 391 

MET, SEMA6A, ENG, SELP, and SELE. 392 

Based on interrogation using the OpenTargets and DrugBank database, ten of the 393 

identified proteins are supported to be relevant to PDAC (overall score >0 in OpenTargets) and 394 

are targets of existing drugs approved to be used to treat human conditions (Table 3). Our work 395 

indicates potential drug repurposing opportunities of these drug targets to other indications. The 396 

scores of molecular docking between each of the proteins and the corresponding meta-drug 397 

agents were included in Table 3.  398 

Among the 16 novel associated proteins, analysis of TGCA data also revealed potential 399 

relevance of B4GT1 and GOLM1 with tumor development (Supplementary Figure 2 and 3). The 400 

examination of GOLM1 and B4GALT1 gene expression in PADD cancer was conducted using 401 

GEPIA (Gene Expression Profiling Interactive Analysis). The analysis involved a dataset 402 
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consisting of 179 tumor samples and 171 normal controls. The box plot analysis revealed a 403 

statistically significant increase in GOLM1 (Supplementary Figure 2A) and B4GALT1 404 

(Supplementary Figure 3A) expression in the tumor samples as compared with the normal 405 

control group. GEPIA, accessible through the following web link: http://gepia.cancer-pku.cn/, 406 

served as the platform for this investigation. The survival analysis of GOLM1 and B4GALT1 gene 407 

expression in PADD cancer was conducted using GEPIA. Survival plots revealed a significant 408 

decrease in overall survival (OS) and disease-free survival (DFS) among tumor samples exhibiting 409 

elevated GOLM1 or B4GALT1 expression (n=89) compared with those with low expression 410 

(n=89). Employing the Log-rank test for hypothesis testing, our findings emphasize a noteworthy 411 

correlation between heightened gene expression and reduced OS and DFS in the PADD cancer 412 

cohort (Supplementary Figure 2B, C, Supplementary Figure 3B, C). Consequently, these two 413 

proteins were selected as the targets for experimental validation to further investigate their 414 

potential roles in PDAC development. Two gene-specific siRNAs (siGOML1 and siB4GAL1) 415 

were employed for post-transcriptional gene silencing of GOML1 and B4GAL1, resulting in the 416 

knockdown of these two genes. As depicted in Figure 4A, qPCR analysis demonstrated a 417 

significant reduction in the mRNA expression of GOML1 and B4GAL1 in PANC-1 and SU.86.86 418 

cells at 72 hours after transfection with siGOML1 or siB4GAL1 (40 nM) when compared with the 419 

untreated control group (P < 0.05). No significant difference was observed between the negative 420 

control group (NC, Mock-siRNA transfection) and the control groups (Figure 4A). This trend was 421 

also consistent in the western blot analysis (Figure 4B) in comparison with the qPCR assay, 422 

indicating that siGOML1 and siB4GAL1 effectively reduce the expression of GOML1 and 423 

B4GAL1 at both mRNA and protein levels in PANC-1 and SU.86.86 cells. 424 

To assess the biological impact of GOLM11 and B4GAL1 silencing in PANC-1 and 425 
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SU.86.86 cells, cell proliferation was examined using the MTS assay over a span of five 426 

consecutive days. As shown in Figures 4C and 4D, transfection of siGOML1 and siB4GAL1 427 

inhibited cell proliferation in both PANC-1 and SU.86.86 cells compared with the control 428 

(untransfected) and NC (Mock-siRNA transfected) groups. Furthermore, a wound healing assay 429 

demonstrated that at 12- and 24-hours post-scratch treatment, the open wound area in GOLM11 430 

and B4GAL1 siRNA-transfected cells was significantly larger than that in mock siRNA-transfected 431 

or untransfected cells (Figure 4D, 4E), implying that knockdown of GOLM11 and B4GAL1 in 432 

PANC-1 and SU.86.86 cells effectively inhibited cell migration in vitro. To investigate whether 433 

the down-regulation of GOLML1 and B4GAL1 affects the invasive capabilities of PANC-1 and 434 

SU.86.86 cells, a transwell analysis was performed. The results revealed a significant inhibition of 435 

cell invasion in PANC-1 and SU.86.86 cells upon GOLML1 or B4GAL1 silencing. The number of 436 

siGOML1 or siB4GAL1-transfected cells invading through the membrane was markedly lower 437 

than that of control-siRNA transfected cells (Fig. 4F, P < 0.05). Together, our findings suggest 438 

that GOLM1 and B4GT1 play crucial roles in PDAC cell proliferation, migration, and invasion, 439 

and their suppression could potentially serve as a therapeutic strategy for PDAC. 440 

 441 

Discussion 442 

This is the first PWAS study using comprehensive protein genetic prediction models to 443 

assess the associations between genetically predicted circulating protein concentrations and 444 

PDAC risk. Overall, we identified 40 proteins that were significantly associated with PDAC risk 445 

after FDR correction, including 16 novel proteins that have not been previously reported. Our 446 

results suggest new knowledge on the genetics and etiology of PDAC, and the newly identified 447 

proteins could serve as candidate blood biomarkers for risk assessment of PDAC, a highly fatal 448 



Zhu et al. – Page 20 

 

malignancy. We also identified potential drug repurposing opportunities targeting the identified 449 

proteins which warrant further investigations.  450 

In previous studies, blood concentrations of specific proteins such as CA242, PIVKA-II, 451 

PAM4, S100A6, OPN, RBM6, EphA2, and OPG have been reported to be potentially associated 452 

with PDAC risk (4-7). In the INTERVAL dataset, proteins S100A6 and OPG were captured, and 453 

we were able to develop satisfactory prediction models for their levels in blood (17). We 454 

observed a significant association with the same direction for OPG (P-value = 0.03, Z-score = 455 

2.23) but not for S100A6 (P-value=0.93) with PDAC risk. Such inconsistent findings with 456 

previous studies might be explained by potential biases in previous epidemiological studies and 457 

warrant further exploration.  458 

In this large study, we identified 16 novel proteins that were associated with PDAC risk. 459 

Previous studies have suggested potential roles for some of the novel proteins in pancreatic 460 

tumorigenesis. Tie1 deficiency is reported to induce endothelial–mesenchymal transition 461 

(EndMT) and promote a motile phenotype (43). EndMT is known to present in human pancreatic 462 

tumors (43). Another study reports that TNF-α that is abundantly present in PDAC, induces 463 

EndMT and acts at least partially through TIE1 regulation in murine pancreatic tumors (44). For 464 

CPB1, immunohistochemistry of tissue microarray from PDAC patients showed that it was 465 

significantly downregulated in pancreatic tumor compared with adjacent normal pancreatic 466 

tissues (45). This aligns with the negative association between genetically predicted levels of 467 

carboxypeptidase B1 and PDAC risk observed in this study. In another study it was reported that 468 

mutations in CPB1 were associated with pancreatic cancer (46). Regarding GOLM1, one study 469 

supported that long non-coding RNA TP73-AS1 could promote pancreatic cancer progression 470 

through GOLM1 upregulation by competitively binding to miR-128-3p (47). Further 471 
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investigations are warranted to clarify roles of the identified proteins in pancreatic cancer 472 

development.  473 

Based on drug repurposing analyses, we prioritized several drugs that may serve as 474 

promising candidates for treating PDAC, such as Crizotinib, Cabozantinib, Brigatinib, 475 

Capmatinib, Tepotinib, and Tivozanib targeting Met. Previous research has supported potential 476 

link between these drugs and PDAC. For example, earlier research found that Crizotinib and 477 

Cabozantinib could decrease PDAC cell line viability in vitro (48). Cabozantinib together with 478 

photodynamic therapy had been shown to achieve local control and decrease in tumor metastases 479 

in preclinical PDAC models (49). A translational mathematical modeling study revealed that 480 

Tepotinib at a dose selection of 500 mg once daily could be effective for PDAC (50). Further 481 

work is needed to assess potential efficacy of these drug candidates in PDAC treatment.  482 

There are several strengths of this study for detecting proteins associated with PDAC 483 

risk. We developed comprehensive protein genetic prediction models as instruments, which not 484 

only potentially minimize biases commonly encountered in conventional observational study 485 

design, but also bring improved statistical power compared with the design of only using pQTLs 486 

as instruments. However, several limitations of this study need to be recognized when 487 

interpreting our findings. First, our results may still be susceptible to potential pleiotropic effects 488 

and may not necessarily infer causality. Similar to the design of transcriptome-wide association 489 

study (TWAS), our PWAS should be useful for prioritizing causal proteins; however we cannot 490 

completely exclude the possibility of false positive findings for some of the identified 491 

associations (51). Several likely reasons may induce these, such as correlated protein expression 492 

across participants, correlated genetically predicted protein expression, as well as shared genetic 493 

variants (51). Future functional investigation will better characterize whether the identified 494 
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proteins play a causal role in PDAC development. Second, since in this work the genetically 495 

regulated components of plasma protein levels were studied but not the overall measured levels, 496 

the utility of the identified proteins as risk biomarkers for PDAC remains unclear. Additional 497 

work for measuring circulating protein levels in pre-diagnostic blood samples are needed to 498 

evaluate the prediction role of these proteins in PDAC risk. Third, for our current model 499 

development design, the candidate predictors for each protein of interest merely rely on the 500 

potentially associated SNPs at a specific statistical threshold. A small proportion of proteins were 501 

excluded for downstream model construction because of the lack of such SNPs. Future work 502 

considering additional potential predictors beyond such statistics-based selection would be 503 

needed to improve the ability to evaluate additional proteins. Fourth, previous work has 504 

supported that covariates of smoking and body mass index are related to blood protein levels 505 

(52,53). In the current study using INTERVAL resources, we were not able to adjust for these 506 

covariates during model construction. Further study is thus needed to validate our results. Lastly, 507 

the current study largely focuses on Europeans for both protein genetic prediction model 508 

development and downstream association analyses with PDAC risk. Future research is warranted 509 

to study proteins associated with PDAC risk in other non-European ancestries.  510 

Our TGCA data analysis has revealed potential relevance of B4GT1 and GOLM1 in 511 

tumorigenesis and tumor progression. B4GT1 (Beta-1,4-Galactosyl transferase 1) is an enzyme 512 

primarily responsible for catalyzing the galactose transfer to specific receptor molecules within 513 

organisms (54). Its significance lies in its involvement in various essential biological processes, 514 

such as intercellular communication and cell adhesion. Furthermore, alterations in the expression 515 

level of B4GT1 have been observed in certain cancers, suggesting its potential implication in tumor 516 

initiation and development (55). This intriguing finding has led us to select B4GT1 as a priority 517 
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target for further exploration of its role in PDAC using experimental techniques. Similarly, our 518 

attention was drawn to GOLM1 (Golgi Membrane Protein 1), a membrane protein predominantly 519 

located in the Golgi apparatus, which plays a pivotal role in cellular secretion and transport 520 

processes. Recent investigations have demonstrated an upregulation of GOLM1 expression in 521 

multiple cancer types, including liver cancer, lung cancer, and pancreatic cancer. Such evidence 522 

strongly suggests that GOLM1 might exert a significant influence on the onset and progression of 523 

these malignancies (56). Consequently, we selected GOLM1 as an additional focus for verification 524 

to gain deeper insights into its involvement in PDAC. By utilizing RNAi technology to silence 525 

these genes, our experimental results corroborated the critical roles of GOLM1 and B4GT1 in 526 

driving PDAC cell proliferation, migration, and invasion. Subduing these genes holds promise as 527 

a potential therapeutic approach for PDAC treatment. 528 

In summary, using protein genetic prediction models, we identified 16 novel protein 529 

biomarker candidates for which the genetically predicted circulating levels were significantly 530 

associated with PDAC risk. Future work is needed to better characterize the potential roles of 531 

these proteins in the etiology of PDAC development, assess the predictive role of such markers 532 

in risk assessment of PDAC, and evaluate whether the potential drug repurposing opportunities 533 

we identified may improve PDAC outcomes.  534 

Data availability  535 

The pancreatic cancer genetic datasets used for the association analyses described in this 536 

manuscript can be obtained from dbGaP [57] (accession numbers phs000206.v5.p3 and 537 

phs000648.v1.p1). The INTERVAL individual-level genotype and protein data, and full 538 

summary association results from the genetic analysis, are available through the European 539 

Genotype Archive (accession number EGAS00001002555). Summary association results are 540 
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also publicly available at [58] http://www.phpc.cam.ac.uk/ceu/proteins/, through PhenoScanner 541 

[59] http://www.phenoscanner.medschl.cam.ac.uk and from the NHGRI-EBI GWAS Catalog 542 

[60]. Other data further supporting this work are openly available in the GigaScience repository, 543 

GigaDB [61].  544 
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Figure legends 628 

Figure 1. The overall design of this study. 629 

Figure 2. Manhattan plot of 40 identified proteins associated with PDAC risk. Proteins with blue 630 

color represent those identified in our previous work using pQTL as instruments, and proteins with 631 

red color represent novel ones identified in the current study. 632 

Figure 3. PPI network and canonical pathways of 40 identified proteins associated with PDAC 633 

risk. Network nodes represent proteins; edge thickness is proportional to the evidence for the PPI; 634 
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and dashed lines represent the interaction among clusters. The enrichment of canonical pathways 635 

was determined using IPA software. 636 

Figure 4. The analysis of cell proliferation, migration and invasion on PANC-1 and SU.86.86 637 

cells with siB4GLAT1 and siGOLM1 transfection. The quantitative real-time PCR (qPCR) assay 638 

and the western blot assay (A) were used to investigate the RNAi effect of siB4GLAT1 and 639 

siGOLM1 (40 nM, 72 h) in PANC-1 and SU.86.86 cells. GAPDH were used as an internal 640 

control for qPCR analyses and western blot analyses, respectively (B,C) The effect of 641 

transfection with siB4GLAT1 and siGOLM1 (40 nM) on cell proliferation. The cells were 642 

detected by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-643 

2H-tetrazolium] assay on each day for 5 consecutive days. (D,E) Silencing of B4GLAT1 and 644 

GOLM1 inhibited migration of PANC-1 and SU.86.86 cells. Representative images of wound 645 

scratch assay performed to evaluate the motility of cells after silencing B4GLAT1 and GOLM1. 646 

After transfection, a scratch was made on cells monolayer and was monitored with microscopy 647 

every 12 hours (0, 12, and 24 h). Bar graphs show normalized wound area, calculated using Gen 648 

5. Representative images of invasion assay. Data are represented as mean ± SD from triplicate 649 

samples, where *p < 0.01 compared to the control. (F) Effect of siB4GLAT1 and siGOLM1 650 

transfection on the invasion of PANC-1 and SU.86.86 cells. After siB4GLAT1 and siGOLM1 651 

transfection for 48 h, invasive ability of PANC-1 and SU.86.86 cells was identified by transwell 652 

assay. **P < 0.01 compared with the control cells; ##P < 0.01 compared with the mock cells; 653 

data are expressed as the mean ± SD, n = 3. 654 

 655 
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Table 1. Novel proteins with genetically predicted concentrations in plasma to be associated with pancreatic cancer risk  

 

Protein SOMAmer ID Protein full name 

Protein-

encoding 

gene 

Region for 

protein 

encoding 

gene 

Prediction model 

method 

Heritability 
Number of 

Predicting SNPs 

Number of 

Predicting 

SNPs-Cis* 

Number of 

Predicting 

SNPs-Trans 

Model 

internal cross 

validation R2 

Model 

external 

validation 

R2 

Z-

valuea P-valuea 

FDR P-

valueb 

IL-23 R IL23R.5088.175.3 Interleukin-23 receptor IL23R 1p31.3 elastic net 0.06 24 24 0 0.04 0.04 3.55 3.80×10-4 0.02 

sTie-1 TIE1.2844.53.2 

Tyrosine-Protein Kinase 

Receptor Tie-1, Soluble TIE1 1p34.2 lasso 0.2 18 7 11 0.22 0.28 5.67 1.46×10-8 1.22×10-6 

FA20B FAM20B.7198.197.3 

Glycosaminoglycan 

Xylosylkinase FAM20B 1q25.2 lasso 0.05 8 5 3 0.02 0.04 5.30 1.17×10-7 7.82×10-6 

FAM3D FAM3D.13102.1.3 Protein FAM3D FAM3D 3p14.2 elastic net 0.27 58 16 42 0.37 0.36 6.10 1.07×10-9 1.02×10-7 

Carboxypeptidase 

B1 CPB1.6356.3.3 Carboxypeptidase B CPB1 3q24 lasso 0.07 7 3 4 0.04 0.03 -4.55 5.38×10-6 3.00×10-4 

RAP LRPAP1.3640.14.3 

alpha-2-macroglobulin 

receptor-associated protein LRPAP1 4p16.3 elastic net 0.47 168 23 145 0.27 0.22 3.21 0.001 0.04 

Semaphorin-6A SEMA6A.7945.10.3 Semaphorin-6A SEMA6A 5q23.1 elastic net 0.11 66 44 22 0.05 0.05 -3.57 3.54×10-4 0.02 

B4GT1 B4GALT1.13381.49.3 

Beta-1,4-

galactosyltransferase 1 B4GALT1 9p21.1 elastic net 0.10 39 16 23 0.08 0.10 4.65 3.29×10-6 1.96×10-4 

GOLM1 GOLM1.8983.7.3 Golgi Membrane Protein 1 GOLM1 9q21.33 lasso 0.11 10 0 10 0.14 0.17 8.07 7.12×10-16 2.14×10-13 

QSOX2 QSOX2.8397.147.3 Sulfhydryl oxidase 2 QSOX2 9q34.3 elastic net 0.31 28 10 18 0.40 0.40 7.98 1.44×10-15 2.75×10-13 

KIN17 KIN.14643.27.3 

DNA/RNA-binding 

protein KIN17 KIN 10p14 elastic net 0.08 29 0 29 0.05 0.07 -5.52 3.31×10-8 2.60×10-6 

ISLR2 ISLR2.13124.20.3 

Immunoglobulin 

superfamily containing 

leucine-rich repeat protein 

2 ISLR2 15q24.1 elastic net 0.17 77 32 45 0.14 0.13 -3.45 5.65×10-4 0.02 

DPEP2 DPEP2.8327.26.3 Dipeptidase 2 DPEP2 16q22.1 elastic net 0.07 36 0 36 0.06 0.05 -4.01 5.97×10-5 0.003 

Chymotrypsin CTRB1.5671.1.3 Chymotrypsinogen B CTRB1 16q23.1 elastic net 0.35 85 69 16 0.23 0.24 -4.32 1.59×10-5 8.50×10-4 
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Laminin 

LAMA1.LAMB1.LAMC1.

2728.62.2 Laminin 

LAMA1, 

LAMB1, 

LAMC1 

18p11.31, 

7q31.1, 

1q25.3 elastic net 0.09 62 14 48 0.08 0.05 3.88 1.06×10-4 0.005 

TPST2 TPST2.8024.64.3 

Protein-Tyrosine 

Sulfotransferase 2 TPST2 22q12.1 elastic net 0.08 52 28 24 0.07 0.08 5.88 4.16×10-9 3.71×10-7 

* SNPs within 1MB of the protein-encoding gene  

a Associations between genetically predicted protein levels and PDAC risk after adjustment for age, sex, and top 10 principle components. 

b FDR P-value: false discovery rate (FDR) adjusted P-value; associations with a FDR p≤0.05 considered statistically significant 
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Table 2. Previously reported proteins with genetically predicted concentrations in plasma to be associated with pancreatic cancer risk  

 

Protein SOMAmer ID Protein full name 

Protein-

encoding 

gene 

Region for 

protein 

encoding 

gene 

Prediction model 

method 

Heritability 
Number of 

Predicting 

SNPs 

Number of 

Predicting 

SNPs-Cis* 

Number of 

Predicting 

SNPs-Trans 

Model 

internal cross 

validation R2 

Model 

external 

validation 

R2 Z-valuea P-valuea 

FDR P-

valueb 

sE-Selectin SELE.3470.1.2 E-selectin SELE 1q24.2 lasso 0.30 6 0 6 0.39 0.44 -7.88 3.33×10-15 5.47×10-13 

P-Selectin SELP.4154.57.2 P-Selectin SELP 1q24.2 lasso 0.33 11 7 4 0.26 0.27 -3.77 1.66×10-4 0.008 

LMA2L LMAN2L.8013.9.3 VIP36-like protein LMAN2L 2q11.2 top1 0.04 1 1 0 0.03 0.02 3.35 8.01×10-4 0.03 

Alkaline 

phosphatase, 

intestine ALPI.10463.23.3 

Intestinal-type alkaline 

phosphatase ALPI 2q37.1 lasso 

0.03 

8 0 8 0.03 0.06 -6.79 1.09×10-11 1.21×10-9 

VEGF sR2 KDR.3651.50.5 

Vascular endothelial 

growth factor receptor 2 KDR 4q12 elastic net 
0.29 

56 18 38 0.18 0.12 -6.21 5.22×10-10 5.37×10-8 

ADH1B ADH1B.9834.62.3 Alcohol dehydrogenase 1B ADH1B 4q23 lasso 0.12 6 0 6 0.08 0.03 3.21 0.001 0.04 

LIF sR LIFR.5837.49.3 

Leukemia inhibitory factor 

receptor LIFR 5p13.1 top1 
0.04 

1 0 1 0.03 0.02 -7.39 1.42×10-13 1.73×10-11 

gp130, soluble IL6ST.2620.4.2 

Interleukin-6 receptor 

subunit beta IL6ST 5q11.2 elastic net 
0.08 

51 21 30 0.06 0.05 -3.69 2.22×10-4 0.01 

GP116 ADGRF5.6409.57.3 

Adhesion G protein-

coupled receptor F5 ADGRF5 6p12.3 lasso 
0.42 

22 15 7 0.46 0.43 -4.65 3.37×10-6 1.96×10-4 

CD36 ANTIGEN CD36.2973.15.2 Platelet glycoprotein 4 CD36 7q21.11 top1 0.04 1 0 1 0.03 0.05 3.31 9.25×10-4 0.03 

Met MET.2837.3.2 

Hepatocyte growth factor 

receptor MET 7q31 blup 
0.09 

1,668 603 1,065 0.07 0.04 -5.06 4.27×10-7 2.72×10-5 

STOM STOM.8261.51.3 

Erythrocyte band 7 integral 

membrane protein STOM 9q33.2 lasso 
0.10 

5 0 5 0.11 0.05 3.31 9.18×10-4 0.03 

BGAT ABO.9253.52.3 

Histo-blood group ABO 

system transferase ABO 9q34.2 blup 
0.55 

2,473 2,347 126 0.72 0.72 9.18 4.20×10-20 5.62×10-17 

Notch 1 NOTCH1.5107.7.2 

Neurogenic locus notch 

homolog protein 1 NOTCH1 9q34.3 top1 
0.02 

1 0 1 0.01 0.02 3.29 9.97×10-4 0.04 
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Endoglin ENG.4908.6.1 Endoglin ENG 9q34.11 top1 0.02 1 0 1 0.01 0.01 -8.04 8.93×10-16 2.14×10-13 

ST4S6 

CHST15.4469.78.2 
Carbohydrate 

sulfotransferase 15 CHST15 10q26.13 

lasso 0.05 5 1 4 0.05 0.03 -8.62 6.46×10-18 4.32×10-15 

CHST15.14097.86.3 lasso 0.06 9 2 7 0.04 0.02 -8.03 9.60×10-16 2.14×10-13 

CHSTB CHST11.7779.86.3 

Carbohydrate 

sulfotransferase 11 CHST11 12q23.3 elastic net 
0.15 

69 46 23 0.11 0.07 3.52 4.25×10-4 0.02 

THSD1 THSD1.5621.64.3 

Thrombospondin type-1 

domain-containing protein 

1 THSD1 13q14.3 elastic net 

0.07 

44 27 17 0.04 0.03 -5.34 9.41×10-8 6.62×10-6 

GLCE GLCE.7808.5.3 

D-glucuronyl C5-

epimerase GLCE 15q23 lasso 
0.27 

11 6 5 0.36 0.34 4.18 2.94×10-5 0.002 

IGF-I sR IGF1R.4232.19.2 

Insulin-like growth factor 1 

receptor IGF1R 15q26.3 top1 
0.01 

1 0 1 0.01 0.02 -7.39 1.42×10-13 1.73×10-11 

Desmoglein-2 DSG2.9484.75.3 Desmoglein-2 DSG2 18q12.1 elastic net 0.06 66 44 22 0.04 0.06 5.34 9.18×10-8 6.62×10-6 

DC-SIGN CD209.3029.52.2 CD209 Antigen CD209 19p13.2 elastic net 0.30 58 26 32 0.39 0.38 8.52 1.62×10-17 7.22×10-15 

IR INSR.3448.13.2 Insulin receptor INSR 19p13.2 lasso 0.09 7 0 7 0.09 0.12 -7.53 4.98×10-14 7.40×10-12 

* SNPs within 1MB of the protein-encoding gene  

a Associations between genetically predicted protein levels and PDAC risk after adjustment for age, sex, and top 10 principle components. 

b FDR P-value: false discovery rate (FDR) adjusted P-value; associations with a FDR p≤0.05 considered statistically significant 
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Table 3. Drug repurposing opportunities  

 

Protein Protein full name 

Protein-

encoding 

gene 

OpenTargets 

information 

(overall 

score) Drugbank ID Drug name Molecular action 

Molecular docking 

score* 

sTie-1 

Tyrosine-Protein Kinase 

Receptor Tie-1, Soluble TIE1 0.006 DB12010 Fostamatinib inhibitor -6.1 

Carboxypeptidase B1 Carboxypeptidase B CPB1 0.159 DB04272 Citric acid NA -3.9 

Chymotrypsin Chymotrypsinogen B CTRB1 0.078 DB06692 Aprotinin NA MDNA 

sE-Selectin E-selectin SELE 0.023 DB01136 Carvedilol inhibitor -6.9 

P-Selectin  P-Selectin SELP 0.008 

DB01109 Heparin inhibitor -4.9 

DB08813 Nadroparin inhibitor -4.9 

DB06779 Dalteparin inhibitor -4.9 

DB15271 Crizanlizumab inhibitor 3DSNA 

VEGF sR2 

Vascular endothelial 

growth factor receptor 2 KDR 0.367 

DB06589 Pazopanib inhibitor -6.3 

DB08896 Regorafenib inhibitor -6.5 

DB09079 Nintedanib inhibitor -5.8 

DB14840 Ripretinib inhibitor -6.6 

DB00398 Sorafenib antagonist -6.6 

DB01268 Sunitinib inhibitor -5.6 

DB06595 Midostaurin antagonist inhibitor -5.1 

DB06626 Axitinib inhibitor -6.0 

DB08875 Cabozantinib antagonist -7.0 

DB08901 Ponatinib inhibitor -6.9 

DB09078 Lenvatinib inhibitor -6.1 
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DB05578 Ramucirumab antagonist 3DSNA 

DB12010 Fostamatinib inhibitor -5.3 

DB12147 Erdafitinib substrate -5.5 

DB15822 Pralsetinib inhibitor -6.9 

DB11800 Tivozanib inhibitor -6.4 

ADH1B Alcohol dehydrogenase 1B ADH1B 0.001 

DB00898 Ethanol substrate -2.8 

DB09462 Glycerin NA -3.7 

DB00157 NADH substrate -9.6 

DB01213 Fomepizole inhibitor -3.9 

Met 

Hepatocyte growth factor 

receptor MET 0.304 

DB08865 Crizotinib inhibitor -8.1 

DB08875 Cabozantinib antagonist -8 

DB12267 Brigatinib inhibitor -8.2 

DB12010 Fostamatinib inhibitor -6.7 

DB11791 Capmatinib inhibitor -8.7 

DB15133 Tepotinib inhibitor -8.3 

DB11800 Tivozanib inhibitor -8.2 

DB16695 Amivantamab antagonist antibody 3DSNA 

IGF-I sR 

Insulin-like growth factor 1 

receptor IGF1R 0.099 

DB00071 Insulin pork NA MDNA 

DB00046 Insulin lispro activator MDNA 

DB01307 Insulin detemir activator MDNA 

DB00047 Insulin glargine activator MDNA 

DB01306 Insulin aspart activator MDNA 

DB01309 Insulin glulisine activator MDNA 

DB09564 Insulin degludec activator MDNA 
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DB14751 Mecasermin rinfabate agonist MDNA 

DB09456 Insulin beef activator MDNA 

DB08804 Nandrolone decanoate inducer -5.8 

DB01277 Mecasermin agonist 3DSNA 

DB00030 Insulin human activator MDNA 

DB06343 Teprotumumab binder, antibody 3DSNA 

DB12267 Brigatinib inhibitor -5.7 

IR Insulin receptor INSR 0.013 

DB00047 Insulin glargine agonist MDNA 

DB00071 Insulin pork binder MDNA 

DB01307 Insulin detemir agonist MDNA 

DB00046 Insulin lispro agonist MDNA 

DB01306 Insulin aspart agonist MDNA 

DB01309 Insulin glulisine agonist MDNA 

DB09564 Insulin degludec agonist MDNA 

DB09129 Chromic chloride activator MDNA 

DB14751 Mecasermin rinfabate NA MDNA 

DB09456 Insulin beef agonist MDNA 

DB00030 Insulin human agonist MDNA 

DB01277 Mecasermin NA 3DSNA 

DB12267 Brigatinib binding -8.4 

DB12010 Fostamatinib inhibitor -7.5 

* a score of ≤-7 represents a good interaction between the protein and corresponding drug agent and is bolded. 

MDNA: Molecular docking not applicable 



Zhu et al. – Page 41 

 

3DSNA: 3D structure not available. 
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