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Supplemental Figure 1: A method for quantitative analysis of 3D nerve structures acquired with 
QLSM. A) 4wk, 12wk, 40wk, and 80wk calvaria before and after tissue clearing with 2’2-thiodiethanol. 
B) Workflow of quantitative nerve analysis beginning with lightsheet imaging, followed image 
processing with Imaris®, ImageJ®, and Ilastik®. C) Comparison of segmentation of nerves using Imaris® 
and Ilastik® relative to the original fluorescent images acquired with QLSM. Scale bar is 250 μm. D) 
Imaris®-derived volume fraction for TUBB3+ nerves in the frontal bone region. E) Ilastik®-derived 
volume fraction for TUBB3+ nerves in the frontal bone region. Data are mean ± SD. Statistics were 
performed with a two-way ANOVA with post-hoc Tukey HSD test. *p<0.5 where designated.  
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Supplemental Figure 2: Alternate methods for imaging calvarial nerves. A) 50 μm thick cross-section 
of TUBB3+ nerves from a coronal calvarium section. Scale bar is 1000 μm. Inset scale bar is 150 μm. B) 
MIP image acquired at 10x from confocal microscopy of the whole-mount calvarial tissue in the parietal 
bone, coronal suture, and frontal bone. Scale bar is 200 μm. C) MIP image acquired at 20× with confocal 
microscopy of whole-mount calvaria; tissue in the parietal bone. Scale bar is 50 μm.  
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Supplemental Figure 3: Changes in TUBB3+ nerve interactions with vasculature during aging. A) Vessel 
volume calculations for CD31+ blood vessels for P0, 4wk, 12wk, 40wk, and 80wk calvaria. B) Vessel volume 
calculations for Emcn+ blood vessels for P0, 4wk, 12wk, 40wk, and 80wk calvaria. C) 50 μm coronal cross-
section of TUBB3+ nerves and CD31+ and Emcn+ blood vessels. White arrowheads represent nerves and 
yellow arrowheads indicate vessels in transcortical canals. Scale bar is 300 μm. D) Full calvaria MIP images 
for CD31+ and Emcn+ blood vessels and TUBB3+ nerves in P0, 4wk, 12wk, 40wk, and 80wk mice. Scale bar 

is 1000 μm. E-I) Spatial association histograms from TUBB3+ nerve association to CD31
hi

Emcn
-
 (green), 

CD31
hi

Emcn
hi

 (yellow), and CD31
lo

Emcn
hi

 (red) blood vessels in E) P0, F) 4wk, G) 12wk, H) 40wk, and I) 80wk 
mice.  
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  641 Supplemental Figure 4: Regional changes in vessel phenotype distributions over the mouse lifespan. 
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Supplemental Figure 5: Workflow for image quantification with Imaris®. Prior to spatial down-
sampling and post-Ilastik® nerve segmentation, nerves and blood vessels undergo an initial 
segmentation with Imaris® to generate individual channel volume data. Following down-sampling, 
initial Imaris® segmentations are used to generate binary masks for each channel. Next, a secondary 
segmentation is conducted with Imaris® to generate vessel phenotype classifications, spatial 
association analysis, and dura/periosteum analysis. The secondary segmentation splits surfaces into 
10 μm sections for subsequent analysis (zoomed region). Scale bars are 300 μm. Zoomed region scale 
bars are 150 μm.  
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Supplemental Figure 6: Regional changes in nerve subtype distributions during postnatal development. 
A) Full calvaria MIP images of 4wk and 12wk mice with NeuF+ nerves (blue). Scale bar is 1500 μm. B-D) 
Nerve volume fraction calculations for 4wk and 12wk NeuF+ nerves in the B) Parietal Bone region, C) 
Coronal Suture region, and D) Frontal Bone region. D) Full calvaria maximum intensity projections of 4wk 
and 12wk mice with CGRP+ nerves (blue). Scale bar is 300 μm. F-H) Nerve volume fraction calculations for 
4wk and 12wk CGRP+ nerves in the F) Parietal Bone region, G) Coronal Suture region, and H) Frontal Bone 
region. I) Full calvaria maximum intensity projections of 4wk and 12wk mice with TH+ nerves (blue). Scale 
bar is 300 μm. J-L) Nerve volume fraction calculations for 4wk and 12wk TH+ nerves in the J) Parietal Bone 
region, K) Coronal Suture region, and L) Frontal Bone region. Data are mean ± SD. Statistics were performed 
with a two-way ANOVA with post-hoc Tukey HSD test and a two-tailed t-test. 
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Supplemental Figure 7: Regional changes in nerve subtype dura and periosteum proportions during 
postnatal development. A) 50 μm coronal cross-sections of NeuF+ nerves in 4wk and 12wk mice. Scale 
bar is 300 μm. B-D) Dura and periosteum calculations for 4wk and 12wk NeuF+ nerves in the B) Parietal 
Bone region, C) Coronal Suture region, and D) Frontal Bone region. D) 50 μm coronal cross sections of 
CGRP+ nerves in 4wk and 12wk mice. Scale bar is 300 μm. F-H) Dura and periosteum calculations for 
4wk and 12wk CGRP+ nerves in the F) Parietal Bone region, G) Coronal Suture region, and H) Frontal 
Bone region. I) 50 μm coronal cross sections of TH+ nerves in 4wk and 12wk mice. Scale bar is 300 μm. 
J-L) Dura and periosteum calculations for 4wk and 12wk TH+ nerves in the J) Parietal Bone region, K) 
Coronal Suture region, and L) Frontal Bone region. Data are mean ± SD. Statistics were performed with 
a two-way ANOVA with post-hoc Tukey HSD test and a two-tailed t-test. *p<0.5 and ***p<0.01 where 
designated.  
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Supplemental Figure 8: Regional changes in nerve subtype dura and periosteum volume densities during 
postnatal development. A-F) Periosteal and dural nerve volume density calculations for NeuF+ nerves in 
4wk and 12wk samples in A) Parietal Bone Region Periosteum, B) Parietal Bone Region Dura Mater, C) 
Coronal Suture Region Periosteum, D) Coronal Suture Region Dura Mater, E) Frontal Bone Region 
Periosteum, F) Frontal Bone Region Dura Mater. G-L) Periosteal and dural nerve volume density 
calculations for CGRP+ nerves in 4wk and 12wk samples in G) Parietal Bone Region Periosteum, H) Parietal 
Bone Region Dura Mater, I) Coronal Suture Region Periosteum, J) Coronal Suture Region Dura Mater, K) 
Frontal Bone Region Periosteum, L) Frontal Bone Region Dura Mater. M-R) Periosteal and dural nerve 
volume density calculations for TH+ nerves in 4wk and 12wk samples in M) Parietal Bone Region 
Periosteum, N) Parietal Bone Region Dura Mater, O) Coronal Suture Region Periosteum, P) Coronal Suture 
Region Dura Mater, Q) Frontal Bone Region Periosteum, R) Frontal Bone Region Dura Mater. Data are 
mean ± SD. Statistics were performed with a two-way ANOVA with post-hoc Tukey HSD test. *p<0.5 where 
designated.  



Supplemental Table 1. List of all key reagents and resources used in this study. 653 
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Reagent or Resource 

 
Source 

 
Identifier 

 
Antibodies 

Rabbit anti-mouse TUBB3 (1:200) Abcam ab18207 

Rabbit anti-mouse NeuF (1:200) Thermo Fisher Scientific PA3-16721 
Rabbit anti-mouse CGRP (1:200) Sigma Aldrich C8198 

Rabbit anti-mouse TH (1:200) Sigma Aldrich AB152 

Goat anti-mouse/rat CD31 (1:200)    R&D Systems AF3628 

Rat anti‐mouse/rat Endomucin (1:50)  Santa Cruz Biotechnology  sc‐65495 
Donkey anti‐goat AF800 plus, 0.67 mg/mL (1:100)  Thermo Fisher Scientific A32930  

Donkey anti‐rabbit AF647 plus, 0.67 mg/mL (1:300)  Thermo Fisher Scientific A32795  

Donkey anti‐rat biotin, 0.75 mg/mL (1:200)  Thermo Fisher Scientific A18749  

Streptavidin AF555 conjugate, 0.67 mg/mL (1:200)  Thermo Fisher Scientific S32355  

 
Reagents 

Heparin sodium salt from porcine mucosa  Sigma Aldrich  H3393‐50KU  
Paraformaldehyde, 16% aq. soln., methanol free  Alfa Aesar  433689M  

Normal donkey serum  Sigma Aldrich  D9663‐10ML  

Trizma base Sigma Aldrich  T6066‐1KG  
Trizma hydrochloride  Sigma Aldrich  T5941‐1KG 

Sodium chloride  Sigma Aldrich  S5886  

Tween 20 Sigma Aldrich  P7949  
Dimethylsulfoxide Thermo Fisher Scientific PI20688  
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