BenzoHTag, a fluorogenic self-labeling protein developed using molecular evolution.

Bryan J. Lampkin, Benjamin J. Goldberg, and Joshua A. Kritzer* Department of Chemistry, Tufts University, Medford MA 02155 *corresponding author: joshua.kritzer@tufts.edu

Supplementary Information

Table of Contents

2
2
4
6
8
19
19
22
23

General Methods

All molecular biology reagents were purchased from New England Biolabs unless specified. Primers were ordered from Thermo Fisher Scientific. The HaloTag coding sequence was codon optimized for yeast expression and synthesized by Genscript. All recombinant cloning procedures were done by Gibson Assembly using 2x Master Mix from New England Biolabs following manufacturer's protocols. All antibodies used were purchased from Thermo Fisher Scientific. Yeast media supplements were purchased from Sigma Aldrich.

Kinetic and fluorescence endpoint assays were performed using a Tecan Spark plate reader. Flow cytometry experiments were conducted on a Guava cell analyzer and analyzed using Guava InCyte software. Fluorescence activated cell sorting (FACS) experiments were conducted on a BioRad S3E cell sorter. All microscopy was conducted on an Olympus IX71 fluorescence microscope and image acquisition and processing was done using CellSens Dimension software. Analysis of the of kinetics of live cell imaging was done using ImageJ and the Time Series Analyzer V3 plugin.¹

Supplemental Discussion

On BenzoHTag's decreased activity towards rhodamine substrates

The three introduced mutations that yielded BenzoHTag decreased the conjugation kinetics of rhodamine-based **CA-TMR** and **CA-JF₆₃₅** by 900- and 9000-fold, respectively. HaloTag7 is the product of 25 mutations introduced into a haloalkane dehalogenase from rhodococcus rhodochrous (DhaA) that were introduced to improve both its labeling rate with the model substrate, **CA-TMR**, and improve its expression profile.^{2,3} Curiously, F144L, I211V, and V245A mutations are not at positions that were modified in the original HaloTag7 campaign (Table S2), posing the question why these mutations reduce activity towards rhodamine substrates. It has been computationally predicted that F144 stabilizes the open fluorescent isomer of a silicon rhodamine substrate,⁴ so the F144L mutation may account for BenzoHTag's reduced activity towards rhodamine substrates. In fact, when measuring the kinetics of $CA-JF_{635}$ conjugation to BenzoHTag, high concentrations (500 nM) of dye were needed to detect a *turn-on* in fluorescence upon reacting with BenzoHTag. This observation supports the critical role of F144 in rhodamine dye conjugation and promoting the isomerization to the open fluorescent isomer. Additionally, in work that screened site-saturation mutagenesis libraries of several positions, all mutants at F144 decreased fluorescence intensity with other fluorogenic rhodamine substrates that rely on the ground-state isomerization between a "closed" non-fluorescent spirolactone and an "open" fluorescent zwitterionic isomer.5 This further supports a role for F144 in stabilizing the open fluorescent isomer for CA- JF_{635} and analogs conjugated to HaloTag7. A better understanding of the sequencefunction relationship of HaloTag7 will better inform the relative reaction rates for HaloTag7 variants and more varied chloroalkane substrates.

Name	
P1	GGAGGCGGTAGCGGAGGCGGAGGGTCGGCTAGCTGCGGTGGCGGCGGTAT
	GGCTGAAATTGGTACAGGTTTTCCATTTG
P2	GTCCTCTTCAGAAATAAGCTTTTGTTCGGATCCGCCCCAGAAATTTCTAAAG

Table S1. Primer list

	TTGACAACCATCTAGCAATTTC
P3	GTTCCAGACTACGCTCTGCAGG
P4	CTAGTGGTGGAGGAGGCTCTGGTGGAGGCGGTAGCGGAGGCGGAGGGTCG
	GCTAGC
P5	TATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAAATAAGCTTTTGTTCGGA
	TCC
P6	GCTCTGCAGGCTAGTGGTGGAGGAGGCTCTGGTG
P7	CTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTC
P8	ATGGCTGAAATTGGTACAGGTTTTCCATTTG
P9	AGAAATTTCTAAAGTTGACAACCATCTAGCAATTTC
P10	AGAAGGAGATATACCATGCATCACCACCATCATCACATGGCTGAAATTGGTAC
	AGGTTTTC
P11	AGCGGTGGCAGCAGCCTAGGTTAATTAAGAAATTTCTAAAGTTGACAACCATC
P12	GGTAGCGGGGATCCACCGGTCGCCACCATGGCTGAAATTGGTACAGGTTTTC
P13	AACGGGCCCTCTAGACTCGAGCGGTCAAGAAATTTCTAAAGTTGACAACCATC
P14	ATGGCCAGAActgGCAAGAGAAA
P15	TCATCCCATGTTGGAATTG
P16	TGAATTACCAgtgGCTGGTGAAC
P17	TTTGGAAATCŤČCACAATG
P18	ACCAGGTGCTTTTATTCCACCAG
P19	CTGGTGGAATAAAAGCACCTGGT

Table S2. Summary of HaloTag mutations reported in previous work.^a

	Vood, et. al, ACS Chem. Biol., 3 , 373 (2008)
	vert dehalogenase to self-labeling enzyme
HT	H272F
пі	
	at al. Cum Cham Canamias C EE (2012)
	, et. al., Curr Chem Genomics., 6 , 55 (2012)
	ove stability, expression, and kinetics with rhodamine dyes
HT2	K175M C176G H272F Y273L
HT3	HT2 + S58T D78G A155T A172T A224E F272N P291S A292T plus
	Q294 plus Y295
HT6	HT3 + L47V Y87F L88M C128F E160K A167V K195N N227D
	E257K T264A
HT7	HT6 + Q294E Y295I plus S296 plus G297
Koßmann, Nie	emeyer*, et. al., ChemBioChem,17,1102 (2016)
Purpose: impr	ove HaloTag labeling with negatively charged substrates, like oligonucleotides
HOB	HT7 + E154K E158K A166K D167K E171K
Liu, Zhang*, e	t. al., Angew. Chemie. Int. Ed., 56, 8672 (2017)
Purpose: prote	eostasis sensor; destabllized HaloTag
HOB	HT7 + K73T
Kang, Rhee*,	et. al., Chem. Commun., 53, 9226 (2017)
	ove turn-on fluorescent properties of a dansyl dye
M175PHaloTag	HT7 + M175P
	** also characterized M175T, N, K, C, H, Y, L, and W
	HT7 + M175P

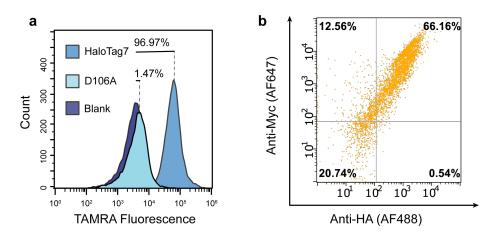
Deprey & Kritz	zer*, <i>Bioconjugate Chemistry</i> , 32 , 964 (2021)
	ove potential for inactivation via oxidation
HT8	HT7 + C61S C262S
	^s , et. al. <i>, Nature Methods</i> 19 , 65 (2022)
Purpose: mod	ulate fluorescence lifetimes of rhodamine-based dyes
HT9	HT7 + Q165H P174R
HT10	HT7 + Q165H
HT11	HT7 + M175W
Miro-Vynyals,	Liang*, et. al., <i>ChemBioChem</i> , 22 , 3398 (2021)
	ove HaloTag labeling for a styrylpyridium dye
HT-SP1	HT7 + R133C M175Y V245A
HT-SP2	HT7 + R133C E143M F144H M175Y V245A
HT-SP3	HT7 + E143M F144A L271D
HT-SP4	HT7 + M175Y L271D
HT-SP5	HT7 + M175Y V245A L271D
This work	
	ove brightness and kinetics with pro-fluorescent substrate
Variant 1	HT7 + F144S L246F
Variant 2	HT7 + V245A
Variant 3	HT7 + N195S V245A E251K S291P
Variant 4	HT7 + L161W V245A
Variant 5	HT7 + I211V V245A
Variant 6	HT7 + F144L L221S V245A
Variant 7	HT7 + F144L I211V L221S V245A
Variant 8	HT7 + F144L L221S V245A L246F
Variant 9	HT7 + F144L I211V L221S V245A L246F
Variant 10	HT7 + F144L + I211V + V245A
BenzoHTag	

^aFurther HaloTag engineering mutations, including split HaloTag and circularly permuted HaloTag, can be found in ref. 6

Yeast Culture and Display Experiments

Synthesized DNA encoding for HaloTag7 codon-optimized for *S. cerevisiae* was cloned into the linearized pCTcon2 (Gift from Dane Wittrup,⁷ Addgene plasmid # 41843) construct between restriction sites Nhel and BamHI using primers P1 and P2 to introduce homologous overhang regions.⁷ Successfully cloned plasmid, determined by Sanger sequencing using primer P3, was used to transform the *S. cerevisiae* strain, RJY100 (Gift from James Van Deventer^{8, 9}). Transformed yeast were selected using the TRP1 auxotrophic marker and were generally cultured according to previously published protocols.¹⁰ Cells were propagated in synthetic dextrose media lacking tryptophan (SD-Trp, pH = 4.5) at 30 °C and grown to stationary phase. Approximately 24 hours prior to the display experiment, the OD₆₀₀ of the culture was measured, diluted to an OD₆₀₀ of 0.1 (~1x10⁷ cells/mL), and grown to mid-log phase (OD₆₀₀ = 0.2-0.5, about 6 hours) at 30 °C. Cells were pelleted and then resuspended in synthetic galactose media with 2% dextrose and lacking tryptophan (SG-Trp, pH = 6.5) to an OD₆₀₀ of 0.1 to induce expression

of Aga2-HaloTag fusion. Cells were induced at room temperature, shaking, for 16-18 hours prior to labeling.


For yeast display experiments, the induced culture's OD_{600} was measured and $2x10^6$ cells were pelleted per sample. Cells were washed with three times with 50 µL with phosphate buffered saline (PBS) prior to labeling. To measure HaloTag activity on the surface of yeast, cells were resuspended in 50 µL of a solution of chloroalkane dye in PBS and incubated at room temperature for a set time. Cells were pelleted, dye solution was aspirated, then cells were washed three times with 50 µL with PBS. To measure HaloTag expression on the surface of yeast, primary and secondary antibody labeling of the epitope tags, HA and/or Myc, followed by a dye-labeled secondary antibody. Cells were resuspended in 50 µL of a 1:2000 diluted Rabbit anti-Myc and/or Mouse anti-HA in PBSA (PBS+0.1% w/v BSA) and tumbled at room temperature for 30 minutes. Cells were then pelleted at 4 °C and washed twice with 50 µL chilled PBSA. Cells were then resuspended in 50 µL of a 1:2000 diluted Goat anti-Rabbit labeled with AF647 and/or Goat anti-Mouse labeled with AF488 and kept on ice for 15 minutes. Cells were pelleted at 4 °C, washed once with 50 µL of chilled PBSA, resuspended in 200 µL of PBSA and transferred to a 96-well plate for flow cytometry analysis.

Yeast Codon-Optimized HaloTag genomic gene

ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTTT GGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCAGT TTTGTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAGAAACATCATCC CACATGTTGCACCAACTCATAGATGTATTGCTCCAGATTTGATTGGTATGGG TAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGATCATGTTAGATTCA TGGATGCTTTTATTGAAGCATTGGGTTTGGAAGAAGTTGTTTTGGTTATTCAT GATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAGAAACCCAGAAAGA GTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAATTCCAACATGGGATG AATGGCCAGAATTTGCAAGAGAAACTTTCCAAGCTTTTAGAACAACTGATGT TGGTAGAAAGTTGATCATCGATCAAAACGTTTTTATTGAAGGTACATTGCCA ATGGGTGTTGTTAGACCATTGACTGAAGTTGAAATGGATCATTACAGAGAAC CATTTTTAAACCCAGTTGATAGAGAACCATTGTGGAGATTTCCAAATGAATTA CCAATTGCTGGTGAACCAGCAAACATCGTTGCTTTGGTTGAAGAATACATGG ATTGGTTACATCAATCTCCAGTTCCAAAGTTGTTATTTTGGGGTACACCAGG TGTTTTAATTCCACCAGCAGAAGCTGCAAGATTGGCTAAGTCATTGCCAAAC TGTAAGGCAGTTGATATTGGTCCAGGTTTGAATTTGTTGCAAGAAGATAACC CAGATTTGATTGGTTCTGAAATTGCTAGATGGTTGTCAACTTTAGAAATTTCT

Yeast Codon-Optimized HaloTag protein sequence

MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDW GSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRK LIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEP ANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGP GLNLLQEDNPDLIGSEIARWLSTLEIS

Figure S1. HaloTag expression and activity on the surface of

yeast. a) Yeast that were induced to express HaloTag fusions at the surface were labeled with 1.0 μ M chloroalkane-tetramethylrhodamine (TAMRA) for 30 minutes. Gating for uniform expression, HaloTag has near quantitative labeling while the catalytically inactive enzyme (97% of HaloTag7 cells were above background), D106A, displays no labeling. Blank cells refer to unlabeled cells. B) Immunostaining of the N and C terminal epitope tags, HA and Myc, respectively, indicates robust HaloTag expression on the surface of yeast after galactose induction.

Combinatorial Library Generation

Combinatorial HaloTag libraries were generated using error-prone PCR with mutagenetic nucleotides as described previously.¹⁰⁻¹² Briefly, HaloTag was amplified in a 50 μ L reaction of 50 ng of template vector for 10-20 rounds using 0.2 μ M of primers **P4** and **P5**, 2.5 mM MgSO₄, 5 units of *Taq* polymerase, 0.2 mM dNTPs, 2% DMSO, and 2 or 10 μ M each of mutagenic nucleotide analogs 8-oxo-2'-deoxyguanosine-5'-triphosphate (8-oxo-dGTP) and 2'-deoxy-P-nucleoside-5'-triphosphate (dPTP) (Jena Biosciences, see Table S3). The PCR products were gel purified and amplified again under the same PCR conditions but without 8-oxo-dGTP and dPTP for 35 rounds using primers **P6** and **P7**.

Entry	[8-oxo-dGTP], μM	[dPTP], μM	# of PCR cycles
1	2	2	10
2	2	2	20
3	10	10	10
4	10	10	20

Table S3. Error-prone PCR Conditions

The inserts were electroporated into freshly made electrocompetent RJY100 with Nhel-BamHI digested pCTcon2 vector in a 10:1 mass ratio following established protocols.¹⁰ The electroporated cultures were rescued in 2 mL of yeast extract peptide dextrose media (YPD) for 1 hour at 30 °C without shaking. 10 μ L of the recovered culture was used to generate 100x, 1000x, 10000x, and 100000x diluted samples of which 20 μ L was plated on SD-Trp plates and

incubated at 30 °C. Three days later, colony forming units were counted to estimate library size where one colony on 100x, 1000x, 10000x, and 100000x diluted plates corresponds to $1x10^4$, $1x10^5$, $1x10^6$, and $1x10^7$ transformants, respectively. Results are summarized in Table S4. The remaining recovered transformed culture was diluted in 100 mL of SD-Trp media and grown to saturation. This saturated culture was used to freeze library stocks that contained a number of cells corresponding to 10x the library diversity.

	Number of CF	Us counted on c	liluted plates (# of	f transformants)	
Sublibrary	100x ^a	1000x ^a	10000x	100000x	Average
1	N.D.	N.D.	64 (6.4x10 ⁷)	8 (8x10 ⁷)	7.2x10 ⁷
2	N.D.	N.D.	116 (1.16x10 ⁸)	15 (1.5x10 ⁸)	1.33x10 ⁸
3	N.D.	N.D.	24 (2.4x10 ⁷)	2 (2x10 ⁷)	2.2x10 ⁷
4	N.D.	N.D.	19 (1.9x10 ⁷)	4 (4x10 ⁷)	2.95x10 ⁷

Table S4. HaloTag Variant Libraries.

 $^{a}N.D$ = Not determined; grown colonies were too dense to accurately count.

To evaluate amino acid mutation frequency, plasmid from each sublibrary was harvested by ZymoPrep (ZymoResearch), purified by precipitation, and re-transformed in NEB 10 β *e. coli* cells by heat shock. Up to 24 random colonies from each sublibrary were inoculated into Luria-Bertani (LB) broth supplemented with 100 µg/mL ampicillin (GoldBio), plasmid was harvested by mini-prep (Invitrogen), and the insert region was by Sanger sequencing using **P3** to identify HaloTag variant sequences and mutation frequencies (Table S5).

SubLibrary	Colonies sequenced	Average # of Mutations	Native HaloTag sequences detected
1	19	2.9	3
2	21	2.2	2
3	24	6.4	0
4	21	9.5	0

Table S5. Amino Acid Mutation Frequency in HaloTag Variant Sublibraries.

The activity of each sublibrary was determined by flow cytometry (Fig. S2). Because each sublibrary appeared to have many active mutants, we pooled the four libraries together at 10x the sublibrary diversity to yield the input HaloTag variant library that has a diversity of $\sim 2.6 \times 10^8$ total HaloTag variants. We estimated that <10% of this input library contains the native HaloTag sequence.

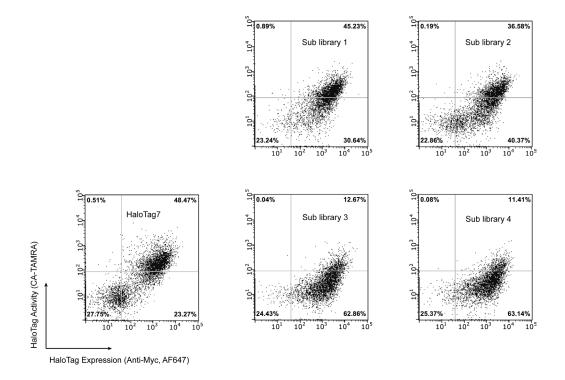


Figure S2. HaloTag sublibrary activity. Sublibraries were treated with 1.0 μ M chloroalkane tetramethylrhodamine for 30 minutes.

Yeast Cell Sorting

Magnetic – The magnetic sort of the input library was done following a previously reported protocol.¹⁰ Briefly, 4x10⁹ induced cells were pelleted (in four tubes of 1x10⁹ cells each) and each resuspended in 1 mL of PBSA. 20 µL of washed, streptavidin-coated magnetic beads were added to each tube of induced cells and tubes were tumbled at 4 °C for two hours. The tubes were placed a magnetic block, and the suspended cells were transferred to a fresh 2.0 mL tube and pelleted, thus removing cells that stuck nonspecifically to the magnetic beads. Cells were resuspended in 1.0 mL of 10 µM chloroalkane-biotin in PBS (estimated to be >10x excess of HaloTag copies) and tumbled at room temperature for one hour. The cells were then pelleted and washed three times with 1.0 mL PBS to remove excess ligand and resuspended in 1.0 mL of PBSA. Fresh, washed streptavidin-coated magnetic beads were added to the resuspended cells, tubes were tumbled at 4 °C for one hour, and then the tubes were place on a magnetic rack. The supernatant was carefully removed and the immobilized beads were gently washed twice with chilled PBSA, then pooled and suspended in 2.0 mL of SD-Trp. 10 µL was removed and used to make serial dilutions of beads (1:100, 1:1000, 1:10000, 1:100000) and 20 μ L of each dilution was plated on a SD-Trp agar plate and incubated at 30 °C for 3 days prior to counting colonies. The remaining suspended beads were further diluted to 200 mL of SD-Trp media and grown to saturation. Based on colony counts, we estimated that this magnetic sort retained $\sim 20\%$ of the input cells yielding a filtered library of approximately 5.3×10^7 active HaloTag variants.

FACS –1x10⁷ yeast cell from the filtered library (or, later, from the previous round's output pool) were grown and induced as described above. All volumes for labeling and wash steps were increased to 250 µL to accommodate the 5x increase in labeled cells per tube. The labeling conditions of dye were varied for each round of FACS as described in Table S6. For FACS, labeled batches were pooled and resuspended to a final concentration of 1×10^7 cells/mL and subjected to sorting in which the top ~0.5% brightest green cells were isolated. Screening gates were shaped to include the brightest cells that were those well above the diagonal when green fluorescence (from the dye) was plotted against red fluorescence (from Myc immunostaining). Recovered cells were grown in SD-Trp media at 30 °C until saturation (~3 days) and the resulting stocks were then prepared for a subsequent round of sorting and frozen as glycerol stocks for later analysis.

	[Bz-1], μΜ	Time (min.)
Round 1	1.0	15
Round 2	1.0	1
Round 3	0.2	1
Round 4	0.04	1

Table S6. FACS labeling conditions

	[Bz-1], μΜ	Time (min.)
Round 1	1.0	15
Round 2	1.0	1
Round 3	0.2	1
Round 4	0.04	1

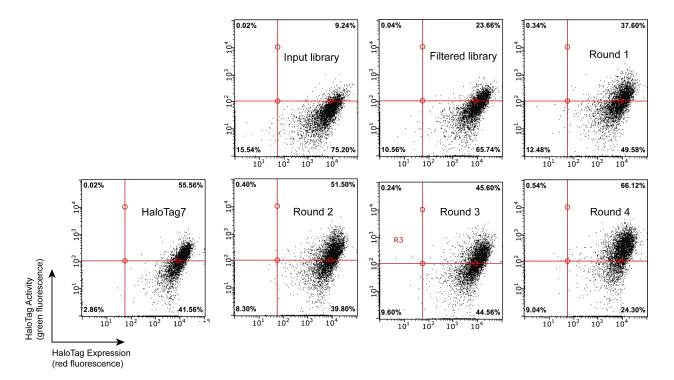
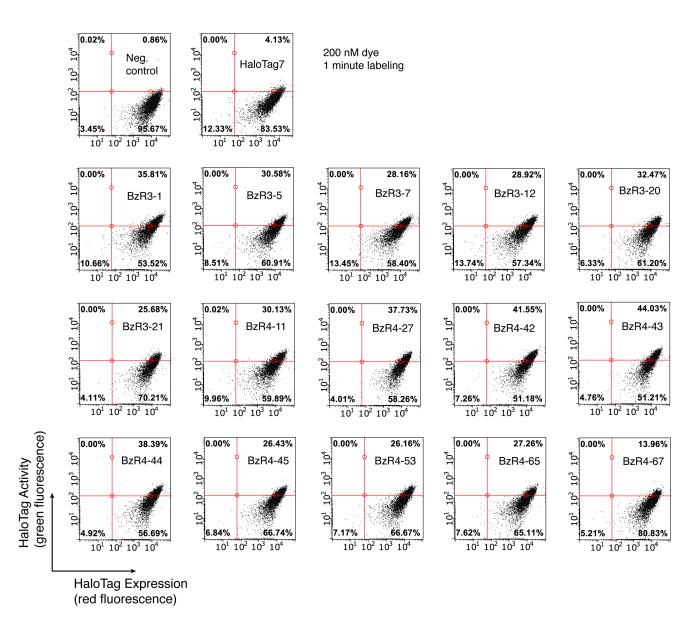



Figure S3. Evaluating activity of the output pools from each round of screening. HaloTag activity was measured by labeling with 1.0 µM Bz-1 for 15 minutes. 10,000 cells are reported in each plot. HaloTag expression is measured by immunostaining against Myc using an AlexaFluor647-conjugated antibody.

After output pools round 3 and round 4 were isolated, $1x10^8$ cells were pelleted and plasmid was harvested by ZymoPrep (ZymoResearch). Plasmids were purified, transformed, and sequenced as described above. Twenty colonies from R3 and 75 colonies from R4 were sequenced in total. Selected hit sequences were transformed into chemically competent RJY100 *S. cerevisiae* cells as described above, and HaloTag activity was evaluated by flow cytometry (Table S7, Fig. S4, S5). Six sequences were chosen for their high activity and/or representative mutations and their HaloTag variant sequences were isolated by PCR (20 ng of template, 0.2 μ M primers **P8** and **P9**, 2.0 mM MgSO₄, 0.2 mM of each dNTP, 1 unit of Phusion High-Fidelity polymerase, and 2% DMSO) for cloning into bacterial expression vectors.

Variant	Alternate Name	Mutations
BzR3-1	Variant 1	F144S L246F
BzR3-5		D156N E191K V245A
BzR3-7		H13R
BzR3-12		E224K V245A
BzR3-20	Variant 3	N195S V245A E251K S291P
BzR3-21		L246F L259W
BzR4-11		F144L I211V V245A L271V
BzR4-27	Variant 4	L161W V245A
BzR4-42	Variant 6	F144L L221S V245A
BzR4-43	Variant 5	I211V V245A
BzR4-44	Variant 2	V245A
BzR4-45		D78G E98G E121G, V245A
BzR4-53		V245A A250V
BzR4-65		Q231R V245A
BzR4-67		A212V L246F

 Table S7. Hit HaloTag Variants with Identified Mutations

Figure S4. Activity of screening hits, expressed on the surface of yeast analysis. Single HaloTag variant clones were analyzed as described above. Cells were treated with 0.2 μM **Bz-1** for 1 minute.

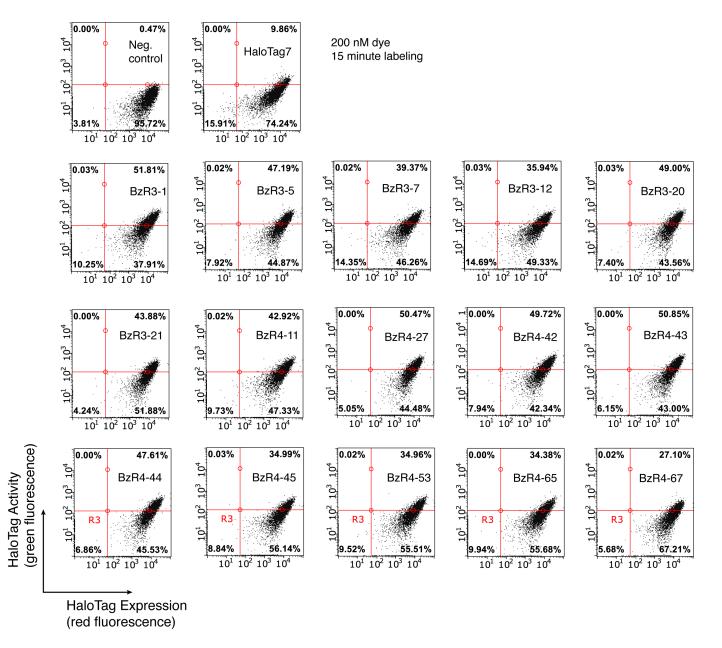


Figure S5. Activity of screening hits, expressed on the surface of yeast analysis. Single HaloTag variant clones were analyzed as described above. Cells were treated with 0.2 μ M Bz-1 for 15 minutes.

Table S8. DNA sequences of selected HaloTag variants produced from yeast display experiments.

NameSequenceBzR3-1ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGT (Variant 1)TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGG GTTTTGTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAG TCCCACATGTTGCGCCCAACTCATAGATGTATTGCTCCAGATTTG TGGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGAT ATTCATGGATGCTTTTATTGAAGCATTGGGTTTTCATTGGGCTAAGAG GAAAGAGTTAAGGGTATCGCTTTTATGGAGGTTTTCATTGGGCTAAGAG GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGAAAACGTTTATTT ATTGCCAATGGGTGTTGTCAGACCATTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCATCCACAGCAGAAGCTGCAAGAC	GTACACCA GAAACATCA GATTGGTA TCATGTTAG GTTTTGGTT GAAACCCA TTCCAACAT TTAGAACAA GAAGGTAC GAAGGTAC GATCATTA AGATTTCC
(Variant 1) TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGG GTTTTGTTTT	GTACACCA GAAACATCA GATTGGTA TCATGTTAG GTTTTGGTT GAAACCCA TTCCAACAT TTAGAACAA GAAGGTAC GAAGGTAC GATCATTA AGATTTCC
GTTTTGTTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAG TCCCACATGTTGCGCCAACTCATAGATGTATTGCTCCAGATTTG TGGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGAT ATTCATGGATGCTTTTATTGAAGCATTGGGTTTGGAAGAAGATTG ATTCATGATTGGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAQ GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGATGGCAATTG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT	GAAACATCA GATTGGTA ICATGTTAG GTTTTGGTT GAAACCCA ITCCAACAT ITAGAACAA GAAGGTAC GAAGGTAC GATCATTA AGATTTCC
TGGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGAT ATTCATGGATGCTTTTATTGAAGCATTGGGTTATTCTTGGAAGAAGTTG ATTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGGCTAAGAG GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	TCATGTTAG GTTTTGGTT GAAACCCA TTCCAACAT TAGAACAA GAAGGTAC GAAGGTAC GATCATTA AGATTTCC
TGGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGAT ATTCATGGATGCTTTTATTGAAGCATTGGGTTATGGAAGAAGATT ATTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGGCTAAGAG GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	TCATGTTAG GTTTTGGTT GAAACCCA TTCCAACAT TAGAACAA GAAGGTAC GAAGGTAC GATCATTA AGATTTCC
ATTCATGGATGCTTTTATTGAAGCATTGGGTTTGGAAGAAGTTC ATTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAG GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	GTTTTGGTT GAAACCCA TTCCAACAT TAGAACAA GAAGGTAC GATCATTA AGATTTCC
ATTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAG GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	GAAACCCA TTCCAACAT TAGAACAA GAAGGTAC GATCATTA AGATTTCC
GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAAT GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	TTCCAACAT TTAGAACAA GAAGGTAC GATCATTA AGATTTCC
GGGATGAATGGCCAGAATCTGCAAGAGAAACTTTCCAAGCTTT CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	TTAGAACAA GAAGGTAC GATCATTA AGATTTCC
CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTATT ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	GAAGGTAC GATCATTA AGATTTCC
ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATG CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	GATCATTA AGATTTCC
CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGG AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	AGATTTCC
AAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCT AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	
AGAATACATGGATTGGCTACATCAATCTCCAGTTCCAAAGTTG	ADJUDUI
GGTACACCAGGTGTTTTCATTCCACCAGCAGAGCTGCAGAGA	
GTCATTGCCAAACTGTAAGGCAGTTGATATTGGTCCAGGTTTG	
GCAAGAAGATAACCCAGATTTGATTGGTCCAGGTTG	-
AACTITA	IGGIIGIC
AACTITA	
BzR3-20 ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGT	TTGAAGTTT
(Variant 3) TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGG	
GTTTTGTTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAG	
TCCCACATGTTGCACCAACTCATAGATGTATTGCTCCAGATTTC	
GGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGATC	
TTCATGGATGCTTTTATTGAAGCATTGGGTTTGGAAGAAGTTG	
TTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAG	
AAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAATT	
GGATGAATGGCCAGAATTTGCAAGAGAAACTTTCCAAGCTTTT	
TGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTTATTG	
TTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAGATGG	
AGAGAACCATTTTTAAGCCCAGTTGATAGAGAACCATTGTGGA	
AATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCTT	
GAATACATGGATTGGTTACATCAATCTCCAGTTCCAAAGTTGTT	
GTACACCAGGTGCTTTAATTCCACCAGCAAAAGCTGCAAGATT	
CATTGCCAAACTGTAAGGCAGTTGATATTGGTCCAGGTTTGAA	
AAGAAGATAACCCAGATTTGATTGGTTCTGAAATTGCTAGATG	
CTITA	31101044
BzR4-27 ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGT	FTGAAGTTT
(Variant 4) TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGG	STACACCA
GTTTTGTTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAG	AAACATCA

	TCCCACATGTTGCACCAACTCATAGATGTATTGCTCCAGATCTGATTGGTA TGGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGATCATGTTAG ATTCATGGATGCTTTTATTGAAGCATTGGGTTATTGGAAGAAGTTGTTTTGGTT ATTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAGAAACCCA GAAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATTAGACCAATTCCAACAT GGGATGAATGGCCAGAATTTGCAAGAGAAACTTTCCAAGCTTTTAGAACAA CTGATGTTGGTAGAAAGTGGATCATCGATCAAAACGTTTTTATTGAAGGTA CATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATGGATCATT ACAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGGAGATTTC CAAATGAATTACCAATTGCTGGTGAACCAGCAAACATCGTTGCTTTGGTTG AAGAATACATGGATTGGTTACATCAATCTCCAGTTCCAAAGTTGTTATTTTG GGGTACACCAGGTGCTTTAATTCCACCAGCAGAAGCTGCAAGATTGGCTA AGTCATTGCCAAACTGTAAGGCAGTTGATATGGTCCAGGTTTGAATTGGT TGCAAGAAGATAACCCAGATTGGTTGGTTGGTTGTGAATTGGTCCAGGTTTGT TGCAAGAAGATAACCCAGATTTGGTTGGTTCTGAAATTGCTAGATGGTTGT CAACTTA
BzR4-42 (Variant 6)	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA GTTTTGTTTT
BzR4-43 (Variant 5)	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA GTTTTGTTTT

	GGGATGAATGGCCAGAATTTGCAAGAGAAACTTTCCAAGCTTTTAGAACAA CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTTATTGAAGGTAC ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATGGATCATTA CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGGAGATTTCC AAATGAATTACCAGTTGCTGGTGAACCAGCAAACATCGTTGCTTTGGTTGA AGAATACATGGATTGGTTACATCAATCTCCAGTTCCAAAGTTGTTATTTTGG GGTACACCAGGTGCTTTAATTCCACCAGCAGAAGCTGCAAGATTGGCTAA GTCATTGCCAAACTGTAAGGCAGTTGATATTGGTCCAGGTTTGAATTTGTT GCAAGAAGATAACCCAGATTTGATTGGTTCTGAAATTGCTAGATGGTTGTC AACTTTA
BzR4-44 (Variant 2)	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGACGGTACACCA GTTTTGTTTT
Variant 7	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA GTTTTGTTTT

	GAATACATGGATTGGTTACATCAATCTCCAGTTCCAAAGTTGTTATTTTGGG GTACACCAGGTGCTTTTATTCCACCAGCAGAAGCTGCAAGATTGGCTAAGT CATTGCCAAACTGTAAGGCAGTTGATATTGGTCCAGGTTTGAATTTGTTGC AAGAAGATAACCCAGATTTGATTGGTTCTGAAATTGCTAGATGGTTGTCAA CTTTA
Variant 8	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA GTTTTGTTTT
Variant 9	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA GTTTTGTTTT
Variant 10 (BenzoHTag)	ATGGCTGAAATTGGTACAGGTTTTCCATTTGATCCACATTACGTTGAAGTTT TGGGTGAAAGAATGCATTACGTTGATGTTGGTCCAAGAGATGGTACACCA

GTTTTGTTTTTACATGGTAACCCAACTTCTTCATACGTTTGGAGAAACATCA TCCCACATGTTGCACCAACTCATAGATGTATTGCTCCAGATTTGATTGGTAT GGGTAAATCTGATAAGCCAGATTTGGGTTATTTCTTTGATGATCATGTTAGA TTCATGGATGCTTTTATTGAAGCATTGGGTTTGGAAGAAGTTGTTTTGGTTA TTCATGATTGGGGTTCTGCATTAGGTTTTCATTGGGCTAAGAGAAACCCAG AAAGAGTTAAGGGTATCGCTTTTATGGAGTTTATCAGACCAATTCCAACAT GGGATGAATGGCCAGAATTTGCAAGAGAAACTTTCCAAGCTTTTAGAACAA CTGATGTTGGTAGAAAGTTGATCATCGATCAAAACGTTTTTATTGAAGGTAC ATTGCCAATGGGTGTTGTCAGACCATTGACTGAAGTTGAAATGGATCATTA CAGAGAACCATTTTTAAACCCAGTTGATAGAGAACCATTGTGGAGATTTCC AAATGAATTACCAGTGGCTGGTGAACCAGCAAACATCGTTGCTTTGGTTGA AGAATACATGGATTGGTTACATCAATCTCCAGTTCCAAAGTTGTTATTTTGG GGTACACCAGGTGCTTTAATTCCACCAGCAGAAGCTGCAAGATTGGCTAA GTCATTGCCAAACTGTAAGGCAGTTGATATTGGTCCAGGTTTGAATTTGTT GCAAGAAGATAACCCAGATTTGATTGGTTCTGAAATTGCTAGATGGTTGTC AACTTTA

Table S9. Protein sequences of selected HaloTag variants produced from yeast display experiments.

Name	Sequence
BzR3-1	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 1)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPESARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIA
	GEPANIVALVEEYMDWLHQSPVPKLLFWGTPGVFIPPAEAARLAKSLPNCKAV
	DIGPGLNLLQEDNPDLIGSEIARWLSTL
BzR4-44	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 2)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIA
	GEPANIVALVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKAV
	DIGPGLNLLQEDNPDLIGSEIARWLSTL
BzR3-20	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 3)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLSPVDREPLWRFPNELPIA
	GEPANIVALVEEYMDWLHQSPVPKLLFWGTPGALIPPAKAARLAKSLPNCKAV
	DIGPGLNLLQEDNPDLIGSEIARWL <mark>S</mark> TL
BzR4-27	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 4)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVG

	RKWIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPI
	AGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKA
	VDIGPGLNLLQEDNPDLVGSEIARWLSTL
BzR4-43	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 5)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPV
	AGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKA
	VDIGPGLNLLQEDNPDLIGSEIARWLSTL
BzR4-42	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 6)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPELARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIA
	GEPANIVASVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKAV
	DIGPGLNLLQEDNPDLIGSEIARWLSTL
	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 7)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPELARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIA
	GEPANIVA <mark>S</mark> VEEYMDWLHQSPVPKLLFWGTPG <mark>AF</mark> IPPAEAARLAKSLPNCKAV
	DIGPGLNLLQEDNPDLIGSEIARWLSTL
	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 8)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPELARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPV
	AGEPANIVASVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKA
	VDIGPGLNLLQEDNPDLIGSEIARWLSTL
	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 9)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPELARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPV
	AGEPANIVASVEEYMDWLHQSPVPKLLFWGTPGAFIPPAEAARLAKSLPNCKA
	VDIGPGLNLLQEDNPDLIGSEIARWLSTL
	MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
(Variant 10)	HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHD
BenzoHTag	WGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPELARETFQAFRTTDVG
	RKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPV
	AGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGALIPPAEAARLAKSLPNCKA
	VDIGPGLNLLQEDNPDLIGSEIARWLSTL

Recombinant Protein Expression

The six isolated DNA fragments and the yeast codon-optimized HaloTag7 sequence were amplified by PCR using primers P10 and P11 to introduce homologous overhangs and an Nterminal 6xHis sequence for cloning into the pET51(+)b plasmid between the Nsil and AvrII restriction sites. Cloned sequences were transformed into NEB BL21 competent E. coli by heat shock for protein expression and purification, as previously reported.¹³ Recovered cells were grown on LB agar plates with ampicillin (100 µg/mL) overnight at 37 °C. Individual colonies were inoculated in 10 mL of LB broth with ampicillin and grown overnight at 37 °C. Overnight cultures were then diluted into 1 L of LB broth with ampicillin and grown for 2-4 hours at 37 °C until reaching an optical density at 600 nm of 0.6. Protein expression was induced with 0.5 mL IPTG (1 mM) for 4 hours at 37 °C or overnight at 20 °C before pelleting at 5,000 rpm for 10 min at 4 °C. Pellets were stored at -80 °C before lysis in sterile filtered His-binding buffer (50 mM Tris-Cl. 100 mM NaCl, 5 mM imidazole, 0.1 mM EDTA, 5 mM 2-mercaptoethanol, pH 8.0) with 30 mg lysozyme (Thermo Fisher Scientific) and ¹/₂ tablet cOmplete EDTA-free protease inhibitor (Roche). Lysed pellets were sonicated on ice for 10 minutes (10 seconds on/off, amplitude: 60%). Lysate was then incubated with Pierce Universal Nuclease for Cell Lysis (Thermo Fisher Scientific) for 5 minutes on ice and clarified by centrifugation for 30 minutes at 10,000 rpm at 4 °C before decanting and centrifuging again. The clarified lysate was purified by batch affinity purification with 3 mL HisPur[™] Ni-NTA resin (Thermo Scientific). Before purification, Ni-NTA resin was washed and then equilibrated with His-binding buffer for >45 min on a rocking platform at 4 °C. After equilibration, clarified lysate was incubated with the Ni-NTA resin in Hisbinding buffer for 1 hour on a rocking platform at 4 °C. After draining the flowthrough, the Ni-NTA resin was washed 10 times: 3 times with His-binding buffer and 7 times with His-wash buffer (50 mM Tris-CI, 500 mM NaCl, 10 mM imidazole, 0.1 mM EDTA, 5 mM 2mercaptoethanol, pH 6.8). We found that washing with a higher salt concentration (500 mM NaCl rather than to 100 mM) and a lower pH (pH 6.8 rather than pH = 8.0) yielded purer HaloTag. Purified HaloTag was eluted from the resin with His-elution buffer (50 mM Tris-Cl, 50 mM NaCl, 300 mM imidazole, 0.1 mM EDTA, 5 mM 2-mercaptoethanol). Finally, eluted fractions were pooled and buffer exchanged into PBS using 7k MWCO Zeba Spin Desalting Columns (Thermo Fisher Scientific) before aliquoting and snap freezing in liquid nitrogen. Frozen protein samples were stored at -80 °C. This protocol routinely produced purified protein yields of ~20 mg/L with the yeast codon-optimized HaloTag sequences. By contrast, a bacteria codon optimized sequence produced ~90 mg/L in our hands.¹³

Variants 7-10 were generated using site-directed mutagenesis using Variant 5 and Variant 6 constructs as templates. Mutagenesis was done using the Q5® Site-Directed Mutagenesis Kit from NEB while following manufacturers procedures. Primers P14 and P15 were used to introduce F144L, P16 and P17 were used to introduce I211V, and P18 and P19 were used to introduce L246F. Successful mutagenesis was verified by Sangar sequencing of ten random colonies and variants were expressed and purified following the same protocol from above.

Kinetics

Conjugation rates of **Bz-1** and related substrates to HaloTag7 and identified variants were measured as previously described using a fluorescence plate reader.¹⁴ Briefly, 0.5 μ M substrate in PBS + 0.1% Tween was added to varying concentrations of 2x protein (4, 3, 2, 1.5, 1, 0.5 μ M) in PBS + 0.1% Tween in a 1:1 ratio. Final dye concentration was 0.25 μ M and final protein concentrations were 2, 1.5, 1, 0.75, 0.5, and 0.25 μ M. Fluorescence (excitation 450 nm, emission 535 nm) was measured as a function of time accounting for the gap between addition

of protein and the first measurement (<20 seconds). Fluorescence was measured every 15 seconds for 30 minutes. Kinetic traces were normalized and fit to a one-phase association exponential curve (Equation 1) where Y_0 was set to 0. All results reported are the average of at least three independent biological replicates and errors are reported as the standard error of the mean (Table S10, Fig. S6 & S7). We note that the larger error associated with the faster measured Variant 7 and 10 are a result of these rates approaching the limit of detection using traditional plate reader fluorescence measurements. Stopped-flow kinetics will be more suitable for rates any faster than 10^6 M⁻¹s⁻¹.

(1)
$$Y = Y_0 + (Plateau - Y_0)(1 - e^{-k_{obs}X})$$

Conjugation rates of CA-TMR with benzoHTag and select variants were measured by fluorescent plate reader and fluorescence polarization as previously reported.¹³ Rates between 0.05 μ M substrate and identical protein concentrations as above were used. Conjugation rates of CA-JF₆₃₅ were measured by monitoring the growth of fluorescence emission at 665 nm. As noted in the main text, larger concentration of dye (500 μ M), and thus higher protein concentrations (100, 50, 25, 12.5, 6.25, and 3.125 μ M) were used to detect a large enough change in fluorescence upon reacting with benzoHTag.

Table S10. Second-order rate constants for Bz-1 Conjugation to HaloTag7, and Variants 1-6.

1-0.						
	k _{app} (M ⁻¹ s ⁻¹)					
	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average
HaloTag7	1229	1944	1541	1194	-	1477 ± 174
Variant 1	6264	5501	9910	8152	-	9329 ± 2023
Variant 2	13088	9708	11804	9430	-	11008 ± 873
Variant 3	5335	8117	16818	11482	7648	8317 ± 997
Variant 4	13849	10632	9803	7098	-	10346 ± 1390
Variant 5	41090	43023	36382	39734	46113	41268 ± 1625
Variant 6	33688	31757	28303	40014	-	33441 ± 2458
	56574	14313	77788	36241	59796	
Variant 7	62359	78259	104179	131318	96792	68844 ± 8161
	40027	50245	95765	35912	93088	
Variant 8	12232	12721	16085	19501	17559	15620 ± 1395
Variant 9	34860	19916	51566	46157	48808	44601 ± 4149
Vallalit 9	48551	53187	36241	62127		
Variant 10	61758	147628	58690	102928	75640	95366 ± 9249
BenzoHTag	89957	110609	109900	101182		90000 ± 9249

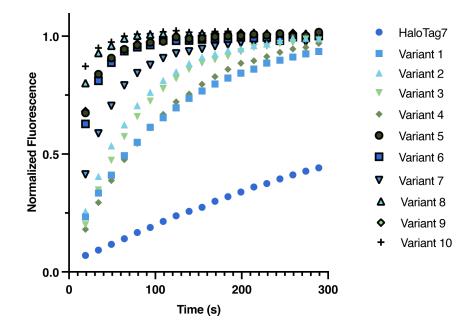


Figure S6. Representative kinetic traces Bz-1 conjugation to HaloTag7, BenzoHTag, and Varians 1-9. Example kinetic traces of 0.25 μ M Bz-1 reacting with 1.0 μ M of protein for the first five minutes of measurement.

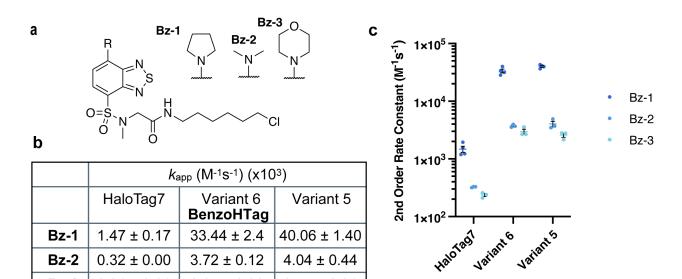


Figure S7. Reaction rates of other benzothiadiazole substrates with HaloTag7, BenzoHTag, and Variant 5. (a) Structures of Bz-1, Bz-2, and Bz-3. (b,c) Summary of secondorder rate constants of Bz-1, Bz-2, and Bz-3 with HaloTag7, BenzoHTag, and Variant 5. All results reported are the average of at least three independent biological replicates and errors are reported as the standard error of the mean.

 4.04 ± 0.44

 2.57 ± 0.21

Bz-2

Bz-3

 0.32 ± 0.00

 0.24 ± 0.01

 3.72 ± 0.12

 2.97 ± 0.30

	k_{app} (M ⁻¹ s ⁻¹)					
	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	
			CA-TMR			Average
BenzoHTag	16975	22330	21751	22986	16975	21011 ± 1369
Variant 6	42499	45729	53562	-	-	47263 ± 3284
Variant 8	17186	17390	18765	-	-	17780 ± 495.8
Variant 9	232	2160	506	-	-	966.0 ± 602.2
	CA-JF ₆₃₅					Average
BenzoHTag	79.54	132.4	129	-	-	113.6 ± 17.08

Table S11. Second-order rate constants for CA-TMR and CA-JF $_{635}$ Conjugation to BenzoHTag and select variants.

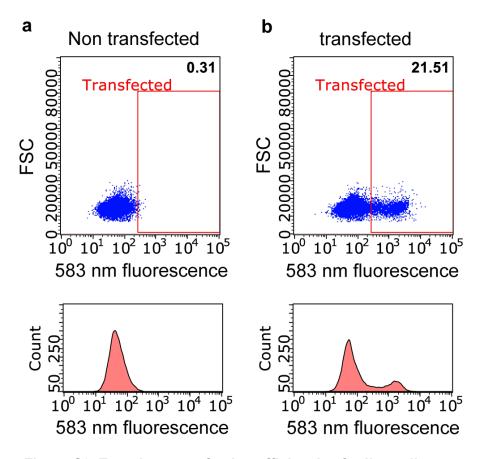
а b 2nd Order Rate Constant (M⁻¹s⁻¹, 10 CA-TMR CA-JF₆₃₅ 10⁵ coo coo TMR JF₆₃₅ 10 1.88x107 M⁻¹s⁻¹ ö 10³ С 200 000 10² 10 Benzohlag Variant7 Variant.9 benzohtag 200 COC coo SiB JF_{635i} JF₆₆₉ >2.5x10⁵ M⁻¹s⁻¹ 8.7x10⁵ M⁻¹s⁻¹ 4.0x10⁶ M⁻¹s⁻¹

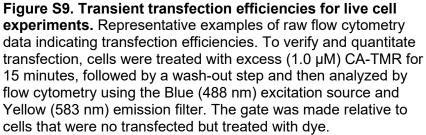
> Figure S8. Reaction rates of rhodamine chloroalkane substrates with HaloTag7, BenzoHTag, and Variant 6. (a) Plot of apparent second order rate constants of CA-TMR and CA-JF₆₃₅ with BenzoHTag and selected variants. (b) Structures of CA-TMR and CA-JF₆₃₅. (c) Structures of analogous silicon rhodamine dyes, SiR¹⁵; JF_{635i}¹⁶; JF₆₆₉^{17, 18}, and their apparent second order rate constants used to estimate the conjugation rate of CA-JF₆₃₅ to HaloTag7.

Photophysical measurements

Steady state photophysical measurements were conducted in aerated solvents at approximately 10 μ M of dye such that the absorbance did not exceed 0.1. Quantum yield of fluorescence was calculated using eq. 1, where F is the integrated intensities, *f* is the overlap absorbance value between the dye and standard, and η is the refractive index of the solvent; *i* and s stand for sample and standard, respectively. Coumarin153 in ethanol was used as the standard ($\varphi_{Fl, standard} = 0.53$). Properties were measured in duplicate.

(1)
$$\Phi_{fl}^i = \left(\frac{F^i f_s \eta_l^2}{F^s f_i \eta_s^2}\right) \Phi_{fl}^s$$

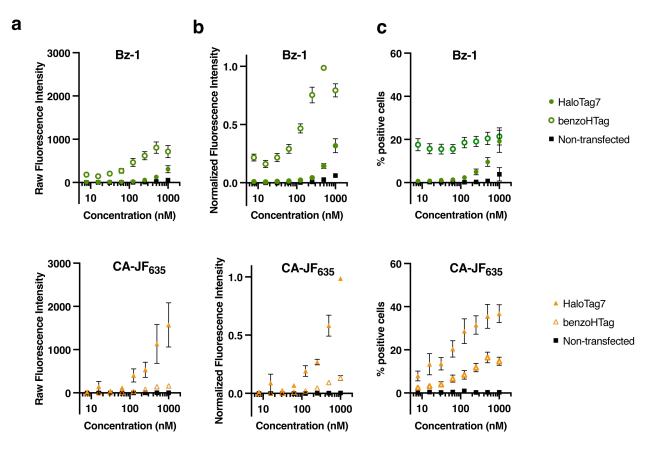
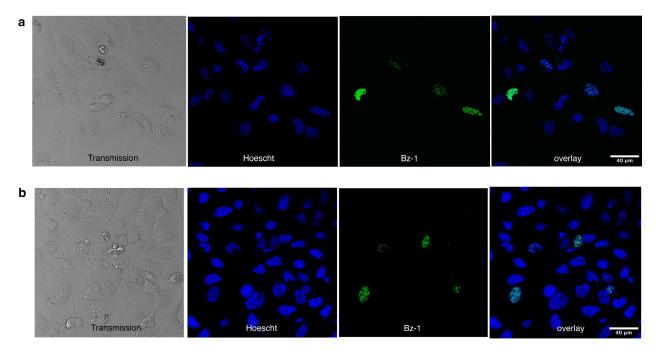

	Φ_{fl}	ε (M ⁻¹ cm ⁻¹)	$\lambda_{abs, max}(nm)$	$\lambda_{ m em,\ max}(m nm)$
BenzoHTag•Bz-1	0.58	8100	446	530

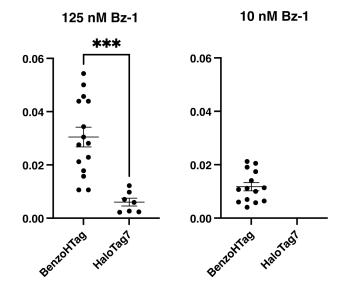

Mammalian Cell Culture

General – HaloTag7 and BenzoHTag were subjected to PCR using primers **P12** and **P13** to introduce homologous overhangs for cloning into pCDNA/FRT/TO_TOMM20 plasmid (Gift from Kai Johnsson,⁵ pCDNA5/FRT/TO_TOMM20_HaloTag9 was a gift from Kai Johnsson (Addgene plasmid # 169335) between the AgeI and XhoI restriction sites.⁵ After cloning, these plasmids were transformed into NEB 5α competent *E. coli* and plasmid isolated by maxi-prep (Invitrogen).

U-2 OS cells (ATCC) were cultured in high glucose MyCoy's 5A media (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum and grown at 37 °C in a humidified environment of 5% CO₂. Two days prior to an experiment, 10,000 cells were seeded per well in a 96-well plate and grown for 24 hours. Cells were then transiently transfected with expression plasmid using X-tremeGene 9 transfection reagent (Roche) according to manufacturer protocols. Cells were incubated with transfection mix for 18-24 hours.

Flow Cytometry – Transfection media was aspirated, and cells were washed with PBS. Nontransfected cells and cells transfected with either HaloTag7 or BenzoHTag, and non-transfected cells were then treated with varying concentrations of **Bz-1** or **Bz-3** 100 μ L in Opti-MEM reduced serum media (Thermo Fisher Scientific) for 10 minutes. Media was then aspirated, and cells were trypsinized without wash steps from the well using 0.05% Trypsin in PBS, diluted to 200 μ L. 10,000 live, single cells were analyzed by flow cytometry. The **Bz-1** fluorescence (green) of each cell was measured using a 488 nm laser and a 525 nm emission filter, and the **CA-JF**₆₃₅ fluorescence (red) was measured using a 642 nm laser and a 661 nm emission filter. The mean green fluorescence of 5,000 cells was calculated and the background due to cell autofluorescence was subtracted using measurement from non-transfected, non-dye treated cells. Signal-over-background was calculated by taking the ratio of green fluorescence between dye-treated, transfected cells and dye-treated, non-transfected of cells. The reported mean green fluorescence values are for the entire analyzed population and are thus likely and underestimation of the true enhancement of green fluorescence in live cells as it includes ~80% of cells that were not transfected.


Figure S10. Flow-cytometry data of BenzoHTag or HaloTag expressing cells. (a) Dose-response raw fluorescence intensity of Bz-1 or CA-JF₆₃₅ treated U-2 OS cells or U-2 OS cells transiently expressing H2B fusions fo HaloTag7 or BenzoHTag. Cells were treated for 10 minutes prior to analysis. (b) Normalized fluorescence intensity. (c) Dose-response of the percentage of Bz-1 or CA-JF₆₃₅ labeled U-2 OS cells, or U-2 OS cells expressing HaloTag7 or BenzoHTag above background autofluorescence of untreated control cells.

Confocal Microscopy – Transfection media was aspirated, and cells were treated with Hoescht stain (1 μ g/mL) for 30 minutes in Opti-MEM. Cells were washed twice with PBS and then treated with Opti-MEM for an extended 30-minute wash step. 50 μ L of HEPES-buffered saline (HBS) were added to the cells. Prior to imaging, cells were then treated with 50 μ L of 250 nM or 20 nM of **Bz-1** in HBS (final concentration 125 nM or 10 nM) and imaged directly without removing excess dye. Images were acquired on a Leica TCS SP8 microscope and processed using ImageJ software.

Figure S11. Turn-on fluorescence in BenzoHTag-expressing cells. Confocal microscopy images of **Bz-1** with U-2 OS cells that were transiently transfected with a H2B-BenzoHTag fusion, treated with (a) 10 nM of **Bz-1** or (b) 125 nM of **Bz-1** and imaged directly without washing. Blue is Hoescht staining, and green fluorescence is **Bz-1**.

Live cell labeling kinetics – Transfected cells were labeled with Hoescht stain as described above. To each well, 50 µL HBS was added. Shortly after the start of video recording, 50 µL of **Bz-1** in HBS was added to a final concentration of 125 or 10 nM. The appearance green fluorescence of transfected cells was recorded in real-time. Videos were recorded at 6 frames/second for five minutes. Videos were analyzed using ImageJ with the Time Series Analyzer V3 plugin.¹ The fluorescence intensity of at least 10 transfected cells (as determined by the last frame) was measured every 25 frames (~4 seconds) and plotted as a function of time. The average background fluorescence of 10 non-transfected cells was also measured every 25 frames of the ≥10 transfected cells are shown in Fig. 4c in the main text. Curves were fit for each kinetic trace for each of the ≥10 analyzed transfected cells and measured k_{app} (s⁻¹) are shown in Figure S12.

b

	k _{obs} (s⁻¹)		
	125 nM	10 nM	
BenzoHTag	0.03 ± 0.003	0.012 ± 0.001	
HaloTag7	0.006 ± 0.001	ND	

Figure S12. Summary of live-cell labeling kinetics of U-2 OS cells transiently transfected with BenzoHTag or HaloTag and treated with Bz-1. Rates were calculated by fitting curves to each of the \geq 10 transfected cells analyzed. Significance was determined by an unpaired Student's t-test; p=0.0003. (a) Labeling rates for cells treated with 125 nM (left) or 10 nM (right) Bz-1. (b) Summary of average k_{obs} values (s⁻¹). Errors are standard error of the mean.

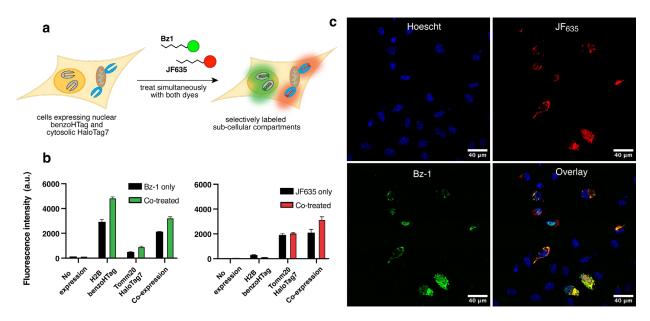


Figure S13. Simultaneous multiplexed labeling with Bz-1 and CA-JF₆₃₅. (a) U-2 OS cells co-expressing H2B-BenzoHTag and Tomm20-HaloTag7 were labeled simultaneously with a solution of

27

125 nM of each **Bz-1** and **CA-JF**₆₃₅ and analyzed without washing out excess dye. (b) Flow cytometry data of the brightest 15% of cells in orthogonal labeling experiments with 125 nM **Bz-1** and 125 nM of **CA- JF**₆₃₅ for 10 minutes. Raw flow cytometry histograms can be found in Fig. S14. U-2 OS cells expressing H2B-benzoHTag, Tomm20-HaloTag7, or with side-by-side comparison of cells treated with only dye or a co-treated with both dyes. (c) Confocal microscopy images of U-2 OS cells transiently transfected with both H2B-BenzoHTag and Tomm20-HaloTag7. Cells were treated with 125 nM **Bz-1** and 125 nM **CA- JF**₆₃₅ for 60 minutes and are co-stained with nuclear Hoescht dye.

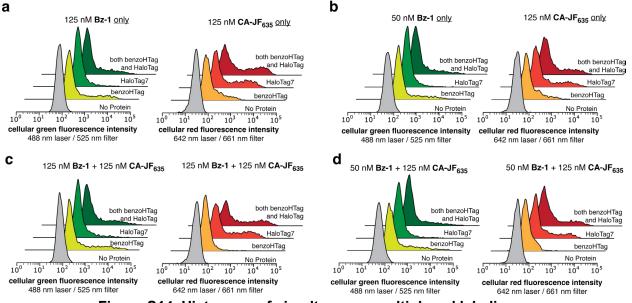
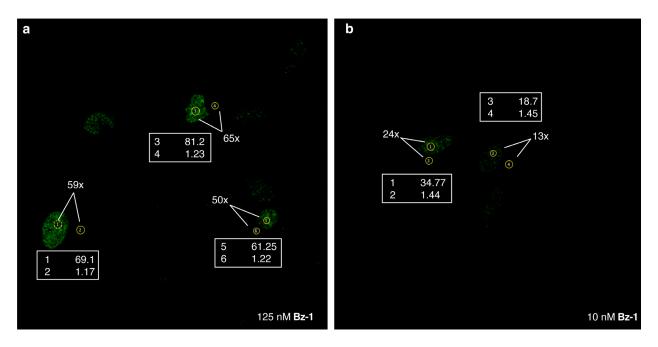



Figure S14. Histogram of simultaneous multiplexed labeling of cells co-expressing HaloTag7 and BenzoHTag. U-2 OS that were co-transfected with Tomm20-HaloTag7 and H2B-BenzoHTag constructs were treated either with a solution of only **Bz-1**, **CA-JF**₆₃₅, or a mixture of both dyes, and analyzed by flow cytometry. (a, c) Cells treated with 125 nM of **Bz-1**, 125 nM of **CA-JF**₆₃₅, or a solution of both dyes for 10 minutes. (b,d) Cells treated with 50 nM of **Bz-1**, 125 nM of **CA-JF**₆₃₅, or a solution both dyes for 60 minutes. The fluorescence intensity of the top 15% of cells were extracted for analysis.

Figure S15. Signal over background of Bz1-benzoHTag in live cell imaging. Signal over background in live U2OS cells expressing benzoHTag as a Tomm20 fusion treated with (a) 125nM or (b) 10 nM of **Bz1** for ~60 minutes and imaged without washing or replacing the media. Mean fluorescence intensity of signal (nuclear fluorescence) over background (cytosolic fluorescence) are indicated. Analysis was conducted using ImageJ on raw image files obtained from a confocal fluorescence microscope.

References

- 1. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. *Nature Methods* **2012**, *9* (7), 671-675.
- 2. Los, G. V., et al., HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. *ACS Chemical Biology* **2008**, *3* (6), 373-382.
- 3. Encell, L. P., et al., Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. *Curr Chem Genomics* **2012**, *6*, 55-71.
- Erdmann, R. S., et al., Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags. *Cell Chemical Biology* 2019, 26 (4), 584-592.e6.
- 5. Frei, M. S., et al., Engineered HaloTag variants for fluorescence lifetime multiplexing. *Nature Methods* **2021**.
- 6. Cook, A.; Walterspiel, F.; Deo, C., HaloTag-Based Reporters for Fluorescence Imaging and Biosensing. *ChemBioChem* **2023**, *24* (12), e202300022.
- 7. Chao, G., et al., Isolating and engineering human antibodies using yeast surface display. *Nat Protoc* **2006**, *1* (2), 755-68.

- 8. Islam, M., et al., Chemical Diversification of Simple Synthetic Antibodies. *ACS Chemical Biology* **2021**, *16* (2), 344-359.
- 9. Angelini, A., et al., Protein Engineering and Selection Using Yeast Surface Display. Springer New York: 2015; pp 3-36.
- Van Deventer, J. A.; Wittrup, K. D., Yeast Surface Display for Antibody Isolation: Library Construction, Library Screening, and Affinity Maturation. Humana Press: 2014; pp 151-181.
- 11. Branon, T. C., et al., Efficient proximity labeling in living cells and organisms with TurboID. *Nat Biotechnol* **2018**, *36* (9), 880-887.
- 12. Colby, D. W., et al., Engineering antibody affinity by yeast surface display. *Methods Enzymol* **2004**, *388*, 348-58.
- 13. Deprey, K.; Kritzer, J. A., HaloTag Forms an Intramolecular Disulfide. *Bioconjugate Chemistry* **2021**, *32* (5), 964-970.
- Liu, Y., et al., The Cation-π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification. *Biochemistry* 2017, 56 (11), 1585-1595.
- 15. Lukinavičius, G., et al., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. *Nature Chemistry* **2013**, *5* (2), 132-139.
- 16. Jonker, C. T. H., et al., Accurate measurement of fast endocytic recycling kinetics in real time. *Journal of Cell Science* **2020**, *133* (2).
- 17. Grimm, J. B., et al., A general method to optimize and functionalize red-shifted rhodamine dyes. *Nature Methods* **2020**, *17* (8), 815-821.
- 18. Wilhelm, J., et al., Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag. *Biochemistry* **2021**.