SUPPLEMENTAL METHODS

Synthesis of 2-DG nanopreparation (NP). 3-aminophenylboronic acid (Cat. #900988), N-hydroxysuccinimide
(NHS; Cat. #130672), and 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC; Cat. #341006)
were purchased from Sigma Aldrich (St. Louis, MO). All reagent-grade chemicals purchased from Sigma-
Aldrich were used without any purification. Poly (ethylene glycol)-b-poly(L-glutamic acid) (PEG-b-pGlu) block
copolymer (Bu= 1.08) was synthesized as previously described (1). The block lengths were 114 and 150
repeating units for PEG and pGlu, respectively. 3-aminophenylboronic acid (BA) was conjugated to PEG-pGlu
block copolymer via a coupling reaction between the carboxyl group of pGlu and amino group of BA in the
presence of EDC and NHS. The activation reaction (EDC/NHS) was conducted in water upon stirring for 5 min
followed by addition of 3-aminophenylboronic acid (5 eq. with respect to Glu units). After stirring for 24 h at
room temperature, the reaction mixture was purified by dialysis against deionized water for 48 h using a 3,500
Da cutoff membrane. The resulting PEG-p(Glu-g-BA) copolymer was freeze-dried, and its functionalization with
BA and purity were confirmed by 'H-NMR spectra recorded in D,O at 25°C using a Bruker 400 MHz
spectrometer. Next, 2-DG-polymer complexes were prepared by gentle mixing of appropriate amounts of stock
solutions of PEG-p(Glu-g-BA) (10 mg/mL in 50 mM phosphate buffer, pH 7.4) and 2-DG (10 mg/mL in distilled
water, 5 eq. with respect to BA units) followed by stirring for 24 h at room temperature. Excess 2-DG was
removed using Amicon filter units (MWCO 3,500 Da). The amount of free (non-formulated) drug was estimated
using a sugar assay (2). Freshly prepared complexes were stored at 4°C and used within 1-2 days.

Western blot and RT-qPCR. To validate effective Hif1a excision in G-MDSCs from Mrp8°*Hif1a™ mice,
expression of Hif1a using primers spanning the deletion site (exons 2 — 3) and several Hifta-dependent genes
was determined by RT-qPCR. G-MDSCs or macrophages (as a control) were cultured for 16 h under normoxia
or hypoxia (1% O2) to augment HIF 1a action, whereupon total RNA was isolated using TRIzol reagent (Cat.
#15596018; Thermo Fisher Scientific) and genomic DNA removed using DNase | (Cat. #AMPD1-1KT, Sigma).
RNA was used to generate cDNA using a Verso cDNA synthesis kit (Cat. #AB1453B; Thermo Fisher Scientific)
and gPCR was performed with TagMan probes [Hif1a (Cat. #Mm01283757_m1), hexokinase 2 (Hk2; Cat.
#MmO00443385_m1), glutamate transporter 1 (Glut1; Cat. #Mm00441480_m1), vascular endothelial growth
factor alpha (Vegfa; Cat. #Mm00437306_m1), and B-actin (Actb; Cat. #Mm02619580_g1)] (all from Thermo

Fisher Scientific) using a CFX Connect Real-Time system (Bio-Rad). Data were normalized to B-actin and are



reported as relative expression (2-22¢t, where Ct is the cycle threshold) compared to normoxia samples for
each genotype.

To examine HIF1a protein expression in G-MDSCs and macrophages from Mrp8¢eHif1a™" vs. WT
littermates (Mrp8\U"Hif1a™"), cells were treated with cobalt chloride (500 uM) for 24 h, lysed directly in Laemmli
buffer (Cat. #161-0737; Bio-Rad) and incubated at 95°C for 10 min. Proteins were separated using 10% SDS-
polyacrylamide gel electrophoresis, transferred to a polyvinylidene fluoride membrane (Cat. #1ISEQ00010;
Merck Millipore) and incubated overnight with a rabbit HIF1a mAb (RRID:AB_2799095). The following day, the
membrane was washed and incubated with an anti-rabbit IgG-HRP conjugated secondary Ab
(RRID:AB_2099233) for 1 h at room temperature and developed using Clarity Western ECL substrate (Cat.
#170-5060; Bio-Rad) for detection in a Western blot imaging system (Azure 600; Azure Biosystems). Blots
were stripped and re-probed with a $-actin-HRP conjugated Ab (RRID:AB_867494) as a loading control.
Effects of 2-DG and chetomin on bacterial growth and metabolism. S. aureus was cultured under
planktonic or biofilm conditions with a concentration of 2-DG equivalent to the entire drug content delivered by
NPs in vivo (~4.5 pg) or 375 nM chetomin that was used for in vitro biofilm-leukocyte co-cultures. For
planktonic culture, drugs were added at time 0, and bacterial growth was measured at 600 nm over a 24 h
period in a microplate reader (Tecan). For biofilm culture, 2-DG or chetomin was included during the initiation
of biofilm formation and daily medium exchanges. In separate experiments, mature biofilm was treated with
chetomin for 30 min to reflect the interval that biofilms were exposed to the compound during biofilm-leukocyte
co-culture studies. Samples were serially diluted and plated to assess the number of viable bacteria reported
as CFU.

To assess the effects of 2-DG on S. aureus metabolism, planktonic or biofilm cultures were collected at
the indicated time points and washed twice with a 0.6% NaCl solution. The pellet was resuspended in 60%
EtOH, and cells were lysed using a Precellys homogenizer for 30 sec at 6,800 rpm. The lysate was centrifuged
at 12,000 rpm for 5 min, whereupon the supernatant containing metabolites was collected and lyophilized.
Lyophilized samples were resuspended in 100 pl of 50% MetOH and 80 ul of each sample was loaded for
targeted LC-MS/MS. Detection and quantification of polar metabolites was performed using a Triple-
quadrupole-ion trap hybrid mass spectrometer (QTRAP6500+; Sciex, USA) connected with an ultra-

performance liquid chromatography (UPLC) /-class system (Waters, USA). The chromatographic separation of



metabolites was performed using a HILIC XBridge Amide analytical column (150 mm x 2.1 mm i.d.; particle
size 1.7 um; Waters, USA) and a binary solvent system in gradient mode. Mobile phase A was composed of
ammonium acetate and ammonium hydroxide (10 mM each) containing 5% acetonitrile in LC-MS grade water.
The pH was adjusted to 8.0 using glacial acetic acid and mobile phase B was 100% LC-MS grade acetonitrile.
The column was maintained at 40°C at a flow rate of 0.3 mL/min, and the autosampler temperature was held
at 5°C.
The QTRAP6500+ was operated in negative and positive polarity switching mode for targeted analysis of
metabolites by Multiple Reaction Monitoring (MRM) using previously optimized LC-MS/MS parameters (3).
Q1/Q3 pairs for metabolite detection are provided in Supplemental Table 2. '3C'>N-labeled canonical amino
acid mix (Cat. #MSK-CAA-1; Cambridge Isotope Laboratory) was used as an internal standard. Analyst and
Multiquant software (Sciex, USA) was employed for data acquisition and processing, respectively.
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Supplemental Figure 1. Cluster composition of granulocytes recovered from the mouse PJI model for
scRNA-seq. CD45* leukocytes were isolated from the soft tissue surrounding the infected joint of mice at days
3, 7, and 14 post-infection for scRNA-seq. Data was integrated to generate (A) UMAP clustering of
granulocytes, colored by day post-infection. (B) Proportions of granulocyte clusters from each sample origin
and (C) discrete counts of granulocytes within each cluster, colored by day post-infection.
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Supplemental Figure 2. G-MDSCs and PMNs exhibit distinct metabolic biases. Compass scores of G-
MDSCs and PMNs from the integrated scRNA-seq dataset at days 3, 7, and 14 post-infection were used to
generate Cohen’s D to reflect the relative metabolic tendencies of each cell type. Each metabolic reaction was
grouped into metabolic subsystems and plotted (red: G-MDSC; blue: PMN).
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Supplemental Figure 3. Metabolic activity is strongly linked to cellular identity. Compass analysis was
performed using the integrated scRNA-seq dataset at days 3, 7, and 14 post-infection to (A) score
granulocytes on expression of G-MDSC (pathogenicity) or PMN (maturity) gene sets. (B) Correlation of
metabolic activity, as predicted by Compass, and the expression of genes in the G-MDSC and PMN sets used

for separation of the populations in (A).
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Supplemental Figure 4. 2-DG and chetomin do not affect S. aureus growth or metabolism. S. aureus
growth following treatment with 4.5 ug/ml 2-DG or vehicle during (A) planktonic culture at time 0 and (B-C)
intracellular metabolites were quantified by targeted LC-MS/MS during planktonic growth at (B) 6 h or (C) 24 h
(data represent mean £ SEM; n = 5/group). (D) S. aureus biofilm growth following exposure to 4.5 pg/ml 2-DG
or vehicle at the initiation of biofilm culture (day 0) and throughout the 4-day maturation period (data represent
mean + SEM; n = 15 /group). Intracellular metabolites of (E) S. aureus biofilm treated with 4.5 pyg/ml 2-DG or
vehicle at the initiation of biofilm growth with metabolites quantified at 24 h and (F) a mature 4-day old biofilm
treated with 4.5 ug/ml 2-DG for 3 days (n = 5/group). Biofilm cultures were replenished daily with fresh medium
containing 4.5 ug/ml 2-DG. (G-l) S. aureus was treated with 375 nM chetomin during (G) planktonic growth
(data represent mean £ SEM; n = 24/group), (H) the initiation of biofilm formation from day 0 to day 4 (biofilm
medium was replaced daily with fresh media containing chetomin; data represent mean + SD; n = 5/group;
chetomin day 4, n = 4), or (I) a 4-day mature biofilm treated for 30 min (data represent mean + SD; n =
5/group). (J) Bacterial titers in S. aureus biofilms grown for a 4-day period under normoxia or hypoxia are
expressed as colony forming units (CFU)/well (data represent mean £ SEM; n = 9/group; **, p < 0.01; unpaired

two-tailed t-test).
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Supplemental Figure 5. Conditional Hif1a deletion in granulocytes prevents the induction of Hif1a-
depenent genes in G-MDSCs, but not macrophages (Mgs), in response to hypoxia. (A) Hifla mMRNA
levels in bone marrow-derived G-MDSCs and Mgs from Mrp8NHijf1a™" and Mrp8°*Hif1a™" mice (G-MDSC, n
= 5/group; Mg, n = 6/group; ****, p < 0.0001; unpaired two-tailed t-test) and (B) HIF1a protein expression in G-
MDSCs and Mgs from Mrp8NUIHif1a™" and Mrp8°eHif1a™" mice treated with 500 uM cobalt chloride (CoCl,) for
24 h. (C) G-MDSCs and Mgs from Mrp8"“'Hif1a"" and Mrp8cHif1a™" mice were cultured in normoxia or
hypoxia (1% O.) for 16 h, whereupon Hif1a-dependent genes were quantified by RT-qPCR (G-MDSC,
n=3/group; Mo, Hk2, n = 6 for Mrp8"“"Hif1a™" and n = 5 for Mrp8°°Hif1a™"; Glut1 and Vegfa, n = 6/group; **, p
<0.01; ** p <0.001; *** p < 0.0001; one-way ANOVA with Tukey’s correction). Data represent mean + SEM.
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Supplemental Figure 6. Absolute numbers of leukocyte infiltrates in WT and Mrp8Hif1a conditional
knockout mice. Mrp8\UHjf1a™" and Mrp8cHif1a™ mice were euthanized at days 7 and 14 following S.
aureus PJI, whereupon the absolute numbers of G-MDSC, PMN, and monocyte infiltrates were determined by
flow cytometry using counting beads (data represent mean + SEM; day 7, n = 11 for Mrp8"“'Hif1a™" and n = 14
for Mrp8¢eHif1a™, day 14, n = 5/group).
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Supplemental Figure 7. Cluster composition of granulocytes recovered from Mrp8°*Hif1a™" mice for
scRNA-seq. CD45* leukocytes were isolated from the soft tissue surrounding the infected joint of
Mrp8NYHif1a™" and Mrp8creHif1a™" mice at days 3 and 14 post-infection for scRNA-seq. Data was integrated to
generate (A) UMAP clustering of granulocytes, colored by sample identity. (B) Proportions of granulocyte
clusters for each sample origin and (C) absolute counts of granulocytes within each cluster, colored by sample
identity.
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Supplemental Figure 8. Conditional knockout of Hif1a in granulocytes causes substantial decreases in
the predicted activity of nearly all metabolic subsystems. scRNA-seq data from Mrp8"“/Hijf1a™" and
Mrp8creHif1a™ granulocytes were analyzed using Compass to investigate potential metabolic differences
between the groups. The resultant score matrices for each group at days 3 and 14 post-infection were
compared to yield predicted relative activities.
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Supplemental Figure 9. Granulocytes isolated from Mrp8°Hif1a™" mice following S. aureus PJI display
major metabolic changes. Compass scores of granulocytes from Mrp8V“'Hif1a™" (red) and Mrp8°eHif1a™"
(blue) mice at days 3 and 14 post-infection from the scRNA-seq dataset were used to generate Cohen’s D to
reflect the relative metabolic tendencies of each genotype. Individual metabolic reactions were grouped into
metabolic subsystems and plotted.
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Supplemental Figure 10. Cluster composition of scRNA-seq from prosthetic joint infection (PJI)
subjects. Matched tissue and blood samples from PJI patients were processed by scRNA-seq and data
integrated. UMAP clustering, colored by (A) clusters and (B) sample origin. The (C) proportions and (D) cell
counts within each cluster, colored by sample origin are shown.
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Supplemental Figure 11. Flow cytometry gating strategy for quantifying leukocyte infiltrates during S.
aureus PJI. From the (A) total population, (B) single cells were gated using FSC-A vs. FSC-H prior to (C)
excluding dead cells. (D) Live CD45" leukocytes were divided based on their expression of (E) Ly6C and Ly6G
into Ly6GLy6C* monocyte and Ly6G*Ly6C* populations, the latter of which was characterized as (F) PMNs
and G-MDSCs based on CD11b expression.



Supplemental Table 1. Demographics of human PJI subjects.

Subject # Sex Age Race Infectious diagnosis
1 F 47 Caucasian Staphylococcus aureus
2 M 74 Caucasian Stenotrophomonas maltophilia

5 M 58 Caucasian Staphylococcus aureus




Supplemental Table 2. Multiple Reaction Monitoring details for metabolites

Component Name

Mass Info (Q1/Q3)

Acetyl CoA 810.2/303.2
ADP 428.0/136.0
ATP 508.0/410.0
cis-Aconitate 173.0/129.0
D-Fructose 1,6-bisphosphate 339.0/79.0
D-Fructose 1/6-phosphate 259.0/79.0
DHAP 169.0/97.0
D-Ribulose 5-phosphate 229.0/97.0
D-Xylulose 5-phosphate 229.0/139.0
Fumarate 115.0/71.0
Glyceraldehyde 3-phosphate 169.0/79.0
Lactate 89.0/45.0
Malate 133.0/115.0
NADH 666.0 / 649.0
NADP 742.0/620.0
NADPH 744.0/408.0
Nicotinamide adenine dinucleotide 662.0/540.0
Phosphoenolpyruvate 167.0/79.0
Pyruvate 87.0/32.0
Sedoheptulose 7-phosphate 289.0/79.0

Succinate

117.0/99.0




