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Supplementary Note 1: Details of the single cell analysis. 

We first obtained a new transcriptome from adult Pristina individuals (mixed stages, mRNA) using 

Iso-Seq on the PacBio Sequel II platform. From 1,546,939 CCS reads, we recovered 367,025 reads 

spanning 111,961 full transcripts, with a mean length of 1,664 bp (full transcript N50: 3796 bp). This 

data was combined with previously published transcriptomic resources 1 using EvidentialGene 2, 

resulting in a final non-redundant transcriptomic resource containing 37,263 transcripts and 96.3% of 

the metazoan BUSCO cassette. We annotated these transcripts using eggNOG 3 against the 

metazoan database and performing Diamond Blast 4 against a local version of the nr 

database (Supplementary Data 1).  

We obtained cell dissociations of adult mixed populations of Pristina containing intact organisms in all 

fissioning stages (Figure 1A). We used ACME dissociation, a recently developed protocol that fixes 

the cells early during the dissociation process 5. ACME produces cell suspensions that are fixed and 

permeabilised, and are therefore ideal for performing SPLiT-seq 6 or other single cell transcriptomic 

methods based on combinatorial barcoding. These methods tend to give less gene and UMI content 

per cell, but are in turn cost effective and allow obtaining tens of thousands of cell profiles at a low 

cost, maximising the detection of rarer cell types. We performed three independent SPLiT-seq 

experiments (Figure 1A) and sequenced them using the Illumina NovaSeq 6000 platform at 2x 150 

bp read length. We processed these reads with our SPLiT-seq pipeline 5,6 and obtained a total of 

80,387 cell profiles above 50 genes per cell. We aimed at identifying doublets using Scrublet 7 and 

Solo 8, obtaining 2,870 and 2,554 cell barcodes respectively (Supplementary Figure 1A). The overlap 

of both methods was 458 cells, a significant (p = 0.006, above expected p = 0.001) but moderate 

result that indicates that doublet identification tools have a low level of agreement on such a complex 

dataset. We then examined whether doublets have a large influence on the overall quality of the data, 

for instance by creating cell clusters dominated by doublets. We processed the dataset containing 

doublets and performed Leiden clustering in 4 different resolutions (Supplementary Figure 1B) 

ranging from 46 to 88 clusters. This revealed that even at high clustering resolutions there are no 

clusters dominated by Scrublet and/or Solo doublets (Supplementary Figure 1C), showing that 

Scrublet and Solo-detected doublets are not a major source of clustering formation. 

We removed both doublet lists from the dataset, eliminating 4,966 cells (6.1%), a value conservatively 

above the ~3% doublet expectation of our SPLiT-seq experiments. We explored the preprocessing 

parameter space with this 75,421-cell dataset, revealing that most conditions generated 40-60 

reproducible clusters at resolution 1, but that a large number of Principal Components (PCs) 

and Highly Variable Genes (HVG) were needed to capture the full structure of the dataset 

(Supplementary Data 2). We then processed the dataset eliminating the top expressed gene 

(PrileiEVm0194901t1), since this made up about 60% of our UMI counts, likely a product of SPLiT-

seq’s library amplification 



process. We further eliminated cells above 700 genes and 900 raw UMI counts as likely doublets, 

obtaining a final dataset of 75,218 cells. We processed this dataset with 18,000 HVGsm, 45 

neighbours and 105 PCs, obtaining a mean of 110 genes per cell and 397 UMI counts per cell 

(Supplementary Figure 2AB). Despite this relatively low gene and UMI count content, cell clustering 

with the Leiden algorithm (resolution 1.5) allowed us to robustly identify 60 cell clusters (Figure 1B, 

Supplementary Figure 2C-D, Supplementary Figure 3A) that are reproducible across 

parameter conditions (Supplementary Data 2), and have highly specific markers (Figure 1C, 

Supplementary Figure 2E). We calculated marker genes for each cluster using the Wilcoxon 

and the Logistic Regression methods (Supplementary Data 3 and 4), which showed a high but not 

complete overlap. In some clusters, one of the two methods performed better than the other, but no 

method performed best in all clusters (Supplementary Figure 2F). We report the overlapping 

markers (Supplementary Data 5). We noticed that some small clusters (46, 47, 48, 50, 51, 52, 53, 

54, 56, 57, 58, ranging from 174 to 41 cells, 0.2% and 0.05% of the dataset respectively) shared the 

same UMAP space as clusters 1 and 2 (Supplementary Figure 3B) and expressed genes 

characteristic of these cell populations. These small clusters either represent subsets of the 

clusters 1 and 2 population or leftover doublets unidentified by Scrublet or Solo, and were flagged 

as “unannotated”. The total amount of unannotated cells is 1,048 (1.39% of the total dataset), a very 

small number that is within the order of magnitude of expected doublets (~3%).  

We then used PAGA 9 to reconstruct differentiation trajectories. When we performed PAGA on the 

full dataset, small unannotated clusters connected other groups of clusters with unrelated markers 

(Supplementary Figure 4), reinforcing the idea that they could represent doublets. We then performed 

PAGA using only annotated clusters (Figure 1D). This lineage reconstruction allowed us to classify 

the broad cell types (Figure 1E). We also performed a co-occurrence analysis of cell type clusters 10, 

using the gene expression data of highly variable genes, summed at the cell cluster level. This 

analysis broadly confirmed our cluster groups (Supplementary Figure 5).  



Supplementary Note 2: Naming and grouping of the clusters. 

To characterise the cell types represented by each of our cell clusters we analysed and discussed 

the markers of each cluster, their Diamond BLAST annotations, and put these into the context of the 

available annelid and single cell literature, together with our own data. Broad groups of cell types were 

obtained by leveraging the information of the PAGA analysis and the co-occurrence matrix. 

Piwi+ cells: We found that the expression of piwi-1 concentrated in clusters 1 and 2, but also in 

cluster 8. A number of unannotated clusters were mixed with clusters 1 and 2 in the UMAP space and 

also expressed piwi-1. 

Epidermis: We identified epidermal cells based on the analysis of the expression of the markers 

PrileiEVm008309t1 and PrileiEVm008287t1, encoding intermediate filament proteins. 

Gut: We found this group of cell clusters connected to cluster 16, suggesting that cluster 16 contains 

gut progenitors. We identified and named the different regions of the Pristina leidyi gut based on the 

analysis of the expression of the markers PrileiEVm010132t1 (unannotated transcript), 

PrileiEVm010941t1 (unannotated transcript), PrileiEVm000199t1 (encoding a rootletin protein), 

PrileiEVm017310t1 (unannotated transcript), PrileiEVm019805t1 (unannotated transcript), 

PrileiEVm005677t1 (encoding a long-chain-fatty-acid-CoA ligase protein), PrileiEVm021761t1 

(unannotated transcript), PrileiEVm001383t1 (encoding a von Willebrand factor D and EGF domain-

containing protein), PrileiEVm026965t1 (unannotated transcript) and PrileiEVm020317t1 

(unannotated transcript). We found that Cluster 38 was only connected to the group of gut cell clusters 

below the threshold and we named it after the marker PrileiEVm022227t1 (encoding a caveolin 

protein), but kept it in the broad gut group. 

Muscle: We found that clusters 5, 6, 27 and 30 highly expressed components of the muscle 

sarcomere, including myosin heavy chain (PrileiEVm000300t1), myosin light chain 

(PrileiEVm019310t1, PrileiEVm025675t1, PrileiEVm020932t1), tropomyosin (PrileiEVm016172t1, 

PrileiEVm015909t1), troponin (PrileiEVm014978t1, PrileiEVm014978t1, PrileiEVm018738t1) and titin 

(PrileiEVm000447t1). Cluster 27 contains cells that are mixed with Clusters 8, 1 and 2, is connected 

by PAGA analysis to cluster 8, and likely represents a progenitor state.  

Neurons: We identified the neuronal populations based on the expression of synaptotagmin 

(PrileiEVm012030t1) and other neuronal specific transcripts such as PrileiEVm000558t1, which in-

situ expression marks the Ventral Nerve Cord (VNC). These markers were highly expressed in cluster 

3, 40, 41, 42, 45, 49 and 59. Cluster 49 also expressed a homolog of arrestin protein-domain 

(PrileiEVm014226t1) suggesting a possible identity for this cluster as photoreceptor neurons. 



Globin+ cells: We found that clusters 4 and 33 highly expressed extracellular globins, including 

PrileiEVm020672t1, PrileiEVm018061t1, PrileiEVm020599t1, PrileiEVm020147t1. 

Polycystin cells: We named this cluster group based on the expression of polycystin-2 

(PrileiEVm005033t1) and polycystin-1 (PrileiEVm004079t1) homologue genes. 

Eleocytes: We identified this cluster based on the expression of a vitellogenin homologue 

(PrileiEVm000002t1) which was also expressed in globin+ cells. The 3 clusters interconnected in the 

PAGA graph were named after markers mmp24 (PrileiEVm009033t1), fucolectin 

(PrileiEVm007557t1) and pgrn (PrileiEVm018088t1). 

Chaetal sacs: We identified the chaetal sacs based on the expression of PrileiEVm000939t1 

(encoding a kunitz-type protease inhibitor protein), PrileiEVm007502t1 (encoding an intermediate 

filament protein) and PrileiEVm000573t1 (encoding a chitin synthase protein). 

Lipoxygenase+ cells: We named this cluster based on the expression of several lipoxygenase 

transcripts, including PrileiEVm000278t1, PrileiEVm008087t1 and PrileiEVm008285t1. 

Vigilin+ cells: We named this cluster after the expression of the RNA binding protein vigilin 

(PrileiEVm001339t1). 

Lumbrokinase+ cells: We found that cluster 26 highly expressed several homologues of the 

lumbrokinase enzymes, including PrileiEVm016387t1, PrileiEVm016330t1, PrileiEVm016446t1 and 

PrileiEVm016633t1. 

Carbohydrate metabolic cells: We named this cluster based on the expression of several transcripts 

annotated as enzymes involved in carbohydrate metabolism, including a fructose-bisphosphate 

aldolase (PrileiEVm013994t1), a phosphoenolpyruvate carboxykinase (PrileiEVm026130t1), a malate 

dehydrogenase (PrileiEVm014911t1), as well as mitochondrial enzymes such as a glutamate 

dehydrogenase (PrileiEVm008904t1), a pyruvate carboxylase (PrileiEVm001525t1), and a 

mitochondrial malate dehydrogenase (PrileiEVm026983t1).  

Secretory: We proposed cluster 34 and 44 as secretory clusters based on the expression of a 

homolog of the conotoxin protein (PrileiEVm010163t1). The in-situ for this transcript marks a cluster 

of large cells segmentally repeating on the ventral side, after each chaetae bundle but not overlapping 

with the chaetae themselves. Also, some single cells in the posterior growth zone seem to be marked. 

These clusters also appear to express the synaptotagmin transcript (PrileiEVm012030t1) suggesting 

a possible neuro-secretory function. 

Arginase+ cells: We named this cluster group based on the expression of an arginase homologue, 

PrileiEVm015527t1 



Ldlrr+ cells: We named this cluster group based on the expression of a low-density lipoprotein 

receptor homologue, PrileiEVm010669t1. 

Metanephridia: We identified metanephridia cells based on the analysis of expression of the marker 

PrileiEVm002621t1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3: Notes on the WGCNA graph analysis. 

General rationale and TOM values: 

When generating a coexpression network using WGCNA 11, we sought to investigate whether these 

gene-gene correlations exhibited a graph behaviour. For this we used the TOM adjacency matrix as 

an entry point to generate a graph where nodes are genes and edges are TOM connection values. 

We first explored the behaviour of the resulting graph by defining a set of increasing threshold values 

to iterate the generation and visualisation of a sub-graph. This code and the respective graph layouts 

can be found in our GitHub repository. Upon visual inspection of these graphs, we observed a shift in 

graph structure when removing edges below 0.35. 

The majority of the WGCNA modules that we detected exhibit a very specific expression pattern in 

unique cell types. Thus, we wondered if graph analysis could prove useful to detect subtle patterns 

of gene coexpression and gene co-regulation in different cell types. If this were the case, the co-

expression graph would exhibit connections between genes from the same modules more 

preferentially, which would correspond to connected components (CC), but also connections between 

genes from different modules to a lesser extent, which we call cross-connections. In order to 

determine the presence of connected components in the graph; i.e. the connections between genes 

from the same or related modules, we generated a sub-graph using a cutoff value of TOM interactions 

>0.35 (Figure 4E), using the Fruchterman-Reingold layout to plot the genes in the network. Of the 40

modules detected in WGCNA, 38 pass this threshold and are present in this graph. There are two

modules (module_neurons3 and module_neurons5) for which all genes are connected by TOM

scores below 0.35, and therefore do not appear in the graph (Figure 4E). We observed a high

agreement between the connected components of this subgraph and the module assignment

provided by WGCNA (Supplementary Figure 9A,B).

We argue that exploration of the presence of connected components in the structure of the graph is 

a prerequisite for the study of cross-connections, as it would not make sense to seek connections 

between modules if these were not grouped in connected components and the whole network was 

fuzzy. To discern if different modules are connected, i.e. to detect and explore module cross-

connections, we subsetted the graph using a lax threshold (> 0.2)(Figure 4F). 

On Transcription Factor (TF) connectivity and TF Centrality: 

To ascertain the biological relevance of TF centrality, we explored TF centrality in relation to another 

important WGCNA metric called module connectivity. Based on Langfelder and Horvath 11,12, the 

metric of “connectivity to module” kME(x,y) is defined as the correlation of the gene expression of a 

given gene ‘x’ with the weighted average expression of all genes in a given module ‘y’. We reasoned 



this definition could be extended in the case of TF genes as the likelihood/potential of a given TF gene 

to play a role in the regulation of the expression of the genes in a module. This definition goes along 

the same lines of current standard methods to infer the regulatory capacity of a TF based on gene 

expression 13-16. 

We reasoned that, if a graph is constructed where genes are connected based on WGCNA 

coexpression values (such as in Fig. 4E,F,G), a TF ‘x’ connected to many genes of a given module 

‘y’ should exhibit a high centrality C(x,y) as well as a high connectivity kME(x,y) value. Therefore, if 

there is such an agreement between the two metrics, we argue that centrality in a graph might also 

prove useful to identify potential regulatory TF candidates. 

Since TF centrality is calculated independent of kME, we explored the relationship between these two 

metrics. We observed that TF genes that pass the Connected Component analysis (i.e. those present 

in the graph of Figure 4E) and thus have a centrality value calculated, show an overall higher 

connectivity (Supp. Fig 9C,D). This association between centrality and connectivity is intrinsic to each 

gene module, as every gene module sub-graph has distinct properties. Thus, high correlation values 

between kME and centrality only emerge when inspecting the relationship between these metrics for 

each module individually (Supplementary Figure 9E,F). 

Provided most of the gene modules we found exhibit a strong, cell type-specific gene expression, we 

argue that it is possible to find potential regulatory TFs of cell type identity and function using both TF 

connectivity and TF centrality. 
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Figure Supplementary 1: Doublet identification with Solo and Scrublet. 

A) UMAP visualisation of the 80,387 cells prior to doublet classification. Cells classified as doublets

by Solo and Scrublet are highlighted in pink and orange respectively, and cells classified as doublets

by both are highlighted in red.

B) UMAP visualisation of the 80,387 cell dataset after clustering in 4 different resolutions.

C) Percentage of cell classified as doublets by Solo, Scrublet and both methods in each cell cluster

across the 4 different resolutions
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Figure Supplementary 2: Pristina leidyi cell type atlas metrics.

A) Scatter plot of number of UMI counts per cell vs number of genes per cell.

B) UMAP visualisation of 75,218-cell Pristina leidyi single-cell transcriptomic cell atlas with cells

coloured according to the experiment of origin, named Lib 12, Lib 21 and Lib 30.

C) Violin plots showing the distribution of genes detected per cell in each cluster.

D) Violin plots showing the distribution of UMI counts detected per cell in each cluster.

E) Dot Plot showing the expression of the top 2 markers detected by the Wilcoxon method in each

cluster. Clusters are sorted according to hierarchical clustering. The values plotted in each dot are

the fraction of cells in each cluster that express each marker (dot size) and the score of the marker

(dot colour).

F) Score distribution of the top 20 markers of each cluster detected by the Wilcoxon method (left)

and the logistic regression method (right).
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Figure Supplementary 3: Pristina leidyi cell type atlas cell clusters and 

broad cell clusters.

A) UMAP visualisation of the 75,218-cell Pristina leidyi single-cell transcriptomic cell atlas with

clusters coloured according to their cell type classification, subdivided by broad clusters.

B) UMAP visualisation of the 75,218-cell Pristina leidyi single-cell transcriptomic cell atlas with

unannotated clusters highlighted.



Figure S4 

Figure Supplementary 4: Lineage reconstruction with unannotated 

clusters.

Lineage reconstruction abstracted graph showing the most probable path connecting the clusters. 

Each node corresponds to the cell clusters identified with the leiden algorithm. The size of nodes is 

proportional to the amount of cells in the cluster, and the thickness of the edges is proportional to the 

connectivity probabilities. This analysis includes the unannotated clusters (1,048 cells, 1.39% of the 

total dataset).
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Figure Supplementary 5: Co-ocurrence analysis.

Cell cluster co-ocurrence matrix showing similarities between related cell types based on gene 

expression correlation.
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Figure Supplementary 6: Negative controls.

For all HCR experiments, controls that included only hairpin amplifiers but no probes were carried 

out, imaged using the same imaging conditions, and images were processed with the same settings 

as the HCR samples.  

A) Panel shows maximum projections of Z-stacks in the head region of Pristina for a control and an

HCR sample, when the same imaging and image processing conditions are applied. The head region

typically did not have a lot of background or autofluorescence, except for chaetae, which typically

show autofluorescence.

B) Single focal plane images of the gut region in HCR and control samples. Stomach region typically

showed some background signal (hollow arrowheads) while the real signal was generally easy to

distinguish (solid arrowheads) especially when signal-to-noise ratio was high. In the third row,

background is shown when levels are adjusted to maximum in Fiji, but for the same control sample,

if the image processing is done at the same levels as the HCR samples (second row), there is very

little background.

C) Panel shows maximum projections of Z-stacks in the tail region for a control and an HCR sample,

when the same imaging and image processing conditions are applied. When amplifiers with Alexa-

546 fluorophore were used, we typically observed some background in the epidermal layer (hollow

arrowheads), but the actual HCR signal was still possible to distinguish (solid arrowheads) (also see

panel D).

D) Additional examples of autofluorescence and background signals. When the Alexa-647

fluorophore was used, gut content showed a high background (pink), therefore we avoided imaging

the areas where there was high gut content. The chaetae (green, hollow arrowhead) is also shown

as an example of intense autofluorescence. Nevertheless, the real signal was still possible to

distinguish in these samples (solid arrowheads). On the right, we show another example of epidermal

background (hollow arrowheads) versus actual signal (solid arrowheads) in the head region in

different samples.



Figure S7 

Figure Supplementary 7: Gut variations.

Detailed analyses showing all the samples analysed for the markers of gut clusters. Star denotes the 

tail end of the worm (anus). When there is a number next to the star, the number indicates the total 

number of segments for that particular worm (which was not possible to fit into the schematic because 

of length). 3 or 4 gut markers were tested in each set of worms, allowing analyses of multiple markers 

in a single sample. Each sample is indicated on the left (e.g. “Worm 01). Bars show the extent of 

expression observed for each marker.
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Figure Supplementary 8: Pseudobulk Transcription Factor Analysis.

A) Barplot showing the number of genes quantified with more than 5 UMI counts per million (cpm)

per cluster in a pseudobulk analysis, showing that most clusters have > 4000 genes quantified, with

a mean of 11,117 genes per cluster.

B) Barplot showing the number of TFs per TF type.

C) Boxplot showing the coefficient of variation distribution for each TF type. Boxes represent lower

quartile, median, and upper quartile; whiskers represent 1.5 x interquartile ranges; dots represent

outliers.

D) Barplot showing the top TF classes based on the number of instances where gene expression of

a given TF class was found to be significant in explaining differences between cell clusters (ANOVA,

Tukey test comparison of means).

E) (Left) Barplot showing predominance of different TF classes in the transcriptomic profile of

different cell clusters, measured as number of CPMs per gene and per class. Each colour

represents a transcription factor class. (Right) clustering of cell clusters based on similarities in the

transcriptomic profile of TF classes.



Figure S9 

Figure Supplementary 9: WGCNA graph analysis.

A) Barplot showing the adjusted Rand index metric to assess the agreement between several gene

classifications: genes assigned to WGCNA modules vs genes assigned to cell types based on
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maximum expression, genes assigned to WGCNA modules vs genes assigned to graph connected 

components, and genes assigned to graph connected components vs genes assigned to cell types 

based on maximum expression. 

B) (up) barplot showing the WGCNA module composition of each connected component. Colour

indicates WGCNA module as shown in Fig. 4F,G. (down) similar as upper barplot but relativised to

show relative frequencies.

C) Boxplot showing the connectivity (kME) values of TF genes that did or did not survive the CC

analysis and thus have associated centrality values. Boxes represent lower quartile, median, and

upper quartile; whiskers represent 1.5 x interquartile ranges; dots represent outliers.

D) Strip chart showing kME of TFs in the WGCNA module analysis, highlighting those with associated

centrality.

E) Boxplot showing the differences in correlation when taking all kME and centrality values without

regard to module membership (above value) vs when calculating separate correlations between kME

and centrality for each module separately. Boxes represent lower quartile, median, and upper

quartile; whiskers represent 1.5 x interquartile ranges; dots represent outliers.

F) Scatter plots of the kME and the centrality values of each TF in each of their respective modules.
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Figure Supplementary 10: Subclustering of piwi+ cells.

UMAP visualisation of piwi+ subclusters in the 75,218 and the 16,247 datasets containing all cells 

and only piwi+ cell clusters, respectively, and score UMAP plots of markers of piwi+ subclusters. 

Markers were calculated using the Wilcoxon and the Logistic Regression methods. 
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