Supplementary Box 1. Full search strategy for Ovid MEDLINE.

((ultrasound.ti,ab. OR ultra sound.ti,ab. OR sonograph*.ti,ab. OR ultrasonic.ti,ab. OR high-frequency.ti,ab. OR high frequency.ti,ab. OR hfus.ti,ab. OR ultrasonog*.ti,ab. OR exp Ultrasonography/) AND

((skin.ti,ab. OR epiderm*.ti,ab. OR derm*.ti,ab. OR cutaneous.ti,ab OR scar*.ti,ab OR keloid*.ti,ab OR cicatri*.ti,ab OR exp Skin/ OR exp Dermatology/ OR exp Cicatrix/)

AND

(thickness*.ti,ab. OR thicken*.ti,ab. OR depth.ti,ab. OR volume.ti,ab. OR height.ti,ab. OR vancouver scar scale.ti,ab)

ADJ10

(measure*.ti,ab. OR quantif*.ti,ab. OR calculat*.ti,ab OR estimat*.ti,ab OR assess*.ti,ab. OR determin*.ti,ab. OR evaluat*.ti,ab OR imag*.ti,ab OR exam*.ti,ab)))

NOT (exp animals/ NOT exp humans/)

Legend: ab, abstract (searches the abstract of the publication); adj10, adjacency (search terms must be located within 10 words of one another); exp, explode (used to include all subheadings when searching MeSH headings); ti, title (searches the title of the publication)

Page **1** of **41**

Supplementary Figure 1. Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) flow diagram for this study.

Page 2 of 41

Supplementary Table 1: Extraction categories and fields

Extraction category	Extraction field
Publication details	First author
	Year of publication
	Title of publication
	Country (first author)
	Country (study)
	Country (recruited)
	Publication type (e.g., peer-reviewed journal article, abstract)
	Journal name
	Corresponding author contact details
	Funding source (e.g., commercial, non-commercial)
	Use of scar thickness measurement (e.g., longitudinal study, response to
	treatment)
Study details	Aim/objective
	Research questions
	Target population/topics
	Study design (e.g., RCT, mixed methods)
	Data and analysis (i.e., statistical methods)
	Removal of scar treatments before ultrasound measurement (e.g., length of
	time before measurement)
	Reason for measurement (e.g., research, clinical initiative)
	Inclusion/exclusion criteria
	Dates of data collection Ultreasound thickness collection methods (a.g., direct collection, collected
	from medical meande)
	from medical records) Controlatoral/unaffected/comparator skin thickness measurement
	Other methods used
	Use of guidelines/frameworks for measurement methods
	How previously published methods/guidelines were used
	Research nineline stage
	Setting (e.g. inpatient/outpatient clinics)
	Scar type (e.g., inputerin scar surgical scar)
Participant details	Number of participants
	Population type (e.g., adult/paediatric)
	Gender ratio
	Patient involvement in thickness determination
	How patients were involved in thickness determination
Ultrasound methods	Ultrasound mode
	Device name and manufacturer
	Frequency used
	Number of measurements taken
	What did researchers report they were measuring (e.g., fibrosis, oedema)
	Anatomical locations/functional measurement units measured
	Patient orientation
	Ultrasound transducer orientation
	Methods used to prevent skin compression
	Measurement site relocation strategies
	Type of skin measurement (i.e., epidermis/dermis/combined)
	Measurer training
Psychometric properties [*]	Reliability
	Measurement error
	Time taken for measurement
reasibility outcomes	The taken for measurement

Page **3** of **41**

	Availability of measurement method				
	Ease of administration				
	Number of steps required				
	Number of people required to conduct measurements				
	Considerations for special populations				
Implementation [‡] outcomes	Acceptability				
	Adoption				
	Appropriateness				
	Cost				
	Feasibility				
	Fidelity				
	Sustainability				
Strengths and limitations of	Strengths				
measurement methods	Limitations				
	Barriers				
	Enablers				
Findings	Ultrasound-related findings				
*Psychometric properties as ou	tlined in the COSMIN Risk of Bias tool to assess the quality of studies on				
reliability or measurement error	r of outcome measurement instruments ¹				
[†] Feasibility outcomes as per Pr	insen <i>et al.</i> ²				
[‡] Implementation outcomes as per Proctor <i>et al.</i> ³					

Page **4** of **41**

Supplementary Table 2. Characteristics of records included in this review. Studies are listed alphabetically by author within the translational pipeline phase.

First Author	Country of Publication	Funding Sources	Sample	Population Type	Scar Aetiology	Translational
(year)			Size (n)			Pipeline Phase*
Journal articles						
Agabalyan (2017)	Canada	Non-commercial	10	Adult	Not specified	2
Alsharnoubi (2018)	Egypt	No funding	15	Paediatric	Burn	2
Alsharnoubi (2018)	Egypt	Not reported	15	Paediatric	Burn	2
Alshehari (2015)	Egypt	Not reported	30	Not reported	Mixed	2
Blome-Eberwein (2012)	United States	Non-commercial	16	Paediatric & adult	Burn	2
Blome-Eberwein (2016)	United States	Not reported	36	Adult	Not specified	2
Blome-Eberwein (2019)	United States	Non-commercial	19	Adult	Burn	2
Cai (2019)	China	Non-commercial	51	Adult	Not specified	2
Candy (2010)	Hong Kong	Not reported	17	Adult	Not specified	2
Chan (2004)	China	Non-commercial	56	Paediatric & adult	Burn	2
Chang (2014)	Taiwan	Non-commercial	60	Paediatric & adult	Surgical (cleft	2
					lip repair)	
Cho (2014)	Korea	Non-commercial	146	Not reported	Burn	2
Deng (2019)	China	Not reported	20	Adult	Not specified	2
Deng (2021)	China	No funding	31	Adult	Not specified	2
Deng (2021)	Hong Kong and China	Non-commercial	45	Adult	Not specified	2
Dunkin (2007)	England	Non-commercial	113	Adult	Surgical (dermal	2
					scratch)	
Elrefaie (2020)	Not specified	Not reported	22	Paediatric & adult	Not specified	2
Fabbrocini (2016)	Not specified	Not reported	20	Adult	Mixed	2
Fraccalvieri (2011)	Italy	No funding	5	Adult	Mixed	2
Fraccalvieri (2013)	Italy	Not reported	3	Paediatric & adult	Mixed	2
Gee Kee (2016)	Australia	Commercial	43	Paediatric	Burn	2
Issler-Fisher (2021)	Australia	Commercial	187	Adult	Burn	2
Joo (2020)	Korea	Non-commercial	48	Adult	Not specified	2
Lacarrubba (2008)	Not specified	Not reported	8	Paediatric & adult	Mixed	2

Page **5** of **41**

BMJ Open

BM, MS, TM, TR, BD, RK, ZT – Ultrasound Scoping Review: Supplement

Lau (2005)	Hong Kong	Not reported	100	Paediatric & adult	Burn	2
Lee (2019)	United Kingdom	Non-commercial	55	Adult	Burn	2
Lee (2020)	United Kingdom	Non-commercial	55	Adult	Burn	2
Li (2013)	China	Non-commercial	7	Adult	Burn	2
Li (2020)	China	Not reported	21	Paediatric & adult	Mixed	2
Li (2021)	China	Non-commercial	165	Paediatric	Mixed	2
Li (2021)	China	Non-commercial	105	Adult	Burn	2
Li-Tsang (2006)	Not specified	Non-commercial	45	Adult	Not specified	2
Li-Tsang (2010)	China	Non-commercial	104	Paediatric & adult	Mixed	2
Mamdouh (2021)	Egypt	Not reported	40	Adult	Not specified	2
Meirte (2016)	Belgium	Non-commercial	9	Adult	Burn	2
Miletta (2021)	United States	Non-commercial	29	Paediatric & adult	Burn	2
Nedelec (2019)	Canada	Non-commercial	70	Adult	Burn	2
Nedelec (2020)	Canada	Non-commercial	51	Adult	Burn	2
Nicoletti (2015)	Italy	Not reported	27	Paediatric & adult	Surgical (scar	2
N. (1000)			145		reconstruction)	2
Niessen (1998)	The Netherlands	commercial & Non-	145	Paediatric & adult	reduction)	2
Reinholz (2020)	Germany	No funding	25	Adult	Mixed	2
Schwaiger (2018)	Germany	No funding	15	Adult	Mixed	2
van den Kerckhove	Belgium	Not reported	60	Adult	Burn	2
(2005)		PP				
van der Veer (2010)	The Netherlands	Non-commercial	44	Adult	Surgical	2
					(cardiothoracic	
					surgery)	
Wang (2009)	China	Non-commercial	22	Adult	Burn	2
Wiseman (2020, 2021)	Australia	Commercial & Non-	153	Paediatric	Burn	2
		commercial				
Xuan (2021)	Not specified	Not reported	72	Not reported	Not specified	2
Yim (2010)	Korea	No funding	31	Paediatric & adult	Burn	2
Zadkowski (2016)	Not specified	Not reported	47	Paediatric	Burn	2
Avetikov (2018)	Not specified	Not reported	50	Paediatric & adult	Not specified	3

Page **6** of **41**

(2003)

BM, MS, TM, TR, BD, RK, ZT – Ultrasound Scoping Review: Supplement

Chae (2016)	Korea	Non-commercial	23	Adult	Not specified	3
Cheng (2001)	Hong Kong	Not reported	58	Paediatric	Burn	3
Danin (2012)	France	Not reported	22	Paediatric & adult	Burn	3
Fong (1997)	Not specified	Not reported	16	Paediatric & adult	Burn	3
Gankande (2014)	Australia	Non-commercial	30	Adult	Burn	3
Ge (2022)	China	Not reported	21	Paediatric & adult	Mixed	3
Guo (2020)	China	Non-commercial	87	Paediatric & adult	Not specified	3
Huang (2017)	Taiwan	Not reported	1	Adult	Burn	3
Huang (2020)	China	Non-commercial	43	Adult	Not specified	3
Huang (2021)	Taiwan	Not reported	5	Adult	Burn	3
Issler-Fisher (2017)	Australia	No funding	47	Paediatric & adult	Burn	3
Issler-Fisher (2020)	Australia	No funding	78	Adult	Burn	3
Katz (1985)	United States	Not reported	4	Not reported	Burn	3
Kemp Bohan (2021)	United States	No funding	21	Not reported	Burn	3
Kim (2018)	Not specified	Not reported	148	Not reported	Burn	3
Li (2018)	China	Non-commercial	34	Adult	Burn	3
Li-Tsang (2005)	China	Non-commercial	101	Adult	Surgical	3
					(orthopaedic	
					surgery)	
Lobos (2017)	Not specified	Not reported	35	Paediatric & adult	Not specified	3
Nedelec (2008)	Canada	Non-commercial	32	Adult	Burn	3
Nedelec (2014)	Not specified	Non-commercial	46	Adult	Burn	3
Reinholz (2016)	Not specified	Commercial	8	Adult	Not specified	3
Simons (2017)	Australia	Non-commercial	49	Paediatric	Burn	3
Soykan (2014)	The Netherlands	Non-commercial	87	Adult	Surgical	3
					(cardiothoracic	
					surgery)	
Timar-Banu (2011)	Canada	Non-commercial	30	Adult	Mixed	3
Ud-Din (2019)	United Kingdom	Non-commercial	62	Adult	Not specified	3
van den Kerckhove	Not specified	Not reported	6	Adult	Burn	3

Page **7** of **41**

Wang (2010)	Australia	Commercial & Non- commercial	21	Paediatric	Burn	3
Wood (1996)	Not specified	Not reported	1	Paediatric	Burn	3
Yeol Lee (2022)	Korea	Non-commercial	16	Adult	Mixed	3
Berry (1985)	Not specified	Commercial	16	Paediatric & adult	Burn	4
Engrav (2010)	Not specified	Commercial & Non-	67	Paediatric & adult	Burn	4
	-	commercial				
Abstracts						
Agabalyan (2016)	Not specified	Non-commercial	10	Not reported	Burn	2
Bajouri (2018)	Not specified	Not reported	20	Not reported	Burn	2
Blome-Eberwein (2011,	Not specified	Not reported	16	Paediatric & adult	Mixed	2
2012)						
Blome-Eberwein (2014)	Not specified	Not reported	66	Not reported	Burn	2
Cho (2012)	Not specified	Not reported	60	Paediatric & adult	Burn	2
Comstock (2018)	Not specified	Not reported	1	Adult	Burn	2
Cooper (2021)	Not specified	Not reported	25	Not reported	Burn	2
El-Zawhary (2007)	Not specified	Not reported	57	Not reported	Mixed	2
Jacobs (2016)	Not specified	Not reported	6	Paediatric & adult	Burn	2
Jang (2009)	Not specified	Not reported	20	Not reported	Not specified	2
Kim (2009)	Not specified	Not reported	5	Paediatric & adult	Burn	2
Li-Tsang (2010)	Not specified	Not reported	45	Not reported	Not specified	2
Li-Tsang (2011)	Not specified	Not reported	4	Not reported	Not specified	2
Maari (2017)	Not specified	Non-commercial	12	Not reported	Not specified	2
Moortgat (2020)	Not specified	Not reported	10	Not reported	Burn	2
Nedelec (2018)	Not specified	Not reported	60	Not reported	Burn	2
Peters (2018)	Not specified	Not reported	5	Not reported	Burn	2
Siwy (2016)	Not specified	Non-commercial	15	Not reported	Burn	2
Tu (2014)	Not specified	Not reported	59	Not reported	Not specified	2
Ud-Din (2017)	Not specified	Not reported	20	Not reported	Surgical (tissue	2
					biopsies)	
Anthonissen (2015)	Not specified	Not reported	N.R.	Not reported	Burn	3
Bezugly (2014)	Not specified	Not reported	103	Not reported	Mixed	3

Page **8** of **41**

Bezugly (2019)	Not specified	Not reported	438	Not reported	Not specified	3
Blome-Eberwein (2012)	Not specified	Not reported	19	Adult	Burn	3
Du (2006)	Not specified	Not reported	1	Adult	Burn	3
Edgear-Lacoursière	Canada	Not reported	44	Not reported	Burn	3
(2022)						
George (2019)	Not specified	Not reported	11	Not reported	Burn	3
Li (2016)	Not specified	Not reported	34	Not reported	Burn	3
Seo (2011)	Korea	Not reported	48	Not reported	Burn	3
Timina (2013)	Not specified	Not reported	49	Paediatric & adult	Not specified	3
Ud-Din (2017)	Not specified	Not reported	20	Not reported	Surgical (tissue	3
					biopsies)	
Ud-Din (2018)	Not specified	Not reported	62	Not reported	Surgical (tissue	3
	-	-		-	biopsies)	
Zuccaro (2019)	Canada	Not reported	13	Paediatric	Burn	3
Zuccaro (2021)	Not specified	Not reported	20	Paediatric	Burn	3
Zuccaro (2021)	Canada	Non-commercial	20	Paediatric	Burn	3
Cho (2012)	Not specified	Not reported	30	Not reported	Burn	4

Legend: Paediatric: measurement of patients under the age of 18; Adult: measurement of patients aged 18 years or older; N.R.: Not reported; Burn: scars caused by thermal, chemical or friction injury; Surgical: scars caused by surgical procedures (including biopsies); Mixed: participant scars caused by mixed trauma (e.g., burn and acne)

Footnotes: *Stage in the research to clinical practice translational pipeline, based on the Australian Government Department of Health and Aged Care⁴

Page **9** of **41**

First Author (year)	Ultrasound Type	Ultrasound Frequency (MHz)	Measurement Parameters	Scar Characteristic Measured	Scar Relocation
Journal articles					
Agabalyan (2017)	High-frequency	20	Epidermal, dermal & combined	N.R.	Not relevant – single measurement
Alsharnoubi (2018)	Midrange ultrasound	N.R.	N.R.	Fibrosis	N.R.
Alsharnoubi (2018)	Midrange ultrasound	N.R.	N.R.	Fibrosis [†]	N.R.
Alshehari (2015)	N.R.	N.R.	Maximum elevation above normal skin	N.R.	N.R.
Avetikov (2018)	B-mode	N.R.	Combined epidermal & dermal	N.R.	Not relevant – single measurement
Berry (1985)	N.R.	N.R.	N.R.	N.R.	N.R. [‡]
Blome- Eberwein (2012)	B-mode	N.R.	Combined epidermal & dermal [§]	N.R.	N.R. [‡]
Blome- Eberwein (2016)	High-frequency	50	N.R.	Fibrosis [†]	N.R. [‡]
Blome- Eberwein (2019)	High-frequency	35	Dermal	Fibrosis, hair follicle density	N.R.
Cai (2019)	High-frequency	50	Dermal	N.R.	N.R. [‡]
Candy (2010)	B-mode	N.R.	N.R.	N.R.	Scar boundaries traced
Chae (2016)	N.R.	N.R	Combined epidermal & dermal	N.R.	Not relevant – single measurement
Chang (2014)	N.R.	12	N.R.	N.R.	N.R.

Supplementary Table 3. Measurement methods used in included records.

Page **10** of **41**

Chan (2004)	N.R.	N.R.	N.R.	N.R.	Tracing
Cheng (2001)	B-mode	5-10	Combined epidermal & dermal	N.R.	Tracing & cutting out paper
-			-		Photographs
Cho (2014)	High-frequency	7.5	N.R.	N.R.	N.R.
Danin (2012)	B-mode	20	Epidermal & dermal	N.R.	N.R.
Deng (2019)	N.R.	N.R.	N.R.	N.R.	N.R.
Deng (2021)	Colour Doppler	4-15	Dermal	Fibrosis [†]	N.R.
Deng (2021)	B-mode	8-12	Epidermal & dermal	Fibrosis [†]	Photographs
Dunkin (2007)	High-frequency	N.R.	N.R.	Fibrosis &	Measurements taken at set
				oedema [†]	linear distances along scar
Elrefaie (2020)	High-frequency	13	N.R.	Fibrosis &	N.R [‡]
				oedema [†]	
Engrav (2010)	N.R.	N.R.	N.R.	N.R.	N.R.
Fabbrocini	N.R.	N.R.	N.R.	Fibrosis &	$N.R^{\ddagger}$
(2016)				oedema [†]	
Fong (1997)	B-mode	7.5	N.R.	Fibrosis [†]	Tracing
Fraccalvieri	High-frequency	7-10	N.R.	Fibrosis &	N.R.
(2013)		& 10-13		oedema [†]	
Fraccalvieri	High-frequency	10-13	Combined epidermal & dermal	Fibrosis [†]	N.R.
(2011)					
Gankande	High-frequency	20	Combined epidermal & dermal	N.R.	Scar marked & photographed
(2014)					
Ge (2022)	N.R.	N.R.	N.R.	N.R.	N.R.
Gee Kee	B-mode	8-18	Combined epidermal & dermal	N.R.	Transducer in centre of
(2016)					original burn site where no
					scar present
Guo (2020)	N.R.	2-15	Combined epidermal & dermal ^c	Fibrosis [†]	Thickest site on peripheral
		& 4-15			regions
Huang (2017)	N.R.	N.R.	Combined epidermal & dermal	N.R.	Marked & linear
					measurements from bony

Page **11** of **41**

landmarks

Huang (2021)	B-mode	5-12	N.R.	Oedema [†]	Not relevant – single
Huang (2020)	B-mode	5-12	Combined epidermal & dermal	N.R.	N.R.
Issler-Fisher	N.R.	N.R.	N.R.	N.R.	Photograph & measurement
(2021) Issler-Fisher	N.R.	N.R.	N.R.	N.R.	N.R.
(2020) Issler-Fisher (2017)	N.R.	N.R.	N.R.	Fibrosis [†]	Scar mapped with drawing Thickest area measured
Joo (2020)	N.R.	N.R.	N.R.	Fibrosis [†]	N.R.
Katz (1985)	B-mode	10	Combined epidermal & dermal	N.R.	N.R.
Kemp Bohan (2021)	High-frequency	12	N.R.	Fibrosis [†]	Tracing – thickest area & adjacent landmarks marked
Kim (2018)	N.R.	22	Combined epidermal & dermal	N.R.	Not relevant – single measurement
Lacarrubba (2008)	B-mode	20	Combined epidermal & dermal	N.R.	N.R.
Lau (2005)	Tissue Ultrasound Palpation System	5 (burn) & 10 (surgical)	N.R.	N.R.	Tracing – most severe/prominent site
Lee (2020)	High-frequency	20	Combined epidermal & dermal	Fibrosis [†]	Not relevant – single
Lee (2019)	High-frequency	20	Combined epidermal & dermal	Fibrosis [†]	Marked with pen
Li (2013)	High-frequency	12	Combined epidermal & dermal	Fibrosis [†]	Tracing
Li (2020)	N.R.	10	N.R.	Fibrosis [†]	N.R.
Li (2021)	High-frequency	20	N.R.	N.R.	Thickest area
Li (2021)	High-frequency	20	N.R. [§]	Fibrosis [†]	Thickest area
Li (2018)	N.R.	N.R.	Combined epidermal & dermal	N.R.	N.R.
Li-Tsang (2005)	Tissue Ultrasound Palpation System	N.R.	N.R.	N.R.	N.R.
Li-Tsang (2006)	B-mode	N.R.	N.R.	N.R.	N.R [‡]

Page **12** of **41**

Li-Tsang (2010)	B-mode	N.R.	N.R.	Fibrosis [†]	N.R.
Lobos (2017)	B-mode & colour Doppler	18	N.R.	Fibrosis [†]	Not relevant – single measurement
Mamdouh (2021)	High-frequency	N.R.	Combined epidermal & dermal [§]	Fibrosis [†]	N.R.
Meirte (2016)	High-frequency	22	Dermal	Fibrosis & oedema [†]	Marked with surgical pen, including boundaries of probe. Photograph of body position & probe location
Miletta (2021)	N.R.	50	N.R.	Fibrosis [†]	Tracing – worst scar
Nedelec (2014)	High-frequency	20	Combined epidermal & dermal	N.R.	Tracing including notable landmarks. Measurement site circled. Photograph
Nedelec (2008)	High-frequency	20	Combined epidermal & dermal	N.R.	Tracing including notable landmarks. Measurement site circled. Photograph
Nedelec (2019)	High-frequency	20	Combined epidermal & dermal	Fibrosis & oedema [†]	Tracing. Hole cut over measurement area
Nedelec (2020)	High-frequency	20	Combined epidermal & dermal	N.R.	Photograph
Nicoletti (2015)	N.R.	22	Epidermis to fascia	N.R.	N.R.
Niessen (1998)	B-mode	N.R.	N.R.	Fibrosis & oedema [†]	3cm border marked with tape – measurements lateral
Reinholz (2020)	B-mode	11	Combined epidermal & dermal	Fibrosis & oedema [†]	N.R.
Reinholz (2016)	B-mode	11	Combined epidermal & dermal [§]	Fibrosis & oedema [†]	N.R.
Schwaiger (2018)	B-mode	11	N.R.	Fibrosis & oedema [†]	N.R.
Simons (2017)	B-mode	8-18	Combined epidermal & dermal	N.R.	Tracing – scar & anatomical landmarks

Page **13** of **41**

Soykan (2014)	N.R.	3-9	N.R.	Fibrosis [†]	N.R.
Timar-Banu (2001)	High-frequency	20	Combined epidermal & dermal	Fibrosis [†]	N.R.
Ud-Din (2019)	High-frequency	50	Combined epidermal & dermal	Fibrosis	Defined anatomical location
van den Kerckhove (2003)	High-frequency	20	Combined epidermal & dermal	N.R.	Test sites marked. Thermoplastic splints created with space for transducer
van den Kerckhove (2005)	High-frequency	20	Combined epidermal & dermal	N.R.	Test site boundaries marked & traced
van der Veer (2010)	N.R.	7.5	N.R.	Fibrosis [†]	Standardised linear measurement points
Wang (2009)	High-frequency	N.R.	N.R.	Fibrosis [†]	N.R.
Wang (2010)	B-mode	N.R.	Combined epidermal & dermal	N.R.	Tracing – scar & anatomical landmarks
Wiseman (2020, 2021)	B-mode	N.R.	Combined epidermal & dermal	Fibrosis [†]	Centrally site of interest
Wood (1996)	B-mode	7 & 10	N.R.	N.R.	Transducer affixed to tracking arm
Xuan (2021)	High-frequency	20	N.R.	Fibrosis [†]	N.R.
Yeol Lee (2022)	B-mode	7-16	N.R.	N.R.	N.R.
Yim (2010)	High-frequency	12	N.R.	N.R.	N.R.
Zadkowski (2016)	B-mode	N.R.	Combined epidermal & dermal	N.R.	N.R.
Abstracts					
Agabalyan (2016)	N.R.	20	Epidermal, dermal & combined	N.R.	N.R.
Anthonissen (2015)	N.R.	22	Epidermal & dermal	N.R.	N.R.
Bajouri (2018)	High-frequency	N.R.	Epidermal & dermal	N.R.	N.R.

Page **14** of **41**

Bezugly (2019)	High-frequency	22, 33 & 75	Epidermal & dermal	N.R.	N.R.
Bezugly (2014)	High-frequency	33 & 75	Epidermal & dermal	N.R.	N.R.
Blome-	N.R.	N.R.	N.R.	N.R.	N.R.
Eberwein					
(2011, 2012)					
Blome-	High-frequency	N.R.	N.R.	Fibrosis	N.R.
Eberwein					
(2012)					
Blome-	High-frequency	N.R.	N.R.	N.R.	N.R.
Eberwein					
(2014)					
Cho (2012)	N.R.	N.R.	N.R.	N.R.	N.R.
Cho (2012)	N.R.	N.R.	N.R.	N.R.	N.R.
Comstock	N.R.	N.R.	N.R.	N.R.	N.R.
(2018)					
Cooper (2021)	N.R.	N.R.	N.R.	N.R.	N.R.
Du (2006)	B-mode	15	N.R.	N.R.	N.R.
Edgar-	N.R.	N.R.	N.R.	N.R.	N.R.
Lacoursière					
(2022)					
El-Zawhary	N.R.	N.R.	N.R.	N.R.	N.R.
(2007)					
George (2019)	N.R.	N.R.	N.R.	N.R.	N.R.
Jacobs (2016)	N.R.	N.R.	N.R.	N.R.	N.R.
Jang (2009)	N.R.	N.R.	N.R.	N.R.	N.R.
Kim (2009)	N.R.	N.R.	N.R.	N.R.	N.R.
Li (2016)	N.R.	N.R.	N.R.	N.R.	N.R.
Li-Tsang	Tissue Ultrasound	N.R.	N.R.	N.R.	N.R.
(2011)	Palpation System				
Li-Tsang	Tissue Ultrasound	N.R.	N.R.	N.R.	N.R.
(2010)	Palpation System				
Maari (2017)	N.R.	N.R.	N.R.	N.R.	N.R.

Page **15** of **41**

Moortgat	High-frequency	N.R.	Dermal	N.R.	N.R.
(2020)					
Nedelec (2018)	N.R.	N.R.	N.R.	N.R.	N.R.
Peters (2018)	High-frequency	22	N.R.	N.R.	N.R.
Seo (2011)	N.R.	7.5	N.R.	N.R.	Thickest point
Siwy (2016)	N.R.	N.R.	N.R.	N.R.	N.R.
Timina (2013)	N.R.	20-40	N.R.	N.R.	N.R.
Tu (2014)	High-frequency	N.R.	N.R.	N.R.	N.R.
	ultrasound				
	biomicroscopy				
Ud-Din (2017)	N.R.	N.R.	N.R.	N.R.	N.R.
Ud-Din (2017)	High-frequency	50	N.R.	N.R.	N.R.
Ud-Din (2018)	High-frequency	N.R.	N.R.	Fibrosis [†]	N.R.
Zuccaro (2021)	N.R.	N.R.	N.R.	N.R.	N.R.
Zuccaro (2019)	B-mode	N.R.	N.R.	N.R.	N.R.
Zuccaro (2021)	B-mode	6-18	Combined epidermal & dermal	N.R.	Scar outlined &
					photographed
T	1 M 1.				D

Legend: Scar relocation: Methods used by assessors to relocate the measured scar for sequential measurements; B-mode: brightness-mode ultrasound (< 20 MHz); High-frequency: high-frequency B-mode ultrasound (> 20 MHz); N.R.: Not reported

Footnotes: [†]Indirect reference made in record (e.g. in introduction or discussion); [‡]Photographs taken of the scar but not specified whether used for relocation; [§]Not stated in methods, so images provided in record used by authors of this review to provide subjective judgement

Page **16** of **41**

First author (year)	Objective measurement methods	Clinician-based rating scale	PROM
Journal articles			
Agabalyan (2017)	Histology	-	-
Alsharnoubi (2018)	Laser Doppler perfusion	VSS	-
Alsharnoubi (2018)	Laser Doppler perfusion	VSS	-
Alshehari (2015)	-	VSS	-
Avetikov (2018)	-	-	-
Berry (1985)	Transcutaneous oxygen measurement	Scar redness and hypertrophy rating scale (0-5 Likert scale)	Scar redness and hypertrophy rating scale (0-5 Likert scale)
Blome-Eberwein (2012)	Doppler flowmeter – vascularity	VSS	POSAS-P
	Cutometer – pliability	POSAS-O	
	Semmes-Weinstein monofilament		
	Aesthesiometer testing set –		
	sensation		
Blome-Eberwein (2016)	Cutometer – pliability	VSS	POSAS-P
	Dermaspectrometer – colour	POSAS-O	
	Semmes-Weinstein Aesthesiometer		
	Monofilament Testing Set –		
	sensation		
Blome-Eberwein (2019)	-	VSS	-
Cai (2019)	-	Clinical evaluation	-
Candy (2010)	Spectrocolorimeter – colour	VSS	-
Chae (2016)	Spectrophotometer – pigmentation	VSS	POSAS-P
		POSAS-O	
Chang (2014)	-	VSS	-
		Photographic evaluation (0-10	
		VAS)	
Chan (2004)	Cutometer – viscoelasticity	-	-
	Spectrophotometer – pigmentation		
Cheng (2001)	-	VSS	-
Cho (2014)	Mexameter – colour	Treatment efficacy (0-10 VAS)	Itching scale (0-4 Likert scale)

Supplementary Table 4. Additional measurement methods used alongside ultrasound in included studies

Page **17** of **41**

	Tewameter – trans-epidermal water		
	loss		
	Sebumeter – sebum		
	Cutometer – elasticity		
Danin (2012)	Cutometer – elasticity	VSS	-
Deng (2019)	DermaLab Combo – colour	POSAS-O	-
	Dermoscopy – vascularity		
Deng (2021)	-	VSS	-
Deng (2021)	Doppler – blood perfusion	POSAS-O	POSAS-P
	Dermlite Foto IIPro – erythema		
Dunkin (2007)	-	-	-
Elrefaie (2020)	Ultrasound – echogenicity,	VSS	-
	compressibility & vascularity		
Engrav (2010)	Durometer – hardness	Clinical appearance based on	-
	Chromameter – colour	photographs	
Fabbrocini (2016)	-	mVSS (vascularity, pigmentation,	-
		pliability)	
Fong (1997)	Cutometer – elasticity	Clinical rating – colour change,	-
		consistent itch, hypersensitivity,	
		blistering	
Fraccalvieri (2013)	Colour power Doppler –	VSS	
	vascularisation	Visual analogue scale – pain and	
		itch	
Fraccalvieri (2011)	Histology	-	-
	Echocontrastography –		
	neovascularisation		
Gankande (2014)	DermLab combo – erythema &	mVSS (some participants)	-
	elasticity		
Ge (2022)	-	POSAS-O	POSAS-P
		Subjective reports on patient	
		range of movement	
Gee Kee (2016)	3D photography – thickness	POSAS-O	POSAS-P
Guo (2020)	Ultrasound – blood flow grade	-	-
	Shear wave elastography – scar		
	stiffness		

BMJ Open

Page **18** of **41**

Huang (2017)	-	-	-
Huang (2021)	-	-	-
Huang (2020)	Shear wave elastography – scar stiffness	-	-
Issler-Fisher (2021)	-	VSS	POSAS-P
		POSAS-O	
Issler-Fisher (2020)	-	VSS	POSAS-P
		POSAS-O	Patient pain & itch scales
Issler-Fisher (2017)	-	VSS	POSAS-P
		POSAS-O	Patient pain, itch & quality of life rating scales
Joo (2020)	-	VSS	Pain severity (0-10 VAS)
Katz (1985)	Cicatrometer – firmness	-	-
Kemp Bohan (2021)	-	-	-
Kim (2018)	-	-	-
Lacarrubba (2008)	-	Clinical evaluation of lesion size	-
Lau (2005)	-	VSS	-
Lee (2020)	-	mVSS (height, pliability,	POSAS-P
		vascularity, pigmentation) POSAS-O	
Lee (2019)	-	mVSS (height, pliability, vascularity, pigmentation) POSAS-O	POSAS-P
Li (2013)	Micrometer – tissue thickness Force/torque sensor – load applied to	-	-
	scar		
Li (2020)	Cutometer – elasticity Mexameter – colour	VSS	Quality of life questionnaire
	PeriCam PSI system and mexameter – blood supply		
Li (2021)	Laser Doppler flowmetry – perfusion	VSS	-
Li (2018)	Spectrocolourimeter – scar colour	VSS	Pain & itch (0-10 VAS)
Li (2021)	-	VSS	Treatment satisfaction
Li-Tsang (2005)	Spectrocolourimeter – scar colour	VSS	Pain & itch (VAS scale not specified)
Li-Tsang (2006)	Spectrocolorimeter – colour	VSS	Pain & itch (VAS)

Page **19** of **41**

Li-Tsang (2010)	Spectrocolorimeter – colour	VSS (pliability)	Pain & itch (10-point VAS)
Lobos (2017)	-	Modified Seattle Scar Scale	-
		Clinical opinion	
Mamdouh (2021)	-	VSS	Patient satisfaction (VAS)
Meirte (2016)	-	-	-
Miletta (2021)	Colourmeter – scar colour	Unclear, likely POSAS-O	Unclear, likely POSAS-P
	Dermal torque meter – scar		Short Form 36 Quality of Life Survey
	compliance		
Nedelec (2014)	Cutometer – elasticity	-	-
	Mexameter – colour		
Nedelec (2008)	Cutometer – elasticity	mVSS	-
	Mexameter – colour		
Nedelec (2019)	Cutometer – elasticity	-	-
	Mexameter – colour		
Nedelec (2020)	Cutometer – elasticity	-	Pain & itch (10cm line VAS)
	Mexameter – colour		
Nicoletti (2015)	-	-	-
Niessen (1998)	Histology	-	-
Reinholz (2020)	3D topographic imaging device	POSAS-O	Dermatology Quality of Life Index POSAS-P
Reinholz (2016)	Optical coherence tomography – thickness	POSAS-O	Dermatology Quality of Life Index POSAS-P
Schwaiger (2018)	3D topographic imaging device	-	-
Simons (2017)	3D camera – scar height	POSAS-O	-
Soykan (2014)	Slide calliper – dimensions	POSAS-O	POSAS-P
Timar-Banu (2001)	Metric ruler – dimensions	Validated 3-point scoring system	-
		for redness, hardness, itching &	
		pain	
Ud-Din (2019)	Optical coherence tomography –	-	-
	thickness		
	Histology		
van den Kerckhove (2005)	Chromameter – erythema	-	-
van der Veer (2010)	Slide calliper – dimensions	-	-
Wang (2009)	Histology	-	-
Wang (2010)	-	-	-

Page **20** of **41**

Wiseman (2020, 2021)	-	POSAS-O	POSAS-P Numeric rating scale for itch Toronto Paediatric Itch Scale CH-9D BBSIP
Wood (1996)	-	VSS	-
Xuan (2021)	Histology	-	-
Yeol Lee (2022)	Cutometer – elasticity Elastography	mVSS	-
Yim (2010)	Cutometer – elasticity Tewameter – trans-epidermal water loss Mexameter – colour	-	-
Zadkowski (2016)	-	VSS	-
Abstracts			
Agabalyan (2016)	Histology	-	-
Bajouri (2018)	-	VSS	-
Bezugly (2019)	Clinical or histopathological diagnosis	-	-
Bezugly (2014)	-	-	-
Blome-Eberwein (2011, 2012)	Doppler vascularity, elasticity and sensation	VSS	Pain and itching scale (0-10 Likert scale)
Blome-Eberwein (2012)	-	-	-
Blome-Eberwein (2014)	Doppler flowmeter – vascularity Cutometer – pliability Semmes-Weinstein monofilament aesthesiometer testing set – sensation	VSS	POSAS-P
Cho (2012)	-	VSS	-
Cho (2012)	CK-MPA Multi-Probe adaptor – pigmentation, erythema and trans- epidermal water loss Cutometer – elasticity	-	-
Comstock (2018)	Computer-based tools – Thickness & pliability	Unclear, likely POSAS-O	Unclear, likely POSAS-P

Page **21** of **41**

Cooper (2021)	Colorimeter – pigmentation	Unclear, likely POSAS-O	Unclear, likely POSAS-P
Du (2006)	-	-	-
Edgar-Lacoursière (2022)	Cutometer – elasticity	-	-
-	Mexameter – colour		
El-Zawhary (2007)	Histology	-	-
George (2019)	-	-	-
Jacobs (2016)	Cutometer – pliability	POSAS-O	-
	Colorimeter – colour		
Jang (2009)	Mexameter – pigmentation	-	-
	Tewameter – trans-epidermal water		
	loss		
	Sebumeter – sebum		
	Cutometer – elasticity		
	Laser Doppler – perfusion		
Kim (2009)	Histology	VSS	-
Li (2016)	Spectrocolourimeter – scar colour	VSS	Patient report of pain & itch
Li-Tsang (2011)	-	VSS (thickness, pliability and	-
		pigmentation)	
Li-Tsang (2010)	Histology	VSS	Self-report questionnaire
	Spectrocolourimeter – scar colour		
Maari (2017)	Cutometer – elasticity	-	-
	Mexameter – pigmentation		
Moortgat (2020)	Cutometer – elasticity	Unclear, likely POSAS-O	Unclear, likely POSAS-P
	Chromameter – colour		
	Tewameter – trans-epidermal water		
	loss		
	Corneometer – hydration		
Nedelec (2018)	Cutometer – elasticity	-	-
	Mexameter – colour		
Peters (2018)	Cutometer – elasticity	POSAS-O	POSAS-P
	Colourimeter – colour		
Seo 2011	Cutometer – elasticity		
Siwy (2016)	Colourimeter – colour	-	SF-36 Quality of Life Measurement
	Torque meter – pliability & elasticity		POSAS-P
Timina (2013)	-	-	-

Page **22** of **41**

BMJ Open

BM, MS, TM, TR, BD, RK, ZT – Ultrasound Scoping Review: Supplement

Tu (2014)	-	VSS	-
Ud-Din (2017)	Laser perfusion imaging	-	-
	Optical coherence tomography –		
	thickness		
	Histology		
Ud-Din (2017)	Optical coherence tomography –	-	-
	thickness		
Ud-Din (2018)	Optical coherence tomography –	-	-
	thickness		
	Histology		
Zuccaro (2021)	Multi-parameter skin analysis device	VSS	Unclear, likely POSAS-P
		Unclear, likely POSAS-O	
Zuccaro (2019)	Acoustic radiation force impulse	-	-
	ultrasound elastography		
Zuccaro (2021)	Acoustic radiation force impulse –	VSS	POSAS-P
	stiffness	POSAS-O (did not include	
	DermLab Combo elasticity probe –	surface area and relief subscales)	
	elasticity		
	DermLab Combo colour probe –		
	colour		
Legend: (m)VSS: (Modified) Vanc	ouver Scar Scale; POSAS: Patient and C	Observer Scar Assessment Scale (POS	SAS-O: POSAS observer scale;

POSAS-P: POSAS patient scale); VAS: Visual Analogue Scale; CHU-9D: Child Health Utility-9D; BBSIP: Brisbane Burn Scar Impact Profile

Page **23** of **41**

First Author (year)	Reliability Test &	Reliability & Measurement Error
• ·	Measurement Error	Test Statistics & Details
Inter-rater reliability		
Anthonissen (2015)	ICC; SEM	Epidermal – 0.297; 0.02mm
		Dermal – 0.991; 0.13mm
Chang (2014)	Pearson correlation	R=0.90, p<0.001
Dunkin (2007)	N.R.	N.R.
Fong (1997)	ICC	0.93, p=0.146
Gankande (2014)	ICC (95% CI)	Individual site:
		Rater 1 vs rater 2
		'Best scar' – 0.95 (0.92, 0.96)
		'Worst scar' – 0.95 (0.91, 0.97)
		'Normal skin' – 0.94 (0.91, 0.96)
		Rater 1 vs rater 3:
		'Best scar' – 0.86 (0.78, 0.91)
		'Worst scar' – 0.91 (0.85, 0.95)
		'Normal skin' – 0.92 (0.88, 0.95)
		Rater 2 vs rater 3:
		'Best scar' – 0.93 (0.89, 0.95)
		'Worst scar' – 0.96 (0.92, 0.97)
		'Normal skin' – 0.95 (0.92, 0.97)
		Average site:
		Rater 1 vs rater 2
		'Best scar' $-0.97(0.94, 0.99)$
		'Worst scar' – 0.98 (0.96, 0.99)
		Normal skin' $-0.97(0.93, 0.98)$
		Rater 1 vs rater 3
		Best scar' $-0.90(0.77, 0.95)$
		Worst scar $-0.97(0.91, 0.98)$
		Normal skin' $-0.96 (0.92, 0.98)$
		$\begin{array}{c} \text{Kater 2 vs rater 2} \\ \text{(Dest seen)} \\ 0.05 \\ (0.88 \\ 0.08) \\ \end{array}$
		Best scar $= 0.95 (0.88, 0.98)$
		Worst scar $-0.98(0.94, 0.99)$
L au (2005)		Normal skin $-0.98(0.97, 0.99)$
Lau (2003)		"A coontable to high"
Lee (2020)	ICC (05% CI): SEM	Acceptable to high
Let(2019)	ICC (95 % CI), SEM	Single: $0.957 (0.934 0.973)$
		$\Delta \text{verage: } 0.957 (0.954-0.975)$
		SFM: 0.10 mm
		Unscarred skin:
		Single: 0.967 (0.949-0.980)
		Average: 0.989 (0.982-0.993)
		SEM: 0.04 mm
Nedelec (2008)	ICC (95% CI)	Most severe scar: 0.90 (0.84-0.95)
		Less severe scar: $0.91 (0.85-0.95)$
		Donor site: 0.89 (0.82-0.94)
		Normal skin: 0.85 (0.75-0.92)
Seo (2011)	N.R.	"High"
Simons (2017)	ICC (95% CI); SEM	Scar: 0.82 (0.7-0.89); 0.05 cm
· /		Normal skin: 0.33 (0.08-0.54); 0.03 cm
Van Den Kerckhove	ICC (95% CI); SEM	One day:
(2003)		0.88 (0.81-0.95); 0.29 mm

Supplementary Table 5: Reliability of ultrasound methods reported in each included study

Page **24** of **41**

		<u>Day-to-day:</u>
		0.94 (0.90-0.98); 0.21mm
Intra-rater reliability		
Anthonissen (2015)	ICC; SEM	Epidermal – 0.809; 0.01mm
		Dermal – 0.991; 0.13mm
Gankande (2014)	ICC (95% CI)	'Best scar' – 0.97 (0.89, 0.94)
		'Worst scar' – 0.92 (0.88, 0.95)
		'Normal skin' – 0.86 (0.81, 0.89)
Gee Kee (2016)	N.R.	N.R.
Lau (2005)	ICC	Intra-rater: 0.98, p<0.01
Lee (2019)	ICC (95% CI)	<u>Scar:</u>
		Single: 0.951 (0.871-0.987)
		Average: 0.983 (0.953-0.966)
		SEM: 0.10 mm
		Unscarred skin:
		Single: 0.948 (0.881-0.976)
		Average: 0.982 (0.954-0.993)
		SEM: 0.04 mm
Li (2013)	ICC	0.89
Seo (2011)	N.R.	"High"
Simons (2017)	ICC (95% CI); SEM	Scar: 0.95 (0.91-0.97); 0.02 cm
		Normal skin: 0.61 (0.41-0.75); 0.02 cm
Van Den Kerckhove	ICC (95% CI); SEM	0.98 (0.97-0.99); 0.11mm
(2003)		
Wang (2010)	SE	Peak: 0.032
-		3 months: 0.018
		6 months: 0.399
		9 months: 0.353
Abbreviations used in	tables: N.R.: Not reported;	ICC: Intraclass Correlation Coefficient; 95%

CI: 95% Confidence Interval; SEM: Standard Error of Measurement; SE: Standard Error

Summary of findings for measurement error:

The reported inter-rater SEM measurements for the combined (i.e., epidermal and dermal) thickness measurement of scars was reported in two records as 0.11 mm^5 and 0.5 mm^6 . The inter-rater SEM for the combined thickness measurement of unscarred skin was also calculated in one record (SEM = 0.3 mm).⁶ The inter-rater SEM was calculated in one record for the measurement of epidermal (SEM = 0.02 mm) and dermal (0.13) measurements⁷, and one record reported only the dermal SEM for scar thickness (SEM = 0.1 mm) and unscarred skin (0.04 mm).⁸ The intra-rater SEM for the combined thickness measurement of scarred skin ranged from 0.18 mm to 0.52 mm, and was measured at 0.2 mm for unscarred skin in one record.⁶ One record reported the intra-rater SEM for epidermal (0.01 mm) and dermal (0.12 mm),⁷ and one record reported the intra-rater SEM for dermal scar (0.1 mm) and unscarred skin (0.04).⁸

Page **25** of **41**

Supplementary Table 6. Methodological considerations for researchers and/or clinicians undertaking measurement of scar thickness using ultrasound.

Consideration	Details & examples of	Publications in our review addressing the	Details reported in included review records
	considerations	consideration	
Preventing skin	Using standoff methods	6,9-13	- Use of ultrasound gel to prevent contact
compression	(e.g., ultrasound gel,		between ultrasound transducer and skin surface
during	water bath) to prevent		to minimise compression applied by direct
measurement	transducer touching the		application of transducer ^{6,9-12}
	skin		- Silicone pad placed underneath transducer ¹³
	Application of minimal	14-18	- Transducer held to maintain minimal pressure
	pressure by transducer		on scar 14,15,17
			- Training users to apply minimal force on
			transducer to prevent scar or skin distortion ^{16,18}
	Deliberately	19-21	- Measurement of thickness with and without
	compressing skin to		compression with transducer ^{19,21}
	quantify scar		- Thickness measurements taken using TUPS,
	compressibility		which uses controlled and metered compression
		0.10.22	during measurement ²⁰
Orienting the	Orienting the patient	8,18,22	- Patient supine throughout measurement to
patient	during measurement		allow measurement to be taken in the same
	(e.g., upright, supine,		position ^{8,18,22}
	prone or seated)	0	
	Maintaining patient	9	- Patients asked to hold breath during
	stillness during		measurement of scars on the chest to allow
	measurement	22	shear-wave ultrasound ⁹
Placing	Orientating ultrasound	25	- Direction of transducer recorded to ensure
ultrasound	transducer [e.g.,		consistency ²³
transducer	vertical (superior to		
	inferior/cranial to		
	caudal), horizonal		
	(medial to lateral)]		

Page **26** of **41**

BMJ Open

BM, MS, TM, TR, BD, RK, ZT – Ultrasound Scoping Review: Supplement

	Orienting the transducer in relation to the scar (e.g., perpendicular)	9,15,17,18,22,24-26	- Transducer oriented perpendicular to the skin surface to provide optimal image ^{9,15,18,22,24-26}
	Measuring difficult/tight areas (e.g., axillae or other	6	- Exclusion of fingers and toes in paediatric measurements due to size of measurement area and thin skin 6
Relocating scars for	Mapping measurement area (e.g., tracing,	6,12,16,18,20,22,27-32	- Scars traced using translucent paper 18,20,22,27,29,31,32
longitudinal measurement	schematic diagram)		 Scars and surrounding anatomical landmarks traced using translucent paper ¹⁶ Scar mapped on transparent paper, which was then cut out ²⁸ Scar mapped with drawing, no elaboration provided ³⁰ Scars traced using Visitrak (Smith & Nephew Medical Limited, England) ^{6,12}
	Photographing measurement area	24,26,33	- Assessed area marked and photograph taken in initial consultation ^{24,33}
	Measuring specific scar locations (e.g., centre of scar, worst area of scar, counting transducer lengths)	6,8,9,13,19-21,23,30,33-37	 Photographs of scars taken ²⁻¹ Measurement taken at standardised transducer lengths along surgically created scars of prespecified dimensions ³⁴ Measurements taken at thickest/most severe point ^{19-21,30,33,35,37}, as determined by the patient and/or clinician ⁸ Transducer placed on thickest site on peripheral regions ⁹ Transducer placed on area initially identified to have greatest burn depth ²³

Page **27** of **41**

			- Measurement area selected by the measurer
			with -selected area marked with tape ¹³
			- Measurements taken at set linear distances from
			cranial/caudal border of linear sternal scar ³⁶
	Conducting linear	17,38	- Linear measurements from anatomical
	measurements from		landmark to measurement site ¹⁷
	nearby anatomical		- Transducer placement mapped in 3-
	landmarks		dimensional space using a surgical precision
			tracking arm ³⁸
Acclimatising	Removing scar	8,12,20,22,24-26,28,29,39,40	- Pressure garments removed 10 minutes before
scar to	treatments prior to		measurement ²⁸
measurement	ultrasound		- Pressure garments removed 15 minutes before
conditions	measurement		measurement to regain original (uncompressed)
			scar thickness or to reduce blanching effects on measurement ^{20,40}
			- Pressure garments/gels/moisturisers removed
			20 minutes before measurement ^{8,22,29}
			- Pressure garments removed 30 minutes before measurement ^{12,25,26,39}
			- Sequential measurement of scars following
			direct treatment with vacuum massage at 5, 30,
			60 and 120 minutes to monitor effect of
			treatment ²⁴
	Acclimatising patient to	5,18,22,29,41-46	- Patients rested for minimum 5 minutes before
	room prior to		measurement ^{5,18,22}
	measurement		- Scar exposed to room conditions for 10 minutes
			²⁹ to allow equilibrium to be reached with surrounding environment ⁴¹
			- Patients resting in room with constant
			temperature for 15 mins ⁴² to allow scar to
			stabilise ⁴⁴

Page **28** of **41**

			 Patients rested for 20 minutes prior to measurement ^{29,45} Patients resting for 10 minutes before repeated measurements taken ⁴³ Patients wait in testing room holding position for 5 min before measurement to stabilise cutaneous blood flow ⁵ Patients allowed to adapt in controlled room to evaluate automal variables ⁴⁶
	Maintaining patient position before measurement	11,13	 Patients remained supine for at least 5 minutes before measurement to avoid artefacts on Doppler imaging ¹³ Patients allowed to acclimatise to room and assumed a supine position for a minimum of 10 minutes before measurements of biophysical parameters ¹¹
Measuring different skin layers	Measuring epidermis and/or dermis individually	7,24,37,45,47-54	- Measurement of epidermal, dermal and combined epidermal and dermal thickness to allow comparison with histological measurement 47,48
			 Measurement of the epidermal and dermal thickness ^{45,49}, combined with layer acoustic density ⁷ Measurement of the epidermal, dermal and subcutaneous thickness, combined with acoustic density ^{50,51} Measurement of dermal thickness as treatment thought to affact/target the dermis ^{24,37,52-54}
	Measuring both epidermis/dermis combined (no	5,6,8,11,12,15,17,18,22,23,26,28,35,40,55-68	- Combined epidermal and dermal thickness measurement to provide information on the full thickness of the scar 5.6.8.11,12,15,17,18,22,23,26,28,35,40,55-68

Page **29** of **41**

Measurement objective	individual measurement) Measuring fibrosis/oedema/hair follicles	8,10,11,13,14,16,17,24,25,29-32,34,36,37,45,54,58,60,61,63,64,69-82	- Measurement of fibrosis or collagen architecture ^{8,11,17,24,29-32,34,36,37,45,54,58,61,63,64,69,70,72-} 74,77-79,82
			 Measurement of inflammation/oedema ¹⁴ Quantification of the sub epidermal low echogenic band, indicating oedema ⁶⁰ Measurement of both fibrosis and oedema ^{10,13,16,25,58,71,75,76,80,81}
Factors influencing scar site measurement	Measuring contralateral skin/control scar	9,14,15,23,29,30,52,55-58,83-88 6,8,12,18,22,25,38,43,54,59-61,66,89,90 39,40,45,79,81,82	 Measurement of the presence and density of hair follicles to differentiate scarred and unscarred skin⁵⁴ Measurement of additional, non-scarred subjects ^{55,79} Measurement of unscarred/unaffected skin on same subject as scar measurement contralaterally or at anatomically similar location to provide normative measurements for skin thickness 6,8,9,12,14,15,18,22,23,29,30,38-40,43,45,52,54,56-61,66,81,85-90
			 Measurement of both untreated scar and unaffected skin ⁸²⁻⁸⁴ Measurement of a control scar subjected to care as usual treatment on the same individual ²⁵
	Measuring open wounds or sores in the scar	6	- Use of flexible transparent plastic wrap placed over the measurement area to prevent contact between ultrasound gel and transducer with the open wound/sore 6
	Operator training and/or experience	6,8,12,14,16,18,20,24,27-29,31,39,40,58,61,66,72,73,87,91-93	 Trained outcome assessor ^{6,13,16,18,27,72} Measurements taken by radiologist/sonographer 28,66,73,92

Page **30** of **41**

		- Assessors with burn experience ^{87,93}
		- Ultrasound located in department of radiology ⁹¹
Number of	5,6,8,9,11,12,20,23,25,26,31,34,37,40,44,45,47,52,54,57,60,61,66,68,79,85,92,94	 Measurements conducted by trained therapist/doctor under guidance of experienced radiologist ^{12,14,29,39} Measurements conducted by trained clinicians who use device regularly and received training by company representative of devices ^{8,61} Device-specific training provided: 1 week ²⁰; 3 sessions of 3 hours for 3 weeks, plus 10 independent assessments of scars using study protocol ⁴⁰; training provided over 3 months ³¹; physical therapist trained in ultrasound application ²⁴ 3 ultrasound images taken from each patient 9,11,26,31,37,44,45,47,52,54,57,60,79,85
ineasurements per scar		 Clearest of 3 measurements used ¹² 3 measurements in 3 locations across scar used. Individual and average measurements reported ⁴⁰ Measurements performed in duplicate ^{34,94} Measurements taken at different points of the scar, thickest used for analysis ⁹² 5 measurements of each site ^{6,23} 9 measurements taken, removal of maximum and minimum, 7 measurements used for average ²⁰ Measurements taken by 3 assessors at 3 different time points during day ^{8,61} Measurement of 2 sites on the same scar ²⁵ Single ultrasound image taken for analysis ⁶⁸

Page **31** of **41**

Use of additional measurement tools as well as ultrasound measurements	Using additional objective assessment instruments (e.g., histology, colour Doppler ultrasound, cutometer, colourimeter)	6,9-11,13,15,17,18,21-23,25-27,29,31,32,35,36,40-48,50,53,56-59,66,68-70,75- 80,82-84,86-92,95-111	 Histology/immunohistochemistry 13,17,47,48,50,58,78,79,88,100,103,108,110 Blood flow and blood perfusion measurement using laser Doppler perfusion imaging, flowmetry or PeriCam, and scar colour and micro-vessel percentage using dermoscopyolour and micro-vessel percentage. 35,69,70,83,84,86,87,92,99,101,108 Oximeter ⁴¹ Infra-red camera ⁴¹ Measurement of scar stiffness or pliability/elasticity using elastography or cutometer ^{9,15,18,21,22,25-27,29,43,46,53,57,66,82- 84,86,89,090,66,89,00,101,104,106} 	
				 Measurement of sensation using Semmes-Weinstein filaments ^{82-84,86} Measurement of scar colour (including pigmentation and erythema) using spectrophotometer, colourimeter, chromameter, mexameter or Dermlite Foto IIPro ^{18,22,25-}27,32,42,44-46,53,56,66,68,80,82,87,90,91,96-99,101-107,111
				 Measurement of trans-epidermal water loss using Tewameter or scar hydration using Corneometer ^{46,53,96,99} Measurement of sebum level using sebumeter ^{96,99}
				 Measurement of hardness using durometer ⁹¹ Measurement of neovascularisation using echocontrastography ⁵⁸ Measurement of scar dimensions (e.g., scar height and volume) using 3D camera, 3D imaging methods, ruler or calliper ^{6,10,11,23,36,75,77}
				Page 32 of 41

- Measurement of skin thickness using micrometer or optical coherence tomography 17,31,59,76,108-110

- Measurement of scar firmness or deformation using cicatrometer, force/torque sensor (in line with ultrasound to measure load applied) or torque meter ^{31,32,107}

- Multi-parameter skin analysis device ⁶⁶

- Measurement of erythema and elasticity using probes of DermaLab Combo $^{\rm 40}$

- Multi-probe adaptor taking multiple measurements (pigmentation, erythema, transepidermal water loss) ⁹⁶ PROMs:

PROMS:

- Measurement of scar quality using POSAS patient report ^{8,23,30,33,45,56,61,63,64,66,75-}77,82,86,95,97,106,107,114,115

- Subjective rating scales for scar symptoms (e.g., pain, itch) or subjective scar severity ratings ^{26,30,41,42,53,63,64,72,80,83,84,93,102,103,111,115}

- Patient quality of life questionnaires ^{75,76,101,107}

- Measurement of generic health-related quality of life using CHU-9D ^{63,64}

- Measurement of scar-specific health-related quality of life using BBSIP ^{63,64}

- subjective evaluation of response to treatment/treatment satisfaction ^{81,116} Clinical rating scales:

- Measurement of scar quality using POSAS observer report ^{8,23,30,33,45,53,56,61,63,64,66,75-} 77,82,86,87,97,98,106,114-116

Page **33** of **41**

Using subjective assessment instruments (e.g., clinical rating scales, PROMs) 19,20,23,28-30,33,37,40,41,44,45,49,52,56,57,61,66,67,69-72,80-84,86,87,91,92,94-98,100,111-115

	- Measurement of physical scar characteristics using VSS or modified versions of the VSS ^{8,18-} 20,28,30,33,35,37,38,40,42-44,49,56,57,61,65,66,69-72,80-86,92-95,100- 103,111-113,115,117,118
	 Measurement of scar characteristics in relation to unscarred skin using Seattle Scar Scale or modified Seattle Scar Scale ⁷³ Subjective rating scales for scar symptoms (e.g., pain, itch) as assessed by the clinician and/or researcher and/or clinical evaluation of scar severity ^{11,29,41,52,57,67,73,91,92,94,96}
Determining the order ⁶	- Standardised order of measurement: 3D
of measurement	photograph, POSAS-O, then ultrasound ⁶
	- Order of device use not specified 35,69,70,83,84,86,87,92,99,101,108

Abbreviations: TUPS: Tissue Ultrasound Palpation System; 3D: three-dimensional; POSAS: Patient and Observer Scar Assessment Scale; CHU-9D: Child Health Utility 9D; BBSIP: Brisbane Burn Scar Impact Profile; VSS: Vancouver Scar Scale; mVSS: Modified Vancouver Scar Scale; POSAS-O: Patient and Observer Scar Assessment Scale, observer measure

Page **34** of **41**

Supplement References:

1. Mokkink LB, Boers M, van der Vleuten CPM, et al. COSMIN Risk of Bias tool to assess the quality of studies on reliability or measurement error of outcome measurement instruments: a Delphi study. *BMC Med Res Methodol*. 2020;20(1):1-13. doi:10.1186/s12874-020-01179-5

2. Prinsen CAC, Vohra S, Rose MR, et al. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set" - a practical guideline. *Trials*. 2016;17:urn:issn:1745-6215.

3. Proctor E, Proctor E, Silmere H, et al. Outcomes for Implementation Research: Conceptual Distinctions, Measurement Challenges, and Research Agenda. *Adm Policy Ment Health*. 2011;38(2):65-76. doi:10.1007/s10488-010-0319-7

4. Australian Government Department of Health and Aged Care Medical Research Future Fund. Research Translation. Accessed 29/05/2023, <u>https://www.health.gov.au/our-work/medical-research-future-fund/mrff-research-themes/research-translation#what-is-the-research-pipeline</u>

5. Van den Kerckhove E, Staes F, Flour M, Stappaerts K, Boeckx W. Reproducibility of repeated measurements on post-burn scars with Dermascan C. *Skin Res Technol*. 2003;9(1):81-84. doi:10.1034/j.1600-0846.2003.00375.x

6. Simons M, Kee EG, Kimble R, Tyack Z. Ultrasound is a reproducible and valid tool for measuring scar height in children with burn scars: A cross-sectional study of the psychometric properties and utility of the ultrasound and 3D camera. *Burns*. 2017;43(5):993-1001. doi:10.1016/j.burns.2017.01.034

7. Anthonissen M, Meirte J, Moortgat P, et al. Intrarater and interrater reliability of an open 22MHz ultrasound scanning system to assess thickness and density of burn scars. *Ann Burns Fire Disasters*. 2015;28(Supplement EBA)

8. Lee KC, Bamford A, Gardiner F, et al. Investigating the intra- and inter-rater reliability of a panel of subjective and objective burn scar measurement tools. *Burns*. 2019;45(6):1311-1324. doi:10.1016/j.burns.2019.02.002

9. Guo R, Xiang X, Wang L, Zhu B, Cheng S, Qiu L. Quantitative assessment of keloids using ultrasound shear wave elastography. *Ultrasound Med Biol*. 2020;46(5):1169-1178. doi:10.1016/j.ultrasmedbio.2020.01.010

10. Schwaiger H, Reinholz M, Poetschke J, Ruzicka T, Gauglitz G. Evaluating the therapeutic success of keloids treated with cryotherapy and intralesional corticosteroids using noninvasive objective measures. *Dermatol Surg*. 2018;44(5):635-644. doi:10.1097/DSS.00000000001427

11. Timar-Banu O, Beauregard H, Tousignant J, et al. Development of noninvasive and quantitative methodologies for the assessment of chronic ulcers and scars in humans. *Wound Repair Regen*. 2001;9(2):123-132. doi:10.1046/j.1524-475x.2001.00123.x

12. Wang X-Q, Mill J, Kravchuk O, Kimble RM. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients. *Burns*. 2010;36(8):1254-1262. doi:10.1016/j.burns.2010.05.018

13. Niessen FB, Spauwen PHM, Robinson PH, Fidler, Kon M. The use of silicone occlusive sheeting (Sil-K) and silicone occlusive gel (epiderm) in the prevention of hypertrophic scar formation. *Plast Reconstr Surg*. 1998;102(6):1962-1972. doi:10.1097/00006534-199811000-00023

14. Huang P-W, Lu C-W, Chu K-T, Ho M-T. Assessing thickness of burn scars through ultrasound measurement for patients with arm burns. *J Med Biol Eng.* 2021;41(1):84-91. doi:10.1007/s40846-020-00592-x

15. Huang S-Y, Xiang X, Guo R-Q, Cheng S, Wang L-Y, Qiu L. Quantitative assessment of treatment efficacy in keloids using high-frequency ultrasound and shear wave elastography: a preliminary study. *Sci Rep*. 2020;10(1):1375-1375. doi:10.1038/s41598-020-58209-x

16. Kemp Bohan PM, Cooper LE, Lu KN, et al. Fractionated ablative carbon dioxide laser therapy decreases ultrasound thickness of hypertrophic burn scar: A prospective process improvement initiative. *Ann Plast Surg*. 2020;86(3):273-278. doi:10.1097/SAP.00000000002517

Page **35** of **41**

17. Ud-Din S, Foden P, Stocking K, et al. Objective assessment of dermal fibrosis in cutaneous scarring, using optical coherence tomography, high-frequency ultrasound and immunohistomorphometry of human skin. *Br J Dermatol*. 2019;181(4):722-732. doi:10.1111/bjd.17739

18. Nedelec B, Correa JA, Rachelska G, Armour A, Lasalle L. Quantitative measurement of hypertrophic scar: Interrater reliability and concurrent validity. *J Burn Care Res.* 2008;29(3):501-511. doi:10.1097/BCR.0b013e3181710881

19. Elrefaie AM, Salem RM, Faheem MH. High-resolution ultrasound for keloids and hypertrophic scar assessment. *Lasers Med Sci.* 2019;35(2):379-385. doi:10.1007/s10103-019-02830-4

Lau JCM, Li-Tsang CWP, Zheng YP. Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. *Burns*. 2005;31(4):445-452. doi:10.1016/j.burns.2004.07.016
 Seo C. Dynamic burn scar elasticity evaluation using ultrasonography. *J Burn Care Res*. 2011;32:S167-S167.

22. Nedelec B, Correa JA, de Oliveira A, LaSalle L, Perrault I. Longitudinal burn scar quantification. *Burns*. 2014;40(8):1504-1512. doi:10.1016/j.burns.2014.03.002

23. Gee Kee EL, Kimble RM, Cuttle L, Stockton KA. Scar outcome of children with partial thickness burns: A 3 and 6 month follow up. *Burns*. 2016;42(1):97-103. doi:10.1016/j.burns.2015.06.019

24. Meirte J, Moortgat P, Anthonissen M, et al. Short-term effects of vacuum massage on epidermal and dermal thickness and density in burn scars: an experimental study. *Burns Trauma*. 2016;4:27-27. doi:10.1186/s41038-016-0052-x

25. Nedelec B, Couture M-A, Calva V, et al. Randomized controlled trial of the immediate and long-term effect of massage on adult postburn scar. *Burns*. 2019;45(1):128-139. doi:10.1016/j.burns.2018.08.018

26. Nedelec B, LaSalle L, de Oliveira A, Correa JA. Within-patient, single-blinded, randomized controlled clinical trial to evaluate the efficacy of triamcinolone acetonide injections for the treatment of hypertrophic scar in adult burn survivors. *J Burn Care Res.* 2020;41(4):761-769. doi:10.1093/jbcr/iraa057

27. Chan HH, Wong DSY, Ho WS, Lam LK, Wei W. The use of pulsed dye laser for the prevention and treatment of hypertrophic scars in Chinese persons. *Dermatol Surg*. 2004;30(7):987-994. doi:10.1111/j.1524-4725.2004.30303.x

28. Cheng W, Saing H, Zhou H, Han Y, Peh W, Tam PKH. Ultrasound assessment of scald scars in Asian children receiving pressure garment therapy. *J Pediatr Surg*. 2001;36(3):466-469. doi:10.1053/jpsu.2001.21613

29. Fong SSL, Hung LK, Cheng JCY. The cutometer and ultrasonography in the assessment of postburn hypertrophic scar: A preliminary study. *Burns*. 1997;23(1):S12-S18. doi:10.1016/S0305-4179(96)00095-2

30. Issler-Fisher AC, Fisher OM, Smialkowski AO, et al. Ablative fractional CO2 laser for burn scar reconstruction: An extensive subjective and objective short-term outcome analysis of a prospective treatment cohort. *Burns*. 2017;43(3):573-582. doi:10.1016/j.burns.2016.09.014

31. Li JQ, Li-Tsang CWP, Huang YP, Chen Y, Zheng YP. Detection of changes of scar thickness under mechanical loading using ultrasonic measurement. *Burns*. 2012;39(1):89-97. doi:10.1016/j.burns.2012.05.009

32. Miletta N, Siwy K, Hivnor C, et al. Fractional ablative laser therapy is an effective treatment for hypertrophic burn scars: A prospective study of objective and subjective outcomes. *Ann Surg.* 2021;274(6):E574-E580. doi:10.1097/SLA.00000000003576

33. Issler-Fisher AC, Fisher OM, Haertsch PA, Li Z, Maitz PKM. Effectiveness and safety of ablative fractional CO2 laser for the treatment of burn scars: A case-control study. *Burns*. 2021;47(4):785-795. doi:10.1016/j.burns.2020.10.002

Page **36** of **41**

34. Dunkin CSJ, Pleat JM, Gillespie PH, Tyler MPH, Roberts AHN, McGrouther DA. Scarring occurs at a critical depth of skin injury: Precise measurement in a graduated dermal scratch in human volunteers. *Plast Reconstr Surg.* 2007;119(6):1722-1732. doi:10.1097/01.prs.0000258829.07399.f0
 35. Li N, Yang L, Cheng J, et al. A retrospective study to identify the optimal parameters for

pulsed dye laser in the treatment of hypertrophic burn scars in Chinese children with Fitzpatrick skin types III and IV. *Lasers Med Sci.* 2021;36(8):1671-1679. doi:10.1007/s10103-021-03252-x

36. van der Veer WM, Ferreira JA, de Jong EH, Molema G, Niessen FB. Perioperative conditions affect long-term hypertrophic scar formation. *Ann Plast Surg.* 2010;65(3):321-325. doi:10.1097/SAP.0b013e3181c60f88

37. Deng K, Xiao H, Liu X, Ogawa R, Xu X, Liu Y. Strontium-90 brachytherapy following intralesional triamcinolone and 5-fluorouracil injections for keloid treatment: A randomized controlled trial. *PLoS One*. 2021;16(3):e0248799. doi:10.1371/journal.pone.0248799

Wood FM, Currie K, Backman B, Cena B. Current difficulties and the possible future directions in scar assessment. *Burns*. 1996;22(6):455-458. doi:10.1016/0305-4179(95)00168-9
Huang P-W, Lu C-W, Liu H-L. Fitted pressure garment of assessment of scar thickness on third-degree burns through ultrasonic measurement. *J Cytol Histol*. 2017;8(5)doi:10.4172/2157-7099.1000488

40. Gankande TU, Duke JM, Danielsen PL, DeJong HM, Wood FM, Wallace HJ. Reliability of scar assessments performed with an integrated skin testing device – The DermaLab Combo. *Burns*. 2014;40(8):1521-1529. doi:10.1016/j.burns.2014.01.025

41. Berry RB, Tan OT, Cooke ED, et al. Transcutaneous oxygen tension as an index of maturity in hypertrophic scars treated by compression. *Br J Plast Surg*. 1985;38(2):163-173. doi:10.1016/0007-1226(85)90045-1

42. Li-Tsang CWP, Lau JCM, Chan CCH. Prevalence of hypertrophic scar formation and its characteristics among the Chinese population. *Burns*. 2005;31(5):610-616. doi:10.1016/j.burns.2005.01.022

43. Lee SY, Cho YS, Kim L, Joo SY, Seo CH. The Intra-rater reliability and validity of ultrasonography in the evaluation of hypertrophic scars caused by burns. *Burns*. 2022;doi:10.1016/j.burns.2022.03.016

Candy LHY, Cecilia L-TWP, Ping ZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population. *Burns*. 2010;36(8):1234-1241. doi:10.1016/j.burns.2010.05.008
Deng H, Tan T, Luo G, Tan J, Li-Tsang CWP. Vascularity and thickness changes in immature hypertrophic scars treated with a pulsed dye laser. *Lasers Surg Med*. 2021;53(7):914-921. doi:10.1002/lsm.23366

46. Yim H, Cho YS, Seo CH, et al. The use of AlloDerm on major burn patients: AlloDerm prevents post-burn joint contracture. *Burns*. 2009;36(3):322-328. doi:10.1016/j.burns.2009.10.018

47. Agabalyan NA, Su S, Sinha S, Gabriel V. Comparison between high-frequency ultrasonography and histological assessment reveals weak correlation for measurements of scar tissue thickness. *Burns*. 2016;43(3):531-538. doi:10.1016/j.burns.2016.09.008

48. Agabalyan NA, Su S, Sinha V, Gabriel V. Evaluating high frequency ultrasonography for the non-invasive measurement of human scarring. *J Burn Care Res*. 2016;37(Supplement 183)

49. Bajouri A, Kajoor AS, Fallah N, et al. Autologous human stromal vascular fraction injection in post-burn hypertrophic scar: A double-blinded placebo-controlled clinical trial. *Bioimpacts*. 2018;8:37-38.

50. Bezugly A. Noninvasive skin pathology evaluation: High-frequency ultrasound imaging and diagnostics. *J Dermatol Nurses Assoc.* 2020;12(2)

51. Bezugly A, Potekaev N. In vivo skin morphology monitoring of patients with acne, scars and dermal fillers, with 22 and 75 MHz high frequency ultrasound. *J Dermatol*. 2014;41:4.

52. Cai L, Hu M, Lin L, Zheng T, Liu J, Li Z. Evaluation of the efficacy of triamcinolone acetonide in the treatment of keloids by high-frequency ultrasound. *Skin Res Technol*. 2020;26(4):489-493. doi:10.1111/srt.12820

Page **37** of **41**

53. Moortgat P, Vanhullebusch T, Anthonissen M, et al. Tension reducing taping as a mechanotherapy for hypertrophic burn scars: Preliminary results from a pilot study. *Wound Repair Regen*. 2020;28(2):A21.

54. Blome-Eberwein SA, Roarabaugh C, Gogal C. Assessment of hair density and sub-epidermal tissue thickness in burn scars using high-definition ultrasound imaging. *J Burn Care Res*. 2020;41(2):421-426. doi:10.1093/jbcr/irz191

55. Avetikov DS, Bukhanchenko OP, Skikevich MG, Aipert VV, Boyko IV. Features of ultrasound diagnostics of postoperative hypertrophic and keloid scars. *The New Armenian Medical Journal*. 2018;12(4):43-48.

56. Chae JK, Kim JH, Kim EJ, Park K. Values of a patient and observer scar assessment scale to evaluate the facial skin graft scar. *Ann Dermatol*. 2016;28(5):615-623. doi:10.5021/ad.2016.28.5.615
57. Danin A, Georgesco G, Le Touze A, Penaud A, Quignon R, Zakine G. Assessment of burned hands reconstructed with Integra® by ultrasonography and elastometry. *Burns*. 2012;38(7):998-

1004. doi:10.1016/j.burns.2012.02.017

58. Fraccalvieri M, Zingarelli E, Ruka E, et al. Negative pressure wound therapy using gauze and foam: histological, immunohistochemical and ultrasonography morphological analysis of the granulation tissue and scar tissue. Preliminary report of a clinical study. *Int Wound J.* 2011;8(4):355-364. doi:10.1111/j.1742-481X.2011.00798.x

59. Katz SM, Frank DH, Leopold GR, Wachtel TL. Objective measurement of hypertrophic burn scar: A preliminary study of tonometry and ultrasonography. *Ann Plast Surg.* 1985;14(2):121-127. doi:10.1097/0000637-198502000-00005

60. Kim JD, Oh SJ, Kim SG, et al. Ultrasonographic findings of re-epithelialized skin after partialthickness burns. *Burns Trauma*. 2018;6(1):21-21. doi:10.1186/s41038-018-0122-3

61. Lee KC, Bamford A, Gardiner F, et al. Burns objective scar scale (BOSS): Validation of an objective measurement devices based burn scar scale panel. *Burns*. 2020;46(1):110-120. doi:10.1016/j.burns.2019.05.008

Nicoletti G, Brenta F, Bleve M, et al. Long-term in vivo assessment of bioengineered skin substitutes: a clinical study. *J Tissue Eng Regen Med*. 2015;9(4):460-468. doi:10.1002/term.1939
Wiseman J, Simons M, Kimble R, Ware RS, McPhail SM, Tyack Z. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children 12-months postburn: A parallel group randomised controlled trial. *Clin Rehabil*. 2021;35(8):1126-1141. doi:10.1177/02692155211020351

64. Wiseman J, Ware RS, Simons M, et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children: a randomized controlled trial. *Clin Rehabil*. 2020;34(1):120-131. doi:10.1177/0269215519877516

65. Żądkowski T, Nachulewicz P, Mazgaj M, et al. A new CO2 laser technique for the treatment of pediatric hypertrophic burn scars: An observational study. *Medicine (Baltimore)*. 2016;95(42):e5168-e5168. doi:10.1097/MD.00000000005168

66. Zuccaro J, Kelly C, Perez M, Doria A, Fish JS. The effectiveness of laser therapy for hypertrophic burn scars in pediatric patients: A prospective investigation. *J Burn Care Res*. 2021;42(5):847-856. doi:10.1093/jbcr/irab090

67. Lacarrubba F, Patania L, Perrotta R, Stracuzzi G, Nasca MR, Micali G. An open-label pilot study to evaluate the efficacy and tolerability of a silicone gel in the treatment of hypertrophic scars using clinical and ultrasound assessments. *J Dermatolog Treat*. 2008;19(1):50-53. doi:10.1080/09546630701387009

68. Van den Kerckhove E, Stappaerts K, Fieuws S, et al. The assessment of erythema and thickness on burn related scars during pressure garment therapy as a preventive measure for hypertrophic scarring. *Burns*. 2005;31(6):696-702. doi:10.1016/j.burns.2005.04.014

69. Alsharnoubi J, Mohamed O, Fawzy M. Photobiomodulation effect on children's scars. *Lasers Med Sci*. 2017;33(3):497-501. doi:10.1007/s10103-017-2387-3

Page **38** of **41**

70. Alsharnoubi J, Shoukry KE-S, Fawzy MW, Mohamed O. Evaluation of scars in children after treatment with low-level laser. *Lasers Med Sci.* 2018;33(9):1991-1995. doi:10.1007/s10103-018-2572-z

71. Fabbrocini G, Marasca C, Ammad S, et al. Assessment of the combined efficacy of needling and the use of silicone gel in the treatment of C-section and other surgical hypertrophic scars and keloids. *Adv Skin Wound Care*. 2016;29(9):408-411. doi:10.1097/01.ASW.0000490028.37994.14

72. Joo SY, Lee SY, Cho YS, Seo CH. Clinical utility of extracorporeal shock wave therapy on hypertrophic scars of the hand caused by burn injury: A prospective, randomized, double-blinded study. *J Clin Med.* 2020;9(5):1376. doi:10.3390/jcm9051376

73. Lobos N, Wortsman X, Valenzuela F, Alonso F. Color Doppler ultrasound assessment of activity in keloids. *Dermatol Surg*. 2017;43(6):817-825. doi:10.1097/DSS.00000000000001052
74. Mamdouh M, Omar GA, Hafiz HSA, Ali SM. Role of vitamin D in treatment of keloid. *J Cosmet Dermatol*. 2022;21(1):331-336. doi:10.1111/jocd.14070

75. Reinholz M, Guertler A, Schwaiger H, Poetschke J, Gauglitz GG. Treatment of keloids using 5fluorouracil in combination with crystalline triamcinolone acetonide suspension: evaluating therapeutic effects by using non-invasive objective measures. *J Eur Acad Dermatol Venereol*. 2020;34(10):2436-2444. doi:10.1111/jdv.16354

76. Reinholz M, Schwaiger H, Poetschke J, et al. Objective and subjective treatment evaluation of scars using optical coherence tomography, sonography, photography, and standardised questionnaires. *Eur J Dermatol*. 2017;26(6):599-608. doi:10.1684/ejd.2016.2873

77. Soykan EA, Butzelaar L, de Kroon TL, et al. Minimal extracorporeal circulation (MECC) does not result in less hypertrophic scar formation as compared to conventional extracorporeal circulation (CECC) with dexamethasone. *Perfusion*. 2014;29(3):249-259. doi:10.1177/0267659113511656

78. Wang G-Q, Xia Z-F. Transplantation of epidermis of scar tissue on acellular dermal matrix. *Burns*. 2008;35(3):352-355. doi:10.1016/j.burns.2008.06.021

79. Zhidong X, Haixia L, Chao L, Yongrong L. Wavelet Bilateral Filter Algorithm-Based High-Frequency Ultrasound Image Analysis on Effects of Skin Scar Repair. *Scientific programming*. 2021;2021doi:10.1155/2021/9573474

80. Li-Tsang CWP, Zheng YP, Lau JCM. A randomized clinical trial to study the effect of silicone gel dressing and pressure therapy on posttraumatic hypertrophic scars. *J Burn Care Res*. 2010;31(3):448-457. doi:10.1097/BCR.0b013e3181db52a7

81. Li N, Yang L, Cheng J, Han J, Hu D. Early intervention by Z-plasty combined with fractional CO2 laser therapy as a potential treatment for hypertrophic burn scars. *J Plast Reconstr Aesthet Surg*. 2021;74(11):3087-3093. doi:10.1016/j.bjps.2021.03.079

82. Blome-Eberwein S, Gogal C, Weiss MJ, Boorse D, Pagella P. Prospective evaluation of fractional CO2 laser treatment of mature burn scars. *J Burn Care Res.* 2016;37(6):379-387. doi:10.1097/BCR.00000000000383

83. Blome-Eberwein S. Fractional Er:Glass photothermolysis laser therapy to treat hypertrophic scarring. *Lasers Surg Med*. 2012;44:61.

84. Blome-Eberwein S, Blaine C, Gogal C, Eid S, Foltz C. Fractional Er:Glass photothermolysis laser therapy to treat hypertrophic scarring. *J Burn Care Res.* 2011;32:S95.

85. Blome-Eberwein S, Gogal C, Folz C. Assessment of hair density and sub-epidermal tissue in burn scars using high frequency ultrasound. *J Burn Care Res*. 2012;33(2)(Supplement):S105.

86. Blome-Eberwein S, Roarabaugh C, Gogal C, Eid S. Exploration of nonsurgical scar modification options: Can the irregular surface of matured mesh graft scars be smooted with microdermabrasion? *J Burn Care Res*. 2012;33(3):e133-40.

87. Deng H, Li-Tsang CWP, Li J. Measuring vascularity of hypertrophic scars by dermoscopy: Construct validity and predictive ability of scar thickness change. *Skin Res Technol*. 2020;26(3):369-375. doi:10.1111/srt.12812

Page **39** of **41**

88. El-Zawahry MBM, El-Cheweikh HMAE-H, Ramadan SA-E-R, Bassiouny DA, Fawzy MM.
Ultrasound biomicroscopy in the diagnosis of skin diseases. *Eur J Dermatol*. 2007;17(6):469-74.
89. Zuccaro J, Perez M, Mohanta A, Fish J, Doria A. Elastography-Based Quantification of Burn
Scar Stiffness. *J Burn Care Res*. 2019;40(Supplement_1):S215-S215. doi:10.1093/jbcr/irz013.374
90. Edger-Lacoursière Z, de Oliveira A, Marois-Pagé E, et al. Objective quantification of
hypertrophic scar and donor scar between 2 to 7 months post-burn injury. *J Burn Care Res*.
2022;43(Supplement 1):S103.

91. Engrav LH, Heimbach DM, Rivara FP, et al. 12-Year within-wound study of the effectiveness of custom pressure garment therapy. *Burns*. 2010;36(7):975-983. doi:10.1016/j.burns.2010.04.014
92. Fraccalvieri M, Sarno A, Gasperini S, et al. Can single use negative pressure wound therapy be an alternative method to manage keloid scarring? A preliminary report of a clinical and ultrasound/colour-power-doppler study. *Int Wound J*. 2013;10(3):340-344. doi:10.1111/j.1742-

481X.2012.00988.x

93. Li P, Li-Tsang CWP, Deng X, et al. The recovery of post-burn hypertrophic scar in a monitored pressure therapy intervention programme and the timing of intervention. *Burns*. 2018;44(6):1451-1467. doi:10.1016/j.burns.2018.01.008

94. Chang C-S, Wallace CG, Hsiao Y-C, Chang C-J, Chen PK-T. Botulinum toxin to improve results in cleft lip repair: A double-blinded, randomized, vehicle-controlled clinical trial. *PLoS One*. 2014;9(12):e115690-e115690. doi:10.1371/journal.pone.0115690

95. Blome-Eberwein S, Pagella P, Boorse D, Gogal C. Treatment of hypertrophic burn scars with different laser modalities. *Lasers Surg Med*. 2014;46:6-7.

96. Cho YS, Jeon JH, Hong A, et al. The effect of burn rehabilitation massage therapy on hypertrophic scar after burn: A randomized controlled trial. *Burns*. 2014;40(8):1513-1520. doi:10.1016/j.burns.2014.02.005

97. Cooper LE, Bohan PK, Hatem VD, Carlsson AH, Cancio LC, Chan RK. Analysis of the utility of CO2 and pulse-dye lasers in the treatment of hypertrophic burn scars. *J Burn Care Res*. 2021;42(Supplement_1):S28-S29. doi:10.1093/jbcr/irab032.041

98. Jacobs M, Roggy D, Sood R. A preliminary report of a prospective study evaluating outcomes of burn scars treated with laser therapy. *J Burn Care Res.* 2016;37(Supplement):S106.

99. Jang KU, Lee JY, Choi JS, Seo CH. 5 FU and triamcinolone injection to the hypertrophic scar were compared. *Burns*. 2009;35:S41-S42. doi:10.1016/j.burns.2009.06.166

100. Kim SK, Park JM, Jang YH, Son YH. Management of hypertrophic scar after burn wound using microneedling procedure (dermastamp). *Burns*. 2009;35:S37-S37. doi:10.1016/j.burns.2009.06.146

101. Li K, Nicoli F, Cui C, et al. Treatment of hypertrophic scars and keloids using an intralesional 1470 nm bare-fibre diode laser: a novel efficient minimally-invasive technique. *Sci Rep*. 2020;10(1):21694-21694. doi:10.1038/s41598-020-78738-9

102. Li P, Li-Tsang CWP. Clinical effectiveness and intervention timing of smart pressuremonitored suit in the management of post-burn hypertrophic scar: A clinical controlled study with objective assessment. *J Burn Care Res.* 2016;37(Supplement):S199.

103. Li-Tsang CWP, Feng B-B, Li K-C. Pressure therapy of hypertrophic scars after burns and related research. *Zhonghua Shao Shang Za Zh (Chinese Journal of Burns)*. 2010;26(6):411-5.

104. Maari C. Randomized, controlled, within-patient, single-blinded pilot study to evaluate the efficacy of the ablative fractional CO2 laser in the treatment of hypertrophic scars in adult burn patients. *J Am Acad Dermatol*. 2017;76(6):AB212-AB212. doi:10.1016/j.jaad.2017.04.1113

105. Nedelec B, Couture M, Calva V, et al. Randomized controlled trial of the immediate and long-term effect of massage on adult postburn scar. *J Burn Care Res*. 2018;39(suppl_1):S57-S57. doi:10.1093/jbcr/iry006.106

106. Peters EP, Moortgat P. Electronic micro-needling on mature burn scars: A case series report. *Wound Repair Regen*. 2018;26(2):A28-A28.

Page 40 of 41

107. Siwy KG, Lee K, Donelan MB, Anderson RR, Miletta NR. Fractionated CO2 laser and burn scar contractures: Evaluation of post treatment scar function and appearance. *J Burn Care Res*. 2016;37:S202-S202.

108. Ud-Din S, Foden P, Douglas M, et al. A double-blind randomized controlled trial demonstrates for the first time evidence for the role of topical epigallocatechin-3-gallate in reducing angiogenesis, inflammation, and skin thickness in human skin scarring: A noninvasive, morphological and immu. *Wound Repair and Regeneration*. 2017;25(4):A3.

109. Ud-Din S, Foden P, Mazhari M, Al-Habba S, Baguneid M, Bayat A. Histomorphic assessment of noninvasive quantitative imaging in progression of cutaneous healing in human skin: Dynamic optical coherence tomography versus high requency ultrasound. *Wound Repair Regen*. 2017;25(4):A3-A4.

110. Ud-Din S, Foden P, M M, Samer A, Baguneid M, Bayat A. Quantitative index for skin fibrosis: Combined optical coherence tomography with ultrasound validated by histology and immunohistochemisrty. *Wound Repair Regen*. 2018;26(4):A11-A12.

111. Li-Tsang CWP, Lau JCM, Choi J, Chan CCC, Jianan L. A prospective randomized clinical trial to investigate the effect of silicone gel sheeting (Cica-Care) on post-traumatic hypertrophic scar among the Chinese population. *Burns*. 2006;32(6):678-683. doi:10.1016/j.burns.2006.01.016

112. Alshehari A, Wahdan W, Maamoun MI. Comparative study between intralesional steriod injection and silicone sheet versus silicone sheet alone in the treatment of pathologic scars. *Archives of the Balkan Medical Union*. 2015;50(3):364-366.

113. Cho J, Choi J, Hur J, et al. The effect of CO2 fractional laser (pixel[®]) on hypertrophic burn scars. *J Burn Care Res*. 2012;33(2)(Supplement):S132.

114. Comstock J, Sood R. Can mature facial scars benefit from a transparent face mask? *J Burn Care Res.* 2018;39(suppl_1):S219-S220. doi:10.1093/jbcr/iry006.416

115. Issler-Fisher AC, Fisher OM, Haertsch P, Li Z, Maitz PKM. Ablative fractional resurfacing with laser-facilitated steroid delivery for burn scar management: Does the depth of laser penetration matter? *Lasers Surg Med*. 2020;52(2):149-158. doi:10.1002/lsm.23166

116. Ge X, Sun Y, Lin J, Zhou F, Yao G, Su X. Effects of multiple modes of UltraPulse fractional CO2 laser treatment on extensive scarring: a retrospective study. *Lasers Med Sci.* 2021;37(3):1575-1582. doi:10.1007/s10103-021-03406-x

117. Li-Tsang CWP. The effect of a new silicone padding (SPMP) in management of keloids: Case review. *J Burn Care Res*. 2011;32(Supplement):S169-S169.

118. Tu P, Wang Z-G, Zhang Q-X, You Y-F. High frequency ultrasound in dynamic observation on effect of local injection with diprospan for treating pathological scar. *Chinese Journal of Interventional Imaging and Therapy*. 2014;11(4):217-220.

Page **41** of **41**