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1. Proof for Lemma 2.1

Proof of Lemma 2.1. We discuss the two cases.

• We first present the proof for theHG;0 case. By Bernstein’s inequality, for any v ∈ {v0, . . . , n}

and any V ⊆ [n] satisfying |V | = v, we have
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Therefore by a union bound, we have
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• Now we prove for the HG;a case. As both q and γ are in the range of (0, 1) q − γ < 3

which ensures the positivity. The strategy is to simply consider Gc and show that with high

probability, Gc would form a γ-quasi clique in G[r]. We have
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□

2. Theoretical results

In this subsection, we present theoretical guarantees for SICERS regarding covariate-related

subnetwork detection and inference. Because our multiple testing procedure depends critically
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on the correctness of the subnetwork detection by criterion (2.1), we first show a theoretical

guarantee of the correctness of our optimization of (2.1). Our objective function with a ℓ0 graph

norm shrinkage criterion is:

argmax
G,C̃

log ||U||1 − λ0 log ||U||0. (2.1)

Theorem 2.1 (Optimality of subnetwork detection by (2.1)) Let C∗ be the true number of

subnetworks and π = (π0, π1, ..., πC∗ , πC∗+1) a vector of probabilities with ∥π∥1 = 1, such that

the membership of nodes toward subnetworks is generated by a multinomial distribution with

parameter π. Suppose that the tuning parameter is set to be λ0 ∈ (0, 1), and assume

µ0

µ1
<

{
(C∗)λ0−1

C∗−1 if C∗ ⩾ 2,

λ0 if C∗ = 1.
(2.2)

Then, asymptotically, criterion (2.1) is uniquely optimized by C = C∗ and Gc = G∗
c for all

c = 1, . . . , C∗.

Theorem 2.1 ensures that by optimizing (2.1), we can learn the correct number of subnetworks.

This optimization is combinatorial and difficult to carry out in practice, but Theorem 2.1 suggests

that criterion (2.1) can also be used for model selection when combined with efficient subnetwork

estimation procedures for each candidate C. In view of this, next we present a theoretical guaran-

tee of a computationally efficient estimation procedure for subnetwork detection under C = C∗.

Let us define some notation. Recall the definitions of µ0, µ1, and define σ2
0 = var(wij |δij = 0)

and σ2
1 = var(wij |δij = 1). Let P = E[W |G] = ΘΩΘT denote the expectation matrix, where

Θ ∈ {0, 1}n×(C+1) is a membership matrix in which each row contains exactly one value of 1

with all other values set to 0. Here, Θi,(C+1) = 1 means that node i is a singleton node outside

the subnetwork structure.

Theorem 2.2 (Consistency of spectral estimation if C = C∗) Assume that rank(P ) = C∗ + 1,

and denote its smallest absolute nonzero eigenvalue by ξn. Assume (µ1 ∨ σ2
1 ∨ σ2

0) ⩽ αn for
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αn ⩾ c0 log n/n and c0 > 0. Then, if (2+ ε) (C+1)nαn

ξ2n
< τ for some τ, ε > 0, the output Θ̂C∗ from

the spectral estimation is consistent up to permutation. Equivalently, if V̂c is the estimated node

set for subgraph Gc, c = 1, ..., C∗, then V̂c ∩ Vc is the set in Vc for which the assignment of nodes

can be guaranteed and, with probability at least 1− n−1, up to permutation, we have

C∑
c=1

1−
∣∣∣V̂c ∩ Vc

∣∣∣
|Vc|

 ⩽ τ−1(2 + ε)
Cnαn

ξ2n
.

Theorems 2.1 and 2.2 provide two important results: the optimality of determining the number

of subnetworks and the consistency of network recovery using the proposed algorithms. The

assumptions of Theorems 2.1 and 2.2 involve the imbalanced distributions of subnetwork sizes,

signal-to-noise ratio between within- and between-subnetwork edges, and overall sparsity of the

graph.

Theorem 2.3 Under the conditions of Theorem 2.1 and Lemma 2.1, Algorithm 2 is consistent,

in the sense that

• when HG;0 is true, we have P(Ĉ = 0) → 1 and Algorithm 2 will not be executed;

• when HG:a is true, in Algorithm 2, with probability tending to 1, we would reject HG;0

using each Ĝc.

Proof of Theorem 2.1. We prove the population version, such that W satisfying wij = µ1

for δij = 1 and wij = µ0 for δij = 0. Denote U∗
C as the matrix under true network structure

G∗
C , i.e., U

∗
C = W ∗ G∗

C , and ÛC related with the optimized network structure under C, i.e.,

ÛC = W ∗ ĜC .

For each C ̸= C∗, let x be the number of corresponding edges with {ÛC}ij = µ1 and y to

be {ÛC}ij = µ1. In other words, x = ∥ÛC ∗ G∗
C∥0 and y = ∥ÛC∥0 − ∥ÛC ∗ G∗

C∥0. Then, the
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objective function (10) takes value:

JÛC
= log ∥ÛC∥1 − λ0 log ∥ÛC∥0

= log
xµ1 + yµ0

(x+ y)λ0
.

On the other hand, under true network structure G∗
C , the objective function (10):

JU∗
C
= log ∥U∗

C∥1 − λ0 log ∥U∗
C∥0

= log
∥U∗

C∥0µ1

∥U∗
C∥

λ0
0

⩾ log
xµ1

xλ0
= JÛC∗G∗

C
,

since the right-hand side is increasing in x for lambda0 ∈ (0, 1), and x ⩽ U∗
C∥0 by definition.

Hence, to show our criterion (10) is optimized by C = C∗ and Gc = G∗
c for all c = 1, . . . , C∗,

it suffices to have

JÛC
< JÛC∗G∗

C
⇐⇒ xµ1 + yµ0

(x+ y)λ0
⩽

xµ1

xλ0

⇐⇒ µ0

µ1
<

[(
1 +

y

x

)λ0

− 1

]
x

y
, (2.3)

for each C ̸= C∗ and ÛC . Let h(t) =
[
(1 + t)

λ0 − 1
]

1
t , then, h

′(t) = 1
t2

[
1− (1−λ0)t+1

(1+t)1−λ0

]
. Since

(1 + t)a < 1 + at for a ∈ (0, 1) and t > 0, h′(t) is negative and h(t) is decreasing for all t > 0.

Therefore, it suffices to have

µ0

µ1
<

[(
1 + sup

x,y

y

x

)λ0

− 1

]
1

supx,y y/x
.

For each block Ĝc, c ∈ {1, ..., C}, the nodes V̂c of Ĝc are possible to have true memberships of at

most C∗ communities. Then, the number of edges in Ĝc with edge weight µ1 would satisfy(
g1
2

)
+

(
g2
2

)
+ ... +

(
gC∗

2

)
with g1 + g2 + ... + gC∗ = |V̂c|

where gc is the number of nodes from the true community G∗
c . Consider a sufficiently large graph

and the numbers of nodes change continuously, we have(
g1
2

)
+
(
g2
2

)
+ ... +

(
gC∗
2

)(|V̂c|
2

) ⩾ C∗.
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Therefore, for C∗ ⩾ 2, y/x ⩽ C∗ − 1 and for C∗ = 1, y/x ⩽ 1. Hence, the claim is true. □

Proof of Theorem 2.2. It suffices to show that consistent results are guaranteed for spectral

clustering in our setting of a continuous stochastic block model. The proof of theorem 3.1 in [6]

can be easily extended to a weighted case using continuous versions of Bernstein inequality and

Chernoff bounds.

To bound light pairs, uij = xiyj1(|xiyj | ⩽
√
d/n)+xjyi1(|xjyi| ⩽

√
d/n), then |uij | ⩽ 2

√
d/n,

and xTW ′y can be written as

∑
1⩽i<j⩽n

w′
ijuij .

Then, for zero-mean independent random variables, apply Bernstein inequality,

P

∣∣∣∣∣∣
∑
i<j

w′
ijuij

∣∣∣∣∣∣ ⩾ c0
√
d

 ⩽ 2 exp

(
−

1
2c

2
0d∑

i<j σ
2
iju

2
ij +

1
3
2
√
d

n c0
√
d)

)

⩽ 2 exp

(
−

1
2c

2
0d

σ2
max

∑
i<j u

2
ij +

2c0
3

d
n

)

⩽ 2 exp

(
− c20
4 + 4c0

3

n

)
.

In bounding heavy pairs, let e(I, J) be the summation of edge weights in node sets I and J:

e(I, J) =
∑

(i,j)∈s(I,J) wij . Define µ(I, J) = Ee(I, J), µ(I, J) = pmax|I||J |. We could obtain

continuous versions of Lemma 4.1 and 4.2 in the supplementary material of [6].

Using Bernstein inequality:

P

 n∑
j=1

wij ⩾ c1d

 ⩽ P

 n∑
j=1

w′
ij ⩾ (c1 − 1)d

 ⩽ exp

[
−

1
2 (c1 − 1)2d2∑n

j=1 σ
2
ij +

1
3 (c1 − 1)d

]

⩽ exp

[
−

1
2 (c1 − 1)2d2

nσ2
max +

1
3 (c1 − 1)d

]
⩽ exp

[
−

1
2 (c1 − 1)2d

1 + 1
3 (c1 − 1)

]
⩽ n− 3c0(c1−1)2

2c1+4

We have for c0 > 0, there exists constant c1 = c1(c0) such that with probability at least 1−n−c0 ,∑n
j=1 wij ⩽ c1d.
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From Chernoff Bound:

P[e(I, J) ⩾ kµ(I, J)] = P

 ∑
(i,j)∈s(I,J)

wij ⩾ kµ̄(I, J)


⩽ exp(−µ̄(I, J)(k ln k − (k − 1)))

⩽ exp

[
−1

2
(k ln k)µ̄

]
the lemma 4.2 is true from exactly the same calculations.

Hence, our claim is true with stated assumptions from Theorem 3.1 of [6]. □

Proof of Theorem 2.3. We discuss the two cases.

• When HG;0 is true, according Theorem 2.1, we have P(Ĉ = 0) → 1.

• When HG:a is true, assuming minc=1,...,C∗ |Gc| ⩾ c0
√
n and the conditions of Theorem 2.1

hold, by Theorem 2.1, we have

Ĉ
p→ C∗; and {Ĝc}c=1,...,Ĉ

p→ {Gc}c=1,...,C∗

Therefore,

µ̂0
p→ µ0; and µ̂1

p→ µ1; and r̂
p→ (µ0 + µ1)/2

which further yields

p̂
p→ p(r); and q̂

p→ q(r); and γ̂
p→ γ(r)

Consequently, with probability tending to 1, we have γ̂ − p̂ bounded away from zero by a

constant gap, therefore the empirical p-value converges in probability to zero.

□

Proof of Theorem 2.4. We first prove (2.9). By the definition of most liberal multiple testing,

we have

M0 =

(
n

2

)
· α (2.4)



8 Chen et. al.

Now since our multiple testing algorithms do not reject any individual null hypotheses H(i,j)

where (i, j) /∈ ∪C
c=1Vc × Vc, we immediately have

M1 = E

[
C∑

c=1

(
n̂c

2

)
· α

]
(2.5)

Since ∑C
c=1

(
n̂c

2

)
· α(

n
2

)
· α

=

C∑
c=1

n̂c(n̂c − 1)

n(n− 1)

=

C∑
c=1

(
nc

n
+

n̂c − nc

n

)(
nc

n
+

n̂c − nc

n
− 1

n

)/(
1− 1

n

)
⩽

n2
c

n2
+

2nc|n̂c − nc|
n2

+
(n̂c − nc)

2

n2

=
n2
c

n2

{
1 +

2|n̂c − nc|
nc

+
(n̂c − nc)

2

n2
c

}
⩽ p20

(
1 + 4

C∑
c=1

|n̂c − nc|
nc

)
(2.6)

Then combining this with Lemma 2.2 proves (2.9).

Now we prove (2.10). Define the power of an individual test to be β. By definition, we have

N0 =

C∑
c=1

(
nc

2

)
γcβ

Now we consider N1. For each c = 1, . . . , C, the estimated and true community c share nc −

nmisclass;c nodes. If all the individual test outside Vc ∩ V̂c accept their null hypotheses, then the

contribution of power from the estimated class c would be

β ·
{(

nc

2

)
γc − (nc − nmisclass;c/2) · nmisclass;c

}
In order to lower bound N1/N0, observe that

β ·
{(

nc

2

)
γc − (nc − nmisclass;c/2) · nmisclass;c

}(
nc

2

)
γcβ

= 1− 2(nc − nmisclass;c/2) · nmisclass;c

nc(nc − 1)

= 1− (2− nmisclass;c/nc) · nmisclass;c/nc

(1− n−1
c )

⩾ 1− 4nmisclass;c

nc
(2.7)
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Therefore

∑C
c=1 β ·

{(
nc

2

)
γc − (nc − nmisclass;c/2) · nmisclass;c

}∑C
c=1

(
nc

2

)
γcβ

⩾ 1−
C∑

c=1

4nmisclass;c

nc
(2.8)

where we used the following basic fact that

ac
bc

⩾ 1− ec,∀c = 1, . . . , C ⇒
∑C

c=1 ac∑C
c=1 bc

⩾ 1−
C∑

c=1

ec

where a, b, e are all positive numbers and e ∈ (0, 1). Finally taking an expectation on both sides

of (2.8) completes the proof of (2.10). □

Next, we compare the accuracy of covariate-related subnetwork-wise and edge-wise inference.

The following theorem compares the false positive error rates and sensitivity of SICERS vs. edge-

wise inference with a universal cut-off. We assume that all edges in a significant subnetwork are

covariate-correlated.

Theorem 2.4 (Sensitivity and false positive error rate) Define

p0 = sup
c=1,...,C

|Vc|/n,

and denote the expected numbers of false positive edges across multiple tests H(1,2), . . . ,Hn−1,n

based on subnetwork-wise and edge-wise inference, using α as a universal threshold, by M1 and

M0, respectively. Under the conditions of Theorem 2.1, we have

M1

M0
⩽ p20

{
C + 4τ−1(2 + ϵ)

Cnd

ξ2n

}
. + n−1 (2.9)

On the other hand, suppose that within each subnetwork Gc, a proportion of γc individual al-

ternative hypotheses are true. Denote the expected numbers of true positive edges based on

subnetwork-wise and edge-wise inference (using α as a universal threshold) by N1 and N0, re-

spectively. Then, we have

N1

N0
⩾ 1− 4τ−1(2 + ϵ)

Cnd

ξ2n
.− n−1 (2.10)
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Theorem 2.4 theoretically justifies the significant improvement in subnetwork-wise inference

(SICERS) compared with edge-wise inference with respect to false positive error rate and sen-

sitivity (power) in the context of multiple testing. The theoretical advantage of our method is

confirmed by simulations and data examples, as demonstrated in the next section.

3. Implementing the objective function (2.1) for subnetwork extraction

We implement the objective function (2.1) for subnetwork extraction by Algorithm 1 in the main

text. Specifically, we optimize (2.1) with given C, and then select the optimal C. Here, we focus

on optimizing (2.1) with a given C. The objective

argmax
Û=∪C

c=1Ûc

log ||Û||1 − λ0 log ||Û||0

= argmax
Û=∪C

c=1Ûc

log
( ||Û||1
||Û||λ0

0

)
.
= argmax

Û=∪C
c=1Ûc

f(Û) (3.11)

We start by setting λ0 = 0.5 reflecting balanced covering quality and quantity of true positive

edges, and the objective function (3.11) then becomes the well-known problem of k dense subgraph

discovery, where f(·) is the density function. The problem has been solved in polynomial time

by Goldberg’s min-cut algorithm (5) and a greedy algorithm with 1/2 approximation by [2]. In

addition, the default topological community structure can be considered as quasi-cliques and

the problem can be solved by additive approximation algorithms and local-search heuristics (8).

Alternatively, with the mild spatially-invariant assumptions that
E(wij |eij)∈Gc

|Ec| = ρ1,∀c, 0 ⩽ c ⩽

C, and
E(wij |i∈Vc,j∈Vc′ )

|Vc||Vc′ |
= ρ0,∀c, 0 ⩽ c ⩽ C the primary objective function is equivalent to
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argmin
Û=∪C

c=1Ûc

log

∑C
c=1

∑
i<j(wij |eij /∈ Gc)

[
∑C

c=1

∑
i<j I(eij /∈ Gc)]

.
= argmin

Û=∪C
c=1Ûc

log

C∑
c=1

∑
i<j(wij |eij /∈ Gc)

|Vc|
,with spatially invariant ρ0

(3.12)

Although the objective function (3.12) is not convex, the issue of local optima in the discrete

optimization can be solved by restarting the algorithm several times with different initializations

and/or through orthonormal transforms (7 and 1). The proposed algorithm may better extract

multiple weighted dense subgraphs (with an unknown number and unknown sizes of dense sub-

graphs) than the existing algorithms of dense subgraph discovery (4). We then choose the optimal

C∗ by grid searching that maximizes the following criteria:

argmax
C∗

(∑C∗

c=1

∑
i<j(wi,j |ei,j ∈ Gc)∑C∗

c=1 |Ec|

)λ0
 C∗∑

c=1

∑
i<j

(wi,j |ei,j ∈ Gc)

1−λ0

. (3.13)

The criteria (3.13) can be directly derived from our primary objective function that

log(

C∗∑
c=1

∑
i<j

(wi,j |ei,j ∈ Gc))− λ0 log ||U||0.

The first term in (3.13) indicates the ‘quality’ (the area density) of the extracted subgraphs,

while the second term represents the ‘quantity’ of edges covered by the subgraphs. C∗ is selected

with optimal quality and quantity in terms of covering informative edges. λ0 can be tuned to

either extract subgraphs with higher area density (i.e. low false positive rates) or cover more

high-weight edges using subgraphs with larger sizes (i.e. low false negative rates). In general, C∗

selection is robust for λ0 in the range of 0.4 to 0.7.

We can objectively select the optimal tuning parameter λ0 based on the likelihood function of

Gβ . We obtain Gβ by binarize eβij = I(wij > r). Then, we calculate the likelihood for Gβ under

Ĝ(λ0) = ∪C
c=1Ĝc(λ0) ∪ Ĝ0 vs. the null G = G0 and integrate the cutoff r by a prior distribution
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g(r) (i.e., belief where r can be a good cut-off).

lr(∪Ĉ
c=1Ĝc(λ0)||G)

=


∫
r

 ∑
i,j∈Ĝc(λ0)

(
eβij log

π1

π
+ (1− eβij) log

(1− π1)

(1− π)

)

+
∑

i,j /∈Ĝc(λ0)

(
eβij log

π0

π
+ (1− eβij) log

(1− π0)

(1− π)

) g(r)dr

 . (3.14)

where

π :=

∑
1⩽i<j⩽n I(wij > r̂)(

n
2

) , π1 :=

∑
(i,j)∈Ĝc

I(wij > r̂)

∥Ĝc∥0
, π0 :=

∑
(i,j)/∈Ĝc

I(wij > r̂)(
n
2

)
−
∑

∥Ĝc∥0

We select λ0 that most deviates from the null that Gβ is a random graph.

In summary, the above procedure can extract latent organized topological structures con-

taining the most high-weight edges while controlling the sizes of the topological structures by

ℓ0 norm regularization. Furthermore, we have recently developed more flexible algorithms to ex-

tract subgraphs beyond the default community structure, for example, k-partite/rich club and

interconnected induced subgraphs can be further detected based on detected quasi-cliques (3 and

9). These more sophisticated topological structures can further improve the objective function

by preserving the high-weight edges inside of more parsimoniously-sized subgraphs.
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4. FMRI data acquisition and pre-processing

All participants provided written informed consent that had been approved by the University of

Maryland Internal Review Board. All participants were evaluated using the Structured Clinical

Interview for the DSM-IV diagnoses. We recruited medicated patients with an Axis I diagnosis

of schizophrenia through the Maryland Psychiatric Research Center and neighboring mental-

health clinics. We recruited control subjects, who did not have an Axis I psychiatric diagnosis,

through media advertisements. Exclusion criteria included hypertension, hyperlipidemia, type 2

diabetes, heart disorders, and major neurological events, such as stroke or transient ischemic

attack. Illicit substance and alcohol abuse and dependence were exclusion criteria. Data were

acquired using a 3-T Siemens Trio scanner equipped with a 32-channel head coil at the University

of Maryland Center for Brain Imaging Research. A T1-weighted structural image (MP-RAGE:

1 mm isotropic voxels, 256 x 256 mm FOV, TR/TE/TI = 1900/3.45/900ms) was acquired for

anatomical reference. Fifteen minutes of rfMRI was collected on each subject. During the resting

scans, subjects were given a simple instruction to rest and keep their eyes closed. Head motion

was minimized using foam padding, foam molding, and tapes. RfMRI were acquired over 39 axial,

interleaving slices using a gradient-echo EPI sequence (450 volumes, TE/TR = 27/2000 ms; flip

angle = 90o; FOV = 220x220 mm; image matrix = 128x128; in-plane resolution 1.72x1.72mm.

Following the previously published procedures, data were preprocessed in AFNI and MATLAB

(MathWorks, Inc., Natick, MA). Volumes were slice-timing aligned and motion corrected to the

base volume that minimally deviated from other volumes using an AFNI built-in algorithm.

After linear detrending of the time course of each voxel, volumes were spatially normalized and

resampled to Talairach space at 3 mm3, spatially smoothed (FWHM 6 mm), and temporally low-

pass filtered (0.1 Hz). For functional connectivity analyses, the six rigid head-motion parameter

time courses and the average time course in white matter were treated as nuisance covariates.

A white matter mask was generated by segmenting the high-resolution anatomical images and
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down-gridding the obtained white matter masks to the same resolution as the functional data.

These nuisance covariates regress out fluctuations unlikely to be relevant to neuronal activity.

5. Justification of using p-values

We use p-values as a measure to assess the association between the covariate and the connectome,

thereby capturing the covariate-related subnetwork patterns in section 2.4. p-values are widely

used in the analysis of genetic, genomic, neuroimaging, and other high-throughput data sets.

Popular techniques, including false discovery rate (FDR), Manhattan plots in GWAS, NBS, and

volcano plots, rely on p-values to identify high-throughput features that are associated with the

covariate. Fig. 1 demonstrates that p-values can better discern βij ̸= 0 vs βij = 0 than test

statistics.

Fig. 1: Left panel demonstrates that − log of p-values can be used to capture the patterns of
connectome associated with the covariate. − log of p-values can better capture the latent patterns
with a larger range than test statistics in the left panel. The figure is based on connectome
associated with the biological sex variable using Uk biobank data. See Fig. 4. See Fig. 4.

6. Influence of the covariate-related subnetwork size on inference

In general, all network detection algorithms become less effective as the sizes of subnetworks

decrease. We perform an additional simulation study to test the influence of subnetwork size

based on effect size Cohen’s d = 0.5) and sample size S = 240 for 100 repeated simulations.
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The results suggest that all subnetwork extraction methods require the size of a subnetwork with

Vc ⩾ 20 to achieve valid power and FPR.

size 30 20 10 5
SICERS Power 1(0) 1(0) 0.125(0.35) 0(0)

FPR 0.2(0.17) 0.4(0.19) 0.95(0.04) 1(0)
Louvain Power 1(0) 1(0) 0.5(0.53) 0(0)

FPR 0.4(0.14) 0.8(0.06) 0.98(0.05) 1(0)
Dense Power 1(0) 1(0) 0(0) 0(0)

FPR 0.5(0.12) 0.6(0.21) 1(0) 1(0)
NBS Power 0(0) 0(0) 0(0) 0(0)

FPR 1(0) 1(0) 1(0) 1(0)

Table 1: Network-level power and FPR for various network sizes. 30, 20, 10, and 5 are used as
subnetwork sizes. The effect size (Cohen’s d) is 0.5, sample size S = 240, and α = 0.05. Values
presented in the tables are mean values over 100 repeated simulations, where standard deviations
are recorded in the parenthesis.

7. Impact of tuning parameter λ0 on the objective function

To demonstrate varying λ0 would affect the performance of the our objective function, we show

the performance of subnetwork extraction with different values of λ0, in Figure 2.

Fig. 2: Extracted subnetwork patterns using different values of λ0, where the number of nodes
for the ground truth subnetwork is 25. The optimal λ0 is obtained around λ0 = 0.6.
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8. Subnetwork detection for sparse networks

When the key assumption is violated and covariate-related subnetworks are sparse graphs, the

SICERS and other network extraction algorithms may not identify any covariate-related subnet-

works. Therefore, no false positive covariate-related subnetworks will be reported. Alternatively,

we can use edge-level inference tools, including FDR and FWER, to identify individual edges.

We further perform additional simulation analysis to examine whether SICERS can capture the

sparse graphs. Table 2 summarizes the network-level results for sparse networks. We generated

three sparse networks with 1%, 2%, and 3% of edges that are associated with covariate. Because

the covariate-related edges are randomly distributed and not included in any subnetworks, we

consider the significant network findings as false positive findings (i.e., FPR). The results in

Table 2 show that none of the used methods reports false positive subnetworks. This further

suggests that the edge-level inference method (e.g., FWER) should be used for the scenario of

sparse covariate-related graphs.

Percent. of Sig. Edges 1% 2% 3%
SICERS (Network-FPR) 0(0) 0(0) 0(0)
Louvain (Network-FPR) 0(0) 0(0) 0(0)
greedy (Network-FPR) 0(0) 0(0) 0(0)
NBS (Network-FPR) 0(0) 0(0) 0(0)

Table 2: Network-level results for sparse covariate-related graphs. We set 1%, 2%, and 3% of 4950
edges in G that are associated with the covariate. Then, we apply the network-inference methods
to identify covariate-related subnetworks. We summarize the means (standard deviations) of
network-level ‘FPR’. None of these methods reports significant subnetworks.

9. Covariate-related subnetworks: additional demonstration

We apply SICERS to another data example of 20,100 participants from UK biobank data. The two

covariates are age and sex. First, we investigate the brain connectome decline patterns associated

with age. The results are illustrated in Fig. 3. We see that there are two brain subnetworks that

are associated with age-related decline, where the subnetworks mainly consist of the following
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brain regions: cluster 1 (Insular Gyrus, Cingulate Gyrus, Inferior Parietal Lobule, and Superior

Temporal Gyrus), cluster 2(Basal Ganglia and Thalamus). Secondly, we test the difference be-

tween males vs. females, shown in Fig. 4. As a result, a dense covariate-related subnetwork is

identified, where the major brain regions associated with the subnetwork are temporal, insular

lobes. Additional subregions belonging to the frontal and parietal lobes are also included in the

subnetwork. The subnetwork demonstrates systematical hypo-connections in FC among female

subjects.

Fig. 3: Age-related subnetworks. Left: functional brain network representing the − log(p) values
with regions in Atlas order; right: we reorder the regions based on identified dense subnetworks.
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Fig. 4: Sex-related subnetworks. Left: functional brain network representing the − log(p) values
with regions in Atlas order; right: we reorder the regions based on identified dense subnetworks.

10. 3D demonstration of schizophrenia-related subnetworks

11. Tables of brain regions

In the following tables, we list the region names and coordinates of subnetworks from D1 and

D2.
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Fig. 5: The edges in the subnetwork using 3D demonstration for data set 1 (a)–(c) and data
set 2 (d)–(f). The line width is proportional to the effect size. The disease-relevant network
involves the SN, part of the DMN, and part of the executive network, and more importantly, the
interconnections among these three networks are revealed. Panels (e) and (f) show the 3D brain
subnetwork for data set 2, which shows a highly replicable brain subnetwork as seen in data set 1
with one fewer brain region (precentral R).
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