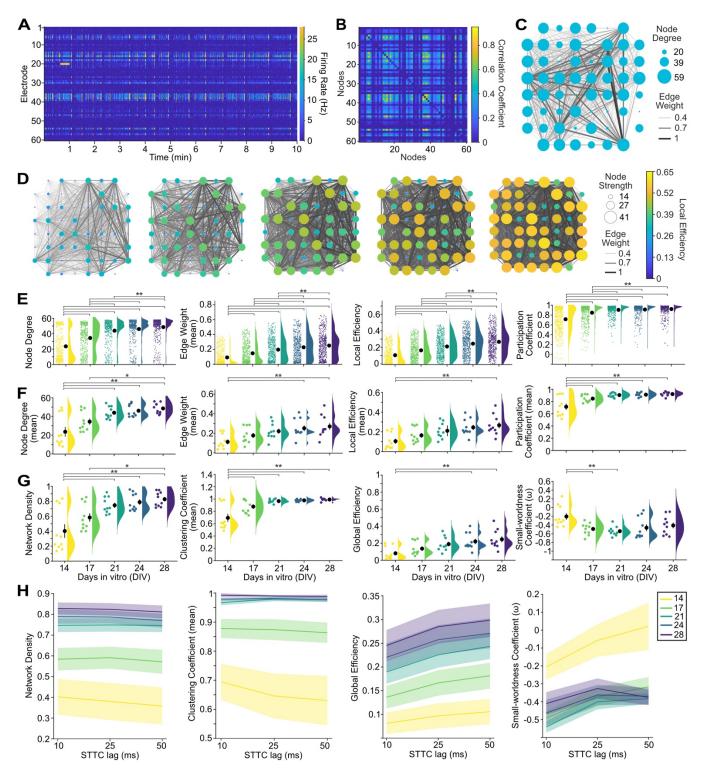
Supplementary material

Supplemental Figure S1. Development of functional connectivity and network topology in 2D murine hippocampal cultures.

Supplemental Table S1. MATLAB functions or code from other sources incorporated in MEA-NAP.

Supplemental Table S2. Comparison with other publicly available MEA analysis or functional connectivity tools.


Supplemental Table S3. Publicly available MEA analysis or functional connectivity tools.

Supplemental Resource 1. Sample MEA data from 2D human iPSC-derived NGN cortical cultures. Harvard Dataverse, https://doi.org/10.7910/DVN/Z14LWA

Supplemental Resource 2. Sample output folder from MEA-NAP for development of 2D human iPSC-derived NGN cortical cultures. Harvard Dataverse, https://doi.org/10.7910/DVN/Z14LWA

Supplemental Resource 3. Video tutorial for new users of MEA-NAP. Harvard Dataverse, https://doi.org/10.7910/DVN/Z14LWA

Supplementary material

Supplemental Figure S1. Development of functional connectivity and network topology in 2D murine hippocampal cultures. A. Representative raster plot of spontaneous activity in a 10-minute microelectrode array (MEA) recording from primary mouse hippocampal culture. **B.** Adjacency matrix shows correlation coefficient (spike time tiling coefficient, STTC) for significant edges after probabilistic thresholding for recording in A. **C.** Graph of functional connectivity for recording in A. Nodes (circles) represent the activity observed at individual electrodes in the spatial arrangement of the MEA. Number of connections shown as node degree (circle size) and strength of connectivity as edge weight (line thickness). **D.** Development of functional connectivity in representative hippocampal cultures from days-

in-vitro (DIV) 14-28 including increase in node strength (circle size), edge weight (line thickness), and local efficiency (circle color). **E.** Comparison of nodal-level network metrics for electrodes (colored circles) from hippocampal cultures (n=10) for node degree, mean edge weight (per node), local efficiency, and participation coefficient. Scatter plots with mean (black circles) ± SEM (error bars) and density curve for DIV 14-28. **F.** Comparison of recording-level network metrics (colored circles) for mean node degree, mean edge weight, mean local efficiency, and mean participation coefficient from DIV 14-28. **G.** Comparison of recording-level network metrics including network density, mean clustering coefficient, global efficiency, and small-worldness from DIV 14-28. **H.** Comparison of recording-level network metrics by STTC lag and developmental age (color, DIV 14-28). Means (lines) ± SEM (shading). For panels E-G, a one-way ANOVA (p<0.01 for all plots) followed by the Tukey-Kramer method to calculate p-values adjusted for multiple post-hoc pairwise comparisons (** p<0.01, * p<0.05).

Supplemental Table 1. Code from other sources incorporated in MEA-NAP			
Reference(s)	Description	Location in MEA- NAP	Source code
Methods - Spike detection			
Nenadic Z & Burdick JW (2005). Spike detection using the continuous wavelet transform. <i>IEEE T Bio-med Eng</i> , 52, 74-87. Benitez R & Nenadic Z (2008). Robust unsupervised detection of action potentials with probabilistic models. <i>IEEE T Bio-med Eng</i> , 55(4), 1344-1354.	Continuous wavelet transform (CWT) method for template-based spike detection using the MATLAB function detect_Spikes_wavele t.m	detectSpike.m, getTemplate.m, customWavelet.m, detectSpikesWavelet. m (optional step in MEA-NAP)	http://cbmspc.eng.u ci.edu/SOFTWARE/ SPIKEDETECTION/ detect_spikes_wave let.m.
Lieb F et al. (2017). A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data. <i>J Neural Eng</i> , 14(3), 036013.	Stationary wavelet transform (SWTTEO) method for template- based spike detection.	detectSpike.m (<i>optional step in</i> <i>MEA-NAP</i>)	https://github.com/fli eb/SpikeDetection- Toolbox
Methods - Burst analysis			
Bakkum DJ, et al. (2014). Parameters for burst detection. Front Comput Neurosci, 7(193).	Method for burst detection. Based on ISI_N burst detector (Bakkum, 2013) using BurstDetectISIn.m & HistogramISIn.m (modified)	BurstDetectISIn.m, getISInTh.m	https://www.frontier sin.org/articles/file/d ownloadfile/61635 supplementary- materials presentati ons 1 pdf/octet- stream/Presentation %201.PDF/1/61635
Methods - Functional connectiv	ity		
Cutts CS & Eglen SJ (2014). Detecting pairwise correlations in spike trains: An objective comparison of methods and application to the study of retinal waves. <i>J Neurosci</i> , 34(43), 14288–14303.	Spike-time tiling coefficient (STTC)	get_sttc.m	https://github.com/C Cutts/Detecting_pai rwise_correlations_i n_spike_trains/blob/ master/spike_time_t iling_coefficient.c
Methods - Network features			
Complex network measures of Toolbox (BCT) for 2019_03_03_BCT connect		http://www.brain- connectivity- toolbox.net/	

Pedersen M et al. (2019). Reducing module size bias of participation coefficient. BioRxiv. doi: 10.1101/747162. Retrieved December 8, 2021.	Normalizing the participation coefficient using random networks to preserve degree distribution	participation_coef_no rm.m	https://github.com/o midvarnia/Dynamic brain_connectivity analysis
Bettinardi RG (2017). getCommunicability(W,g,nQexp) MATLAB Central File Exchange. Retrieved June 6, 2022.	Communicability function. (Used in fcn_find_hubs_wu.m for ExtractNetMet.m)	getCommunicability. m	https://www.mathwo rks.com/matlabcentr al/fileexchange/629 87- getcommunicability- w-g-nqexp
Methods - Statistics			
Trujillo-Ortiz A., et al. (2004). RMAOV1:One-way repeated measures ANOVA. MATLAB Central File Exchange. Retrieved August 3, 2023.	One-way repeated measures ANOVA	RMAOV1.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/557 6-rmaov1
Schurger A (2005). Two-way repeated measures ANOVA. MATLAB Central File Exchange. Retrieved August 3, 2023.	Two-factor, within- subject repeated measures ANOVA	rm_anova2.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/687 4-two-way- repeated-measures- anova
Tools - GUI			
Hoelzer S (2010). Progress bar. MATLAB Central File Exchange. Retrieved December 8, 2021.	Progress bar	progressbar.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/692 2-progressbar
Tools - Plotting			
Marsh G (2016). LOESS regression smoothing. MATLAB Central File Exchange. Retrieved June 23, 2023.	Smoothing function using LOESS (locally weighted regression fitting using a 2nd order polynomial)	fLOESS.m, getISInTh.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/554 07-loess- regression- smoothing
Lee T (2006). Kernel density estimation of 2 dim with SJ bandwidth. MATLAB Central File Exchange. Retrieved June 23, 2023.	Kernel density estimator with Sheater Jones (SJ) bandwidth	bandwidth_SJ.m, KDE2.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/109 21-kernel-density- estimation-of-2-dim- with-sj-bandwidth

Botev Z (2015). Kernel density estimator. MATLAB Central File Exchange. Retrieved June 23, 2023.	Faster kernel density estimator	improvedSJkde.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/140 34-kernel-density- estimator
Thyng KM, et al. (2016). True colors of oceanography. Oceanography, 29(3), 10.	Colormap generator	cmocean.m	https://matplotlib.org /cmocean/
Kumpulainen K (2016). tight_subplot. MATLAB Central File Exchange. Retrieved June 19, 2023.	Creates axes subplots with adjustable margins and gaps between the axes	tight_subplot.m	https://www.mathwo rks.com/matlabcentr al/fileexchange/279 91-tight_subplot-nh- nw-gap-marg_h- marg_w
Schwizer J (2015). Scalable vector graphics export of figures (fig2svg). GitHub. Retrieved June 16, 2022.	Converts MATLAB plots to the scalable vector format (SVG)	Functions in fig2svg folder	https://github.com/js chwizer99/plot2svg
Campbell R (2020). notBoxPlot. GitHub. Retrieved December 8, 2021.	Plots raw data as a jitter, mean, s.e.m., and 95% confidence intervals (modified)	notBoxPlotRF.m	https://github.com/r aacampbell/notBox Plot

Supplemental Table 2. Comparison with other publicly available MEA analysis or functional connectivity tools

	Adapted for MEA data	Spike Detection	Neuronal activity comparison	Inferring functional connectivity	Network metrics	Statistical analysis	Visualization & GUI
MEA-NAP	•	•	0	•	•	•	0
Brain Connectivity Toolbox				•	•	•	
MEA-ToolBox	•	0	0	0			0
MEAnalyzer	•	0	0	0	0		0
meaRtools	•		0	0		•	
BSMART				0	•		
ToolConnect	•			0	•		0
SPICODYN	•		0	0	0		0

Table Legend: Closed circle = many features; Open circle = limited features

Supplemental Table 3. Publicly available MEA analysis or functional connectivity toolboxes		
Method	Features	
MEA data analysis tools		
MEA-ToolBox (MATLAB)	Source: https://github.com/DrJPFrimat/MEA-ToolBox Features: • File conversion & filtering of raw MCS MEA data • Threshold-based spike detection with artifact removal • Single channel burst detection with max interval & log ISI method (from Cotterill et al., 2016) • Network burst detection • Cross-correlation to infer functional connectivity • Synchronicity (pairwise) using ISI distance method • Spike sorting • GUI with data visualizations	
	Reference: Hu M, Frega M, Tolner EA, van den Maagdenberg AMJM, Frimat JP, le Feber J. MEA-ToolBox: an Open Source Toolbox for Standardized Analysis of Multi-Electrode Array Data. Neuroinformatics. 2022 Oct;20(4):1077-1092.	
MEAnalyzer (MATLAB)	Source: https://github.com/RDastgh1/MEAnalyzer Features:	
	Reference: Dastgheyb RM, Yoo SW, Haughey NJ. (2020) MEAnalyzer - a Spike Train Analysis Tool for Multi Electrode Arrays. Neuroinformatics, 18(1):163-179.	
meaRtools (R)	Source: https://cran.r-project.org/src/contrib/Archive/meaRtools/ Features: Spike features (no spike detection) Single channel burst features Burst and network burst features Spike-time tiling coefficient (mean per network) Entropy (mean per network) Mutual Information (pairwise comparison of patterns in spike trains)	
FIND (previously MEA-	Reference: Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, Eglen SJ (2018). meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays. PLoS Comput Biol,14(10):e1006506.	

tools) (MATLAB)	https://web.archive.org/web/20060910130103/http://www.brainworks.uni-freiburg.de/projects/mea/meatools/install_instructions.html
	Features:
	Identification of local field potentials & extracellular spike times
	& waveforms (method not specified)
	Basic spike sorting with principal component analysis
	GUI with limited data visualizations
	Reference: Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter
	S, Diesmann M. (2002) MEA-Tools: an open source toolbox for the
	analysis of multi-electrode data with MATLAB. J Neurosci Methods,
	117(1):33-42. Meier R, Egert U, Aertsen A, Nawrot MP. (2008) FIND-
	-a unified framework for neural data analysis. Neural Netw,
	21(8):1085-93.
MEA Viewer (Python)	Source: https://github.com/dbridges/mea-tools
	Features:
	Spike detection with threshold method CIII to view and examine spike detection
	GUI to view and examine spike detection
	Reference: Bridges DC, Tovar KR, Wu B, Hansma PK, Kosik KS.
	(2018). MEA Viewer: A high-performance interactive application for
	visualizing electrophysiological data. PLoS One, 13(2):e0192477.
McsMatlabDataTools	Source: https://github.com/multichannelsystems/McsMatlabDataTools
(MATLAB)	Features:
	Imports data from Multi-Channel System
	Visualization tools for data
	Reference: Armin Walter (2022). McsMatlabDataTools, GitHub.
Multiwell Analyzer	Source: https://www.multichannelsystems.com/software/multiwell-
(Windows application)	analyzer
	Features:
	 For MCS multi-well MEA data Spike detection with threshold or slope method
	Single-channel and network burst detection
	Single-charmer and network burst detection
	Reference: Multi-channel Systems software (publicly available)
SPICODYN (C/Visual	Source: https://www.nitrc.org/projects/spicodyn/
Studio)	Features:
	Spike detection with threshold methods
	Burst detection
	, ,
	, , , , , , , , , , , , , , , , , , ,
	, , , , , , , , , , , , , , , , , , , ,
	Visualization tools in Ooi
	Reference: Pastore VP, Godioski A, Martinoia S. Massobrio P. (2018)
	SPICODYN: A Toolbox for the Analysis of Neuronal Network
	Dynamics and Connectivity from Multi-Site Spike Signal Recordings.
	 Infer functional connectivity with transfer entropy method Graph theoretical metrics (degree, path length, clustering coefficient, hubs, small-world index) Visualization tools in GUI Reference: Pastore VP, Godjoski A, Martinoia S, Massobrio P. (2018) SPICODYN: A Toolbox for the Analysis of Neuronal Network

	Neuroinformatics, 16(1):15-30.
SPKtool (MATLAB)	Source: https://spktool.sourceforge.net/
	Features:
	Spike detection via threshold method
	Spike features
	Spike sorting
	Cross-correlograms
	J. S.
	Reference: Liu X, Wu X, Liu C (2011). SPKtool: An open source
	toolbox for electrophysiological data processing," 2011 4th
	International Conference on Biomedical Engineering and Informatics
	(BMEI), Shanghai, China, 2011, pp. 854-857.
SPYCODE (MATLAB)	Source: Bologna et al. (2010) requires prospective uses to email
	senior author to obtain code.
	Features:
	 Spike detection with threshold methods and spike features
	 Network spike and burst features
	 Infer functional connectivity with cross-correlation and/or
	information theoretical approaches
	Neuronal avalanche detection (features within bursts)
	Reference: Bologna LL, Pasquale V, Garofalo M, Gandolfo M, Baljon
	PL, Maccione A, Martinoia S, Chiappalone M. (2010) Investigating
	neuronal activity by SPYCODE multi-channel data analyzer. Neural
T 10 1 (0A)	Netw, 23(6):685-97.
ToolConnect (C/Visual	Source: https://www.nitrc.org/projects/toolconnect/
Studio)	Features: • Infer functional connection from cross-correlation or partial-
	correlation methods
	 Information theory (joint entropy, transfer entropy) based core
	algorithms
	Visualization tools in GUI
	Viodanization todio in GG1
	Reference: Pastore VP, Poli D, Godjoski A, Martinoia S, Massobrio P.
	(2016) ToolConnect: a functional connectivity toolbox for in vitro
	networks. Front Neuroinform, 10:13.
Functional connectivit	y, network topology and network dynamics tools (not designed or
	ctrode or Axion 64-electrode MEA data analysis)
Brain connectivity	Source: http://www.brain-connectivity-toolbox.net/
Toolbox (MATLAB)	Features:
	 Extensive graph theoretical metrics functions
	 Tool commonly used for macroscale networks (especially
	neuroimaging)
	 Statistical methods available through associated toolboxes
	(e.g., Zalesky et al., 2010. Network-based statistic: identifying
	differences in brain networks. Neuroimage, 53(4):1197-207)
	Requires knowledge of network neuroscience to use
	Reference: Rubinov M & Sporns O (2010). Complex network

	measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069.
BSMART (MATLAB/C)	Source: https://github.com/brain-smart/brain-smart.github.io Features: For 15 electrode, EEG, MEG or fMRI data Multivariate autoregressive (MAR) analysis Spectral analysis Granger causality Requires knowledge of network neuroscience to use Reference: Cui J, Xu L, Bressler SL, Ding M, Liang H. (2008) BSMART: a Matlab/C toolbox for analysis of multichannel neural time
Chronux (MATLAB)	series. Neural Netw, 21(8):1094-104. Source: http://chronux.org/
	Features:
	Reference: Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. (2010). Chronux: a platform for analyzing neural signals. J Neurosci Methods, 192(1):146-51.
Elephant (Python)	Source: https://elephant.readthedocs.io/en/latest/modules.html Features:
	Reference: Denker M, Yegenoglu A, Grün S (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, P19.
Graphene-Electrode- Seizures (MATLAB)	Source: https://github.com/BassettLab/Graphene-Electrode-Seizures Features: Designed for 16-electrode graphene MEA Non-negative matrix factorization to show seizure progression Limited documentation Code source from research article, requires knowledge of MATLAB to apply to MEA data
	Reference: Driscoll N, Rosch RE, Murphy BB, Ashourvan A, Vishnubhotla R, Dickens OO, Johnson ATC, Davis KA, Litt B, Bassett DS, Takano H, Vitale F. (2021) Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Commun Biol. 2021 Jan 29;4(1):136.
nSTAT (MATLAB)	Source: https://github.com/iahncajigas/nSTAT Features:

	 Point process – generalized linear model for spike trains Requires knowledge of MATLAB to apply to MEA data Reference: Cajigas I, Malik WQ, Brown EN. (2012) nSTAT: open-source neural spike train analysis toolbox for Matlab. J Neurosci Methods, 211(2):245-64.
STAToolkit (MATLAB)	Source: http://neuroanalysis.org/ (unable to access code from link) Features: Information-theoretic methods Entropy-based spike train analysis methods Requires knowledge of ? to apply to MEA data
	Reference: Goldberg DH, Victor JD, Gardner EP, Gardner D. (2009) Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 7(3):165-78.

Supplemental References

Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347. https://doi.org/10.1097/WCO.0b013e32832d93dd

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177. https://doi.org/10.1080/0022250X.2001.9990249

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, *20*(2), 172–188. https://doi.org/10.1109/TKDE.2007.190689

Cutts, C. S., & Eglen, S. J. (2014). Detecting pairwise correlations in spike trains: An objective comparison of methods and application to the study of retinal waves. J Neurosci., *34*(43), 14288–14303. https://doi.org/10.1523/JNEUROSCI.2767-14.2014

Elsayed, G. F., & Cunningham, J. P. (2017). Structure in neural population recordings: An expected byproduct of simpler phenomena? Nature Neuroscience, *20*(9), 1310–1318. https://doi.org/10.1038/nn.4617

Fornito, A., Zalesky, A., & Bullmore, E. T. (Eds.). (2016). Chapter 11—Statistical connectomics. In Fundamentals of Brain Network Analysis (pp. 383–419). Academic Press. https://doi.org/10.1016/B978-0-12-407908-3.00011-X

Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900. https://doi.org/10.1038/nature03288

Humphries, M.D., Gurney, K., Prescott TJ. (2006). The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci *273*(1585):503–11.

Humphries, M.D., Gurney, K. (2008). Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS ONE 3(4): e0002051. https://doi.org/10.1371/journal.pone.0002051

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701

Lancichinetti, A., Fortunato, S. Consensus clustering in complex networks. *Sci Rep* **2**, 336 (2012). https://doi.org/10.1038/srep00336

Roy, O. & Vetterli, M. (2007), The effective rank: a measure of effective dimensionality. In '2007 15th European Signal Processing Conference', pp. 606–610.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O., & Bullmore, E. T. (2015). Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J Neurosci., *35*(14), 5459–5470. https://doi.org/10.1523/JNEUROSCI.4259-14.2015

Serrano, M. Á., Boguñá, M., & Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proceedings of the National Academy of Sciences, *106*(16), 6483–6488. https://doi.org/10.1073/pnas.0808904106

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J. (2011). The ubiquity of small-world networks. Brain Connectivity, 1(5), 367–375. https://doi.org/10.1089/brain.2011.0038