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Editorial decision letter with reviewers’ comments, first round of review 

Dear Dr. Gray, 
 
I’m enclosing the comments that reviewers made on your paper, which I hope you will find useful and 
constructive. As you'll see, they express interest in the study, but they also have a number of criticisms 
and suggestions. Based on these comments, it seems premature to proceed with the paper in its current 
form; however, if it's possible to address the concerns raised with additional experiments and/or analysis, 
we’d be interested in considering a revised version of the manuscript.  
  
As a matter of principle, I usually only invite a revision when I’m reasonably certain that the authors' work 
will align with the reviewers’ concerns and produce a publishable manuscript.  In the case of this 
manuscript, the reviewers and I have make-or-break concerns that can be addressed by: 

1. Clarifying advance over previous antibody-specific language models, supported by quantitative 
comparison and additional analysis. 

2. Providing a stronger argument for utility of the infilling task, substantiated with quantitative 
analysis and/or additional data. 

3. Providing more methodological detail 

The reviewers are generally supportive of the paper and their comments are intended to flesh out the 
study, both in terms of improving the framing of the study and experiments/analyses to substantiate the 
main claims. To help guide revision, I’ve highlighted portions of the reviews that strike me as particularly 
crucial. 
  
As you address these concerns, it's important that you and I stay on the same page.  I'm always happy to 
talk, either over email or by Zoom, if you’d like feedback about whether your efforts are moving the 
manuscript in a productive direction. Do note that we generally consider papers through only one major 
round of revision, so the revised manuscript would be either accepted or rejected based on the next 
round of comments we receive from the reviewers.  If you have any questions or concerns, please let me 
know.  More technical information and advice about resubmission can be found below my 
signature.  Please read it carefully, as it can save substantial time and effort later.  

 
I look forward to seeing your revised manuscript. 
 
All the best, 
 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

 



 

 
 
 

 
  
 
Reviewers' comments: 
 
Reviewer #1: Shuai et al. present IgLM, an autoregressive transformer model based on the GPT-2 
architecture. The preprint has been out for a while- it arguably needs more thinking on novelty and what it 
offers, especially with models like ProGen-2 (coincidentally authored by one of the authors in this 
manuscript)! 
 
There are some major issues and minor issues worth addressing. In particular I have some reservations 
on how the model's generative prowesses are evaluated, and some minor concerns worth mentioning in 
terms of data prep (which I think the authors may already know about and could just be worth a 
clarification). 
 
MAJOR 
- The section on prompting needs further discussion. Why is it that prompting all of a sudden removes 
truncated sequences? Why do the authors only use one set of initial residues? e.g. DIQ only for human 
kappa and not EIV, for example, too. 
- The infilling therapeutic antibody CDRs is interesting but there's no mention on whether any of these 
infilled sequences would retain binding of the antigen. While doing an experiment is ideal, even some 
docking results to confirm this would be nice (SnugDock, or AF2 multimer, etc) 
- The authors should consider benchmarking against something like a T5 for the therapeutic antibody 
infilling task where spans are predicted in-place, or even using an MLM to re-fill using bidirectional 
context (e.g. using AbLang) 
- The selection of 49 antibodies seems unusual, some of these antibodies (e.g. muromonab) is 
chimeric/mouse so I would imagine it's trivial to get higher OASis/humanness scores 
 
MINOR 
- Authors don't describe use of humanized mice in antibody selection, which has been revolutionary for 
how we discover antibodies 
- Intro mentions diversity of antibodies but does the justification for 10^13 make sense? CDRs inherently 
have a lot of bias - CDR3 usually ends with ARD and end FDY, so that already just means (for a typical 
CDR3 of length 10) that there are 20^4 variants - and that's assuming amino acids are uniformly 
distributed 
- The intro could do with citing more recent examples of representation learning models from AbSci 
(Bachas et al. 2022), sequence generation models such as ProGen2 (Nijkamp et al 2022). Other papers 
that should be discussed are cases where language models are used to mutate and design antibodies 
(Hie et al. 2022). AntiBERTa paper seems to not be properly cited, it's cited with the AbLang paper from 
Olsen et al. Prihoda paper is now out in mAbs which should be updated. 
- How are the validation sets created? It could be worth pruning to make sure no study is shared between 
training and validation sets when pre-training IgLM to avoid perplexities looking lower 
- Why are structures predicted with AF2 multimer in the intro / Fig 1 but then IgFold later? 
- Why is it that some designs only have CDR3 of length 1? And for these cases, what is the likelihood of 



 

 
 
 

the sequence? 
- Authors don't describe how IgLM generates paired sequences - dataset seems to be unpaired and even 
input seems unpaired? 
- Fig 3B it might be good to indicate the length of the native H3 
- Fig 4E might be better as a heatmap or some kind of 3D scatterplot where we correlate T and P and 
have the median change in OASis identity 
- Fig 4F the classification of human sequences another good baseline could be using the ANARCI HMM 
cutoffs? Especially as the authors point out ANARCI's annotation of species isn't perfect 
 
 
 
Reviewer #2: Shuai and colleagues here describe a language model for antibody design. They claim that 
their model can generate full length sequences for various species. 
 
While the work performed is extensive, after reading it, it remains a bit opaque to the reader what the 
paper has in fact demonstrated. The advance of previous research needs to be much more clear. Also, 
we would like to see more surprising things than full sequence reconstruction of different animals. 
 
Please see major and minor comments below. 
 
 
Major comments 
The novelty this paper provides is a method that enables generative infilling of antibody sequences of 
various sizes while conditioning the infilled regions on species type and chain type. I imagine this could 
enable the generation of some interesting antibody sequences, e.g. a sequence that is part human/part 
mice/part something else. However, It is not obvious to me what the practical utility of this method is 
supposed to be. Maybe the authors should include an example where the partial modification of an 
available antibody sequence would be useful over simply generating sequences completely from scratch, 
especially if it is not possible to condition the sequences for desirable properties (binding affinity, 
developability parameters). Even the humanization of a murine antibody is not an option since there is no 
guarantee that the model will maintain the same binding affinities. 
 
The first half of the results is all about how well the model generates antibody sequences conditioned on 
species and chain types. But none of this is very surprising, since they were trained with data labelled 
with that information already (which also makes it not completely self-supervised) and also that 
information is encoded in non-variable regions, which is not what the infilling task targets anyways. 
 
pg. 3, lines 83-104. It is unclear what the infilling perplexity tells us about the language model's 
effectiveness. All the reported results are expected (IgLM achieves lower perplexity than IgLM-S, longer 
sequences have higher perplexity, etc.), and there is no comparison to any other language model to give 
a reader a good sense on whether IgLM's perplexity scores are particularly good, average, or bad. 
 
pg. 7, lines 228-237. Since IgLM is tasked with only predicting CDR H3 loops while the rest of the 
antibody is given, is it surprising that it generates more human-like antibodies? Also, what does it mean to 



 

 
 
 

have even more human-like than the parent antibody (line 231), when the parent antibodies have been 
already optimized to be so? 
 
pg. 7, lines 209-227. All developability measures are done in silico with computational tools. How reliable 
is it to conclude that IgLM generated sequences with increased developability? 
For all sequences generated, it's not entirely completely clear to us how the authors determine whether a 
given sequence is actually an antibody sequence that belong to a certain species. Can this authors clarify 
this? How do they quantitatively test for this? 
 
"For mouse 137 and rhesus light chains, IgLM generates the correct species in 34.89% and 88.14% of 
cases, respectively" → why so low for mouse? 
 
"As temperature increases, sequences for every species begin to diverge from germline, effectively 
acquiring mutations." Are these mutations nature-like? Meaning, are they inserted according to mutational 
hotspot motifs? 
 
For the sequences generated, does their V gene distribution follow that of the training data? 
 
Pg. 5, lines 171ff: The therapeutic antibody diversification part is not clear to me: how can the authors be 
certain that the generated antibodies still bind the same target? 
 
At what temperature threshold do antibodies turn from "being diversified" to "unnatural/random 
sequences" 
 
Have you tried to classify generated from OAS sequences to measure whether the LM introduced 
obvious biases? 
 
 
 
 
Minor comments 
 
Page 5, line 57: the (GPT2) addition is not true since GPT2 refers to a transformer pre-trained on text 
data. 
 
pg. 3, line 73. Can the authors provide a definition of sampling temperature? While they explain what the 
numbers indicate, it would be good for the reader to have a more precise idea about this measurement. 
 
The authors may want to add this paper to the ref list https://www.nature.com/articles/s41598-021-85274-
7 
 
N-Terminal truncations in OAS: why didn't the authors just remove such sequences from the dataset? 
What is their frequency in the OAS? 
 



 

 
 
 

There are several typos throughout the text. 
 
 
 
Reviewer #3: OVERVIEW 
Shuai et al. describe an antibody specific language model, IgLM. The model is trained autoregressively 
and allows a user to condition on relevant properties and the right-sequence context during 
autoregressive sequence generation, which would potentially enable improved and more controllable 
sequence sampling and design. Overall, the I think the work is interesting, but also preliminary. More 
specifically, I would very much appreciate major revisions in the form of comparisons with previous 
antibody-specific language models, as well as general protein language models trained on generic protein 
sequence corpora, before I would be able to make a recommendation for publication. This is important for 
assessing where and when IgLM provides an advantage over existing tools. Additional details are 
provided below. 
 
DATA & CODE AVAILABILTY 
The code availability and usability are very good. The GitHub describes a very easy-to-use command line 
implementation. The model availability is also very good, and is easily downloadable/installable. 
Optionally, it would be nice to also make the processed training data available, or if the dataset size is too 
large to fit in common repositories like Zenodo or figshare, making the dataset processing scripts 
available would be nice to have. 
 
REQUIRED MAJOR REVISIONS 
 
1. A major question I had while reading the paper, and which I would like to see addressed, is how well 
this language model compares to previous antibody language models (including AntiBERTy/a, AbLang, 
Sapiens) as well as to general protein language models (ESM, ProGen with and without antibody-specific 
conditioning or training). Foremost, the authors should compare their perplexity results to these language 
models, and I would be very curious as to how this model compares. 
 
2. Closely related to the above point is that the authors should compare across different language models 
according to the various downstream metrics described in the paper, such as the coherence of 
downstream structure prediction, developability, and humanness. There is some comparison to this effect 
(e.g., involving ProGen2 trained on OAS), but the comparison should be much more exhaustive in order 
to communicate where this model could or could not be useful. 
 
3. The Methods section is extremely sparse and needs to be improved. The authors need to provide 
enough experimental detail in the Methods to reproduce all analyses described in the paper. This not only 
applies to the language model description and training details as currently provided (which are still 
limited) but also to all of the downstream tasks and additional benchmarking experiments. 
 
4. As an ablation, what happens if the authors sample, e.g., the CDR3 without including the right context 
in their infilling task? Given that a central claimed improvement is the ability to condition on both the left- 
and right-sequence context, the actual effect of this would be interesting to see and I was not able to find 



 

 
 
 

an analysis like this in the manuscript. 
 
MINOR REVISIONS, SUGGESTIONS & COMMENTS 
 
1. One thing that is often seen when training on OAS, followed by sample sequences based on 
high/maximum likelihood, is that the generated sequences reproduce the sequence distribution of the 
antibody germline. This would potentially make such models useful for germline reversion (though maybe 
less useful for tasks like affinity maturation). I was wondering if the authors could comment on this in their 
Discussion. An optional revision is to evaluate the model's ability to identify the germline sequence or to 
see if there's concordance between maximum likelihood mutations and those recommended by common 
germline reversion tools. 
 
 
 
 

Authors’ response to the reviewers’ first round comments  
Attached. 
 
 
 

Editorial decision letter with reviewers’ comments, second round of review 

Dear Dr. Gray, 
  
I'm very pleased to let you know that the reviews of your revised manuscript are back, the peer-review 
process is complete, and only a few minor, editorially-guided changes are needed to move forward 
towards publication. Pleas note that Reviewer #2 supports publication but did not leave any comments for 
authors. 

In addition to the final comments from the reviewers, I’ve made some suggestions about your manuscript 
within the “Editorial Notes” section, below. Please consider my editorial suggestions carefully, ask any 
questions of me that you need, make all warranted changes, and then upload your final files into Editorial 
Manager.   

I'm looking forward to going through these last steps with you.  Although we ask that our editorially-guided 
changes be your primary focus for the moment, you may wish to consult our FAQ (final formatting checks 
tab) to make the final steps to publication go more smoothly.  More technical information can be found 
below my signature, and please let me know if you have any questions.  

  
All the best, 

https://www.cell.com/cell-systems/faq
https://www.cell.com/cell-systems/faq


 

 
 
 

 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

 
 

 

  
Editorial Notes 

Transparent Peer Review:  Thank you for electing to make your manuscript’s peer review process 
transparent.  As part of our approach to Transparent Peer Review, we ask that you add the following 
sentence to the end of your abstract: “A record of this paper’s Transparent Peer Review process is 
included in the Supplemental Information.” Note that this doesn't count towards your 150 word total! 

Also, if you've deposited your work on a preprint server, that's great!  Please drop me a quick email with 
your preprint's DOI and I'll make sure it's properly credited within your Transparent Peer Review record. 

  
Title:   

The title is too generic and gives the impression that generative models have not been used for antibody 
design before. I suspect it could be more effective.  Please include something about how this is different 
than other generative model based approaches, e.g. the bidirectional context and infilling capacity, since 
this is the main advance. As you re-consider your title, note that an effective title is easily found on 
Pubmed and Google. A trick for thinking about titles is this: ask yourself, "How would I structure a 
Pubmed search to find this paper?"  Put that search together and see whether it comes up is good "sister 
literature" for this work.  If it does, feature the search terms in your title.  You also may wish to consider 
that PubMed is sensitive to small differences in search terms.  For example, “NF-kappaB” returned ~84k 
hits as of March, 2018, whereas “NFkappaB” only returned ~8200.  Please ensure that your title contains 
the most effective version of the search terms you feature.   

Also, please consider including the name of the model (IgLM) in your title. 

  

Abstract:   

Please revise the Abstract to better represent the findings in the manuscript. As with the title, please 
make sure to be clear about the main advance of the paper and be cognizant of the current literature 
context. The infilling capability and comparisons with alternative language models need to be better 



 

 
 
 

represented in the Abstract.  When revising, please also clarify that the improvements in developability 
were tested in silico. Please ensure the revised Abstract is 150 words or less. 

  

Manuscript Text:   

Please make sure to be transparent about how your data support your claims and be clear about the 
limits of claims, particularly with regard to “developability” and characteristics that would be most 
convincingly tested experimentally (folding, binding, biophysical characteristics, etc.). This can be 
addressed by text changes to be more transparent in the headings, figure legends, abstract, and the main 
text itself. 

For example: 

“Infilled loops display improved developability” 

To 

“Infilled loops display improved developability in silico” 

  

“IgLM generates foldable antibody sequences” 

To: 

“IgLM generates foldable antibody sequences in silico” 

  

“…that display favorable biophysical properties…” 

To 

“…that display favorable predicted biophysical properties…” 

Or 

“…that display favorable biophysical properties in silico…” 



 

 
 
 

Also:  

• House style disallows editorializing within the text (e.g. strikingly, surprisingly, importantly, etc.), 
especially the Results section.  These terms are a distraction and they aren't needed—your 
excellent observations are certainly impactful enough to stand on their own.  Please remove 
these words and others like them.  “Notably” is suitably neutral to use once or twice if absolutely 
necessary. 

• Please only use the word "significantly" in the statistical sense. 

  

Figures and Legends:   

Please look over your figures keeping the following in mind: 

• When color scales are used, please define them, noting units or indicating "arbitrary units," and 
specify whether the scale is linear or log.  

• Please ensure that every time you have used a graph, you have defined "n's" specifically and 
listed statistical tests within your figure legend. 

  

STAR Methods:     

Please convert your Methods section to our STAR Methods format - consult the STAR Methods 
guidelines for detailed instructions.  

  

Thank you! 

 

Reviewer comments: 
 
Reviewer #1: Thanks for addressing the comments. There's considerable work which has helped to improve 
the manuscript - I think there are still some bits that could be worth exploration but this will just be going in 
circles! I think the biggest surprise is that the ProGen2 model performs relatively poorly, despite the added 
complexity of the model. 
 
 
Reviewer #3: I would like to thank the authors for their thorough responses to my and the other reviewers' 

https://www.cell.com/star-authors-guide
https://www.cell.com/star-authors-guide


 

 
 
 

comments. I am happy to recommend acceptance of the manuscript. 
 
 
 
 
 

 



Response to reviewers

We thank the reviewers for their comments and critiques, which have undoubtedly resulted in a
stronger manuscript. Below we detail the changes made in response to the reviewer’s
comments. For convenience, the original comments are included, while our responses
(indented) are below. Changes to the manuscript are indicated by red text.

Reviewer 1

Shuai et al. present IgLM, an autoregressive transformer model based on the GPT-2
architecture. The preprint has been out for a while- it arguably needs more thinking on novelty
and what it offers, especially with models like ProGen-2 (coincidentally authored by one of the
authors in this manuscript)!

There are some major issues and minor issues worth addressing. In particular I have some
reservations on how the model's generative prowesses are evaluated, and some minor
concerns worth mentioning in terms of data prep (which I think the authors may already know
about and could just be worth a clarification).

Major Comments:

The section on prompting needs further discussion. Why is it that prompting all of a sudden
removes truncated sequences? Why do the authors only use one set of initial residues? e.g.
DIQ only for human kappa and not EIV, for example, too.

Much of the immune repertoire data prioritizes sequencing of the C-terminal ends.
However, because much of the antibody sequence is conserved at the N-terminus, we
expected that the model could be encouraged to start at the first residue by providing a
short largely-conserved motif, and then generate freely. We have expanded the text
describing the justification for using residue prompts, as well as the process for
identifying appropriate initial residues in the following text:

However, we observed that the sequences frequently featured N-terminal truncations.
These truncations are frequently observed in the OAS database used for training, with
over 40% of sequences missing the first fifteen or more residues. For heavy chains,
these N-terminal deletions appeared as a left-shoulder in the sequence length
distribution (Figure 2B, left) with lengths ranging from 100 to 110 residues. For light
chains, we observed a population of truncated chains with lengths between 98 and 102
residues (Figure 2B, right). To address truncation in generated sequences, we utilized a

Manuscript



prompting strategy, wherein we initialize each sequence with a three-residue motif
corresponding to the species and chain type tags. The specific initialization sequences
were selected according to germline sequences in the IMGT database and are
documented in Table S2. For light chains, we identified prompts corresponding to both
lambda and kappa classes and divided the generation budget between the two.

The infilling therapeutic antibody CDRs is interesting but there's no mention on whether any of
these infilled sequences would retain binding of the antigen. While doing an experiment is
ideal, even some docking results to confirm this would be nice (SnugDock, or AF2 multimer,
etc)

As the reviewer notes, there is no mention on whether the infilled sequences would
retain binding of the antigen. This is because we do not expect IgLM to retain binding of
the antigen but rather to act as a generative model that can generate diverse synthetic
libraries from an existing antibody while efficiently sampling the natural space of
antibodies. We have now expanded the text to clarify IgLM’s use case:

IgLM’s primary innovation is the ability to generate infilled residue spans at specified
positions within the antibody sequence. In contrast to traditional generative language
models that only consider preceding the residues, this enables IgLM to generate within
the full context of the region to be infilled. IgLM therefore acts as a tool for developing
synthetic libraries for large-scale experimental screening by diversifying regions of an
existing antibody. Because IgLM is trained on a massive dataset of natural antibodies, it
proposes sequences that more efficiently explore the sequence space of natural
antibodies, which can reduce the fraction of non-functional antibodies in IgLM-designed
libraries compared with randomized synthetic libraries.

Furthermore, to clarify the motive for infilling therapeutic antibody CDRs as a means of
library diversification rather than epitope-specific binder design, we have also added
the following text to the Therapeutic Antibody Diversification section:

Diversification of antibody CDR loops is a common strategy for antibody discovery or
optimization campaigns. Through infilling, IgLM is capable of replacing spans of amino
acids within antibody sequences, conditioned on the surrounding context. To
demonstrate this functionality, we generated infilled libraries for a set of therapeutic
antibodies and evaluated several therapeutically relevant properties. Based on in silico
measures of developability and humanness, we show that IgLM proposes libraries
containing antibody sequences resembling natural antibodies with controllable diversity,
which could then be experimentally screened to discover new high-affinity binders.



The authors should consider benchmarking against something like a T5 for the therapeutic
antibody infilling task where spans are predicted in-place, or even using an MLM to re-fill using
bidirectional context (e.g. using AbLang)

We have now conducted an extensive benchmark of the properties of sequences
generated by alternative infilling methods, including an OAS-derived baseline and three
additional protein language models (ESM-2, AntiBERTy, and ProGen2-OAS). Our results
show that all methods are capable of producing sequences with favorable aggregation
propensity and solubility, but only antibody-specific language models achieve these
properties while retaining high humanness. We describe these results in the following
updated text and updated figures:

To contextualize the properties of IgLM-generated infilled libraries, we conducted a
benchmark using several alternative protein language models. The benchmark includes
ESM-2, a masked language model trained on diverse sequences, AntiBERTy, an
antibody-specific masked language model, and ProGen2-OAS, an autoregressive
language model trained on antibody sequences. We also compared with a baseline of
sequences generated from the OAS data used to train IgLM. Sequences for the OAS
baseline, OAS [parent], were generated by sampling from positional amino acid
frequencies for loop lengths matching the parent sequence.

For all infilled libraries, we predicted structures with IgFold and computed aggregation
propensity, solubility, and humanness for all sequences (Figure S11). To remove
length-dependent biases from the evaluation, we compared the developability properties
of only loops matching the parent CDR H3 loop length. In general, we found that all
methods were able to generate infilled libraries with improved aggregation propensity
and solubility relative to the parent sequences (Figure 4F-G). This illustrates the utility of
drawing from informed sequence distributions (such as those derived from OAS or
learned by language models), rather than randomly mutating sequences as is the norm
for library construction. The OAS baseline performed particularly well, indicating that the
natural makeup of CDR H3 loops are biophysically well-behaved. However, to produce
human-like antibody libraries, we found that antibody-specific language models were
significantly more effective than alternative approaches (Figure 4H). Among these
models, IgLM produced slightly more human-like sequences than ProGen2-OAS, in
accordance with the lower infilling perplexity demonstrated on the heldout set human
sequences (Figure S1).

The selection of 49 antibodies seems unusual, some of these antibodies (e.g. muromonab) is
chimeric/mouse so I would imagine it's trivial to get higher OASis/humanness scores

We have now expanded on our motivation for selecting the set of 49 antibodies for our
developability benchmarking. These 49 antibodies were selected because they had



experimentally determined structures at the time the set was assembled, and they had
been previously used in development of the Therapeutic Antibody Profiler. Although we
did not ultimately make use of the experimental structures, future studies may find value
in comparing the predictions with ground truth structures. We have provided these
justifications in the following updated text:

To evaluate the utility of infilling with IgLM for diversifying antibody sequences, we
created infilled libraries for 49 therapeutic antibodies from Thera-SAbDab. These
antibodies were selected because they had experimentally determined structures and
had been previously evaluated for developability screening (Raybould et al., PNAS
2019).

Minor Comments:

Authors don't describe use of humanized mice in antibody selection, which has been
revolutionary for how we discover antibodies

As the reviewer notes, transgenic animal systems (particularly humanized mice) have
been very successful for antibody discovery. We have now noted this in the
introduction, prior to introducing display technologies, which are closer to the focus of
this work. The updated text is provided below:

Traditionally, monoclonal antibodies (mAbs) have been obtained using hybridoma
technology, which requires the immunization of animals, or transgenic animal systems,
which involve integration of human immune loci into alternative species (e.g., mice).

Intro mentions diversity of antibodies but does the justification for 10^13 make sense? CDRs
inherently have a lot of bias - CDR3 usually ends with ARD and end FDY, so that already just
means (for a typical CDR3 of length 10) that there are 20^4 variants - and that's assuming
amino acids are uniformly distributed

As the reviewer’s comment highlights, it is difficult to place a bound on the number of
feasible antibody sequences. As our initial estimate demonstrates, the combinatorial
space of possible sequences over a 10-residue span is quite large (10^20 sequences).
However, as we argue in the text, the subspace of natural antibody sequences, which
resemble those produced by immune systems, is likely much smaller. Although
heuristics like the reviewer notes regarding commonly observed beginning and ending
motifs may begin to narrow in on the space of natural antibody sequences, they are not
absolute. We have adjusted the following text to clarify this point.

To discover antibodies with high affinity, massive synthetic libraries on the order of
10^10-10^11 variants must be constructed. However, the space of possible synthetic



antibody sequences is very large (diversifying 10 positions of a CDR yields 20^10 ≈
10^13 possible variants), meaning these approaches still significantly undersample the
possible space of sequences. Further, sequences from randomized libraries often
contain substantial fractions of non-functional antibodies. These liabilities could be
reduced by restricting libraries to sequences that resemble natural antibodies, and are
thus more likely to be viable therapeutics.

The intro could do with citing more recent examples of representation learning models from
AbSci (Bachas et al. 2022), sequence generation models such as ProGen2 (Nijkamp et al 2022).
Other papers that should be discussed are cases where language models are used to mutate
and design antibodies (Hie et al. 2022). AntiBERTa paper seems to not be properly cited, it's
cited with the AbLang paper from Olsen et al. Prihoda paper is now out in mAbs which should
be updated.

We have now updated the citations mentioned by the reviewer in the introduction, as
well as provided context for the works from Hie and Bachas, in the following updated
text:

For example, the ESM family of models (trained for masked language modeling) have
been applied to representation learning, variant effect prediction, and protein structure
prediction. Masked language models have also shown promise for optimization and
humanization of antibody sequences through suggestion of targeted mutations (Hie et
al.).

The Sapiens models were trained on 20M and 19M heavy and light chains respectively,
and shown to be effective tools for antibody humanization. Similarly, likelihoods from
antibody-specific masked language models have also been used as a proxy for
immunogenic risk (or naturalness) (Bachas et al.).

How are the validation sets created? It could be worth pruning to make sure no study is shared
between training and validation sets when pre-training IgLM to avoid perplexities looking lower

In the expanded Methods section, we have now provided a more detailed description of
the splitting procedure for training and evaluation of IgLM. Due to the highly conserved
nature of antibody sequences, and the goal of building a model broadly useful for
antibody generation, we have relied on clustering at a fairly high sequence identity
threshold to create data splits. The process and reasoning are provided in the following
updated text:

To train IgLM, we collected unpaired antibody sequences from the Observed Antibody
Space (OAS). OAS is a curated set of over one billion unique antibody sequences
compiled from over eighty immune repertoire sequencing studies. After removing



sequences indicated to have potential sequencing errors, we were left with 809M unique
antibody sequences. We then clustered these sequences using LinClust at 95%
sequence identity, leaving 588M non-redundant sequences. The distribution of
sequences corresponding to each species and chain type are documented in Figure 1B
and Table S1. The dataset is heavily skewed towards human antibodies, particularly
heavy chains, which make up 70% of all sequences.

The highly conserved nature of antibody sequences, which are recombined and mutated
from a common set of germline components, makes construction of distinct training and
validation sets challenging, as overly aggressive splitting may result in exclusion of entire
germline lineages from training. For this work, we held out a random 5% of the clustered
sequences as a test set to evaluate model performance. Of the remaining sequences,
we randomly selected 558M sequences for training and 1M for validation. This splitting
criteria ensures that the model is exposed to all of the available conserved regions of
antibody sequences, but can be evaluated on how well it captures mutations to those
sequences.

Why are structures predicted with AF2 multimer in the intro / Fig 1 but then IgFold later?

Apriori, it is difficult to estimate what sampling temperatures will produce reasonable
sequences from a language model. To set informed boundaries, we carried out an initial
analysis using AlphaFold2-Multimer to identify reasonable limits for sampling
temperature with IgLM. Based on the results of our preliminary structure prediction
analysis, we found that sequences generated by IgLM up to T=1.2 produced confidently
predicted structures. To enable the scale of analysis in subsequent experiments, we
then used IgFold for high-throughput predictions. We have described this rationale in
the following updated text:

In general, IgLM generates sequences with correspondingly confident predicted
structures at lower temperatures (up to 1.2), before beginning to degrade in quality at
higher temperatures (Figure 1C). For subsequent experiments, we sampled with a
maximum temperature of 1.2 to remain within foldable antibody space, and utilized the
much faster IgFold model for high-throughput structure predictions.

Why is it that some designs only have CDR3 of length 1? And for these cases, what is the
likelihood of the sequence?

As the reviewer’s comment suggests, the very short CDR H3 loops generated by IgLM
are quite rare (if ever occurring) and are likely not ideal for inclusion in antibody libraries.
To assess the favorability of these short loops by IgLM, we computed infilling
perplexities for all of the generated loop sequences. In a new supplemental figure, we
show that the model scores these short loops very unfavorably, indicating they likely



emerged by chance due to extensive sampling. We have added the following text to
present these results:

The median length of infilled loops across antibodies ranges from 11 to 16 residues.
IgLM occasionally generated very short CDR H3 loops (fewer than five residues), which
were assigned correspondingly low log likelihoods by the model (Figure SX).

Authors don't describe how IgLM generates paired sequences - dataset seems to be unpaired
and even input seems unpaired?

As the reviewer notes, IgLM models only single sequences. We have updated the
following text to clarify that we generated and subsequently paired heavy and light
chains for the purpose of structure prediction.

Heavy and light chain sequences were generated independently of each other, as IgLM
only considers single chains. Sequences were then paired according to sampling
temperature and their structures predicted using AlphaFold-Multimer.

Fig 3B it might be good to indicate the length of the native H3

We have now updated Figure 2B to indicate the lengths of the parent CDR H3 loops
prior to infilling.

Fig 4E might be better as a heatmap or some kind of 3D scatterplot where we correlate T and P
and have the median change in OASis identity

We have now updated Figure 4E to show a heatmap as the reviewer suggested.

Fig 4F the classification of human sequences another good baseline could be using the
ANARCI HMM cutoffs? Especially as the authors point out ANARCI's annotation of species
isn't perfect

Indeed, as the reviewer notes, the HMMs from ANARCI are a strong baseline for human
sequence classification. In Figure 4F, one of the baselines adapted from Prihoda et al.
(source of all baselines aside from ProGen2 models), is the germline content reported
by ANARCI for the best V- and J-gene matches. This method slightly outperforms IgLM
and is among the most effective methods for determining whether a sequence is
human-like.

Reviewer 2



Shuai and colleagues here describe a language model for antibody design. They claim that
their model can generate full length sequences for various species.

While the work performed is extensive, after reading it, it remains a bit opaque to the reader
what the paper has in fact demonstrated. The advance of previous research needs to be much
more clear. Also, we would like to see more surprising things than full sequence reconstruction
of different animals.

Major comments

The novelty this paper provides is a method that enables generative infilling of antibody
sequences of various sizes while conditioning the infilled regions on species type and chain
type. I imagine this could enable the generation of some interesting antibody sequences, e.g. a
sequence that is part human/part mice/part something else. However, It is not obvious to me
what the practical utility of this method is supposed to be. Maybe the authors should include
an example where the partial modification of an available antibody sequence would be useful
over simply generating sequences completely from scratch, especially if it is not possible to
condition the sequences for desirable properties (binding affinity, developability parameters).
Even the humanization of a murine antibody is not an option since there is no guarantee that
the model will maintain the same binding affinities.

We have now expanded on the motivation for developing IgLM by further discussing the
role of antibody sequence libraries in discovery and optimization, and highlighting the
potential of generative models of protein sequences to replace existing diversification
technologies. This leads into our contrast with existing protein language models, which
are poorly suited for diversification of antibody sequences. The updated text is provided
below.

Design of antibody libraries typically focuses on diversification of the CDR loop
sequences in order to facilitate binding to a diverse set of antigens. Through traditional
diversification technologies, many putative antibody sequences can be produced and
subjected to experimental screening, enabling the discovery or optimization of specific
antibodies. However, such techniques typically produce large fractions on non-viable or
poorly behaved sequences, as they are not constrained to the natural space of antibody
sequences. Generative models of protein sequences, such as language models, offer an
alternative means of efficiently sampling from the natural space of proteins to produce
large libraries of sequences. However, existing approaches to protein sequence
generation (including antibodies) typically adopt left-to-right decoding strategies. While
these models have proven effective for generation of diverse and functional sequences,
they are ill-equipped to re-design specific segments of interest within proteins. To



address this limitation, we developed IgLM, an infilling language model for
immunoglobulin sequences.

The first half of the results is all about how well the model generates antibody sequences
conditioned on species and chain types. But none of this is very surprising, since they were
trained with data labelled with that information already (which also makes it not completely
self-supervised) and also that information is encoded in non-variable regions, which is not what
the infilling task targets anyways.

Although the model was trained with conditioning information, the considerable
imbalance in the training dataset presents challenges for effectively generating under
certain conditioning scenarios. Through our analyses, we explore the capabilities of the
model in various settings and demonstrate to what extent these data imbalances affect
generation fidelity. Further, although prior models such as the original ProGen have
been trained with conditioning, ours is the first study to quantitatively assess adherence
to conditioning information.

pg. 3, lines 83-104. It is unclear what the infilling perplexity tells us about the language model's
effectiveness. All the reported results are expected (IgLM achieves lower perplexity than
IgLM-S, longer sequences have higher perplexity, etc.), and there is no comparison to any
other language model to give a reader a good sense on whether IgLM's perplexity scores are
particularly good, average, or bad.

We have now expanded our language modeling evaluation to include additional
autoregressive language models (ProGen2-base and ProGen2-OAS) and to assess the
impact of bidirectional context on IgLM infilling perplexity. These results are described
in the followed updated text:

We compared the infilling perplexity of IgLM and IgLM-S given bidirectional context
(IgLM [bi] and IgLM-S [bi]) and preceding context only (IgLM [pre] and IgLM-S [pre]) on a
heldout test dataset of 30M sequences. We additionally computed infilling perplexity for
ProGen2-base and ProGen2-OAS, which only utilize preceding context. Results are
tabulated by CDR loop for each method (Figure 1D). As expected, the CDR3 loop, which
is the longest and most diverse, has the highest infilling perplexity for all methods. For
IgLM, providing bidirectional context yielded reduced complexity, demonstrating that the
sequence following CDR loops is important for determining their content. Both ProGen2
models evaluated have 764M parameters, significantly more than the 13M parameters of
IgLM. However, with bidirectional context, IgLM is able to better fit the distribution of
CDR loops than either model, demonstrating the importance of aligning the model
pre-training objective with the downstream task.



In Figure 1D, we also compared IgLM infilling perplexity to methods using only preceding
context (IgLM [pre], IgLM-S [pre], ProGen2-base, ProGen2-OAS). For these methods,
rather than compute perplexity using our infilling formulation procedure, we instead
provide only the amino acid sequence context preceding the span to be predicted. We
additionally prepend the appropriate conditioning tokens for each model (i.e. the
chain-type and species-of-origin tokens for IgLM, and the 1 character token for the
ProGen2 models) prior to inference. We then compute per-token perplexity over the
predicted span and the first residue following the span, where the first residue following
the span acts as a proxy for the [ANS] token. In this way, we compute infilling perplexity
over the same number of tokens with these methods while only providing the preceding
amino acid sequence context.

pg. 7, lines 228-237. Since IgLM is tasked with only predicting CDR H3 loops while the rest of
the antibody is given, is it surprising that it generates more human-like antibodies? Also, what
does it mean to have even more human-like than the parent antibody (line 231), when the
parent antibodies have been already optimized to be so?

We have added the following text to the humanness evaluation of IgLM infilled
sequences to contextualize the results and clarify how IgLM is able to achieve
improvements over the parent sequences:

When compared to their respective parent antibodies, sequences infilled by IgLM were
typically more human-like (Figure 4D). This is expected, given that IgLM is trained on
natural human antibodies, but not trivial as the parent sequences have been optimized
and shown to be safe in humans. To achieve higher humanness, sequences from IgLM
must better adhere to the natural distribution of human antibodies than the parent
sequences.

pg. 7, lines 209-227. All developability measures are done in silico with computational tools.
How reliable is it to conclude that IgLM generated sequences with increased developability?
For all sequences generated, it's not entirely completely clear to us how the authors determine
whether a given sequence is actually an antibody sequence that belong to a certain species.
Can this authors clarify this? How do they quantitatively test for this?

Indeed, all analyses performed on the generated sequences utilized in silico tools. To
ground our developability calculations, we have utilized well-established tools, which
themselves have been experimentally validated (CamSol and SAP score). However, as
reflected in the original publications, neither tool is a perfect reflection of the biophysical
properties they aim to compute. For species and chain type classification, we utilized
the ANARCI software, which performs germline matching for a given sequence against
a database of curated sequences. We have expanded the Methods to include greater
detail of both developability calculations and sequence classifications:



To assess the developability and humanness of infilled therapeutic antibody sequences,
we utilized a set of in silico tools previously developed for antibodies. Aggregation
propensity was calculated based on the predicted Fv structures for each antibody using
the Rosetta implementation of the spatial aggregation propensity (SAP) score. Solubility
was calculated based on sequence alone, using the public CamSol-Intrinsic web server.
To measure humanness (a proxy for immunogenicity), we used the BioPhi OASis
identity. OASis identity measures the fraction of 9-mers for a given sequence that have
been observed in human repertoires in the OAS database.

To evaluate the adherence of IgLM-generated sequences to provided species and chain
type conditioning tags, we used the ANARCI software. ANARCI uses a set of
antibody-specific HMMs to compare a given antibody to a database of germline
sequences across several species and chain types. To classify the chain type and
species for generated sequences, we used the corresponding species and chain type for
the top V-gene match returned by ANARCI.

"For mouse 137 and rhesus light chains, IgLM generates the correct species in 34.89% and
88.14% of cases, respectively"→ why so low for mouse?

As the reviewer notes, the mixed performance at generating mouse sequences was
surprising given that mice are among the best-represented species in the training
dataset. We have added the following text to provide some explanation for this result:

For mouse and rhesus light chains, IgLM generates the correct species in 34.89% and
88.14% of cases, respectively (Table S3). The disproportionately low recovery of mouse
sequences may be due to inclusion of transgenic mice immune repertoires, which are
harvested from mice but consist of human genetic material.

"As temperature increases, sequences for every species begin to diverge from germline,
effectively acquiring mutations." Are these mutations nature-like? Meaning, are they inserted
according to mutational hotspot motifs?

We have now added a new analysis of the generated full-length sequences, in which we
compute Chothia-numbered positional entropies for each species and chain type with
increasing temperature. As expected, the majority of mutations appear in the CDR
loops, with higher temperature increasing the rate of mutation. We have added the
following new text, as well as an additional supplemental figure, presenting these
results:

As temperature increases, sequences for every species begin to diverge from germline,
effectively acquiring mutations. To evaluate whether these mutations emerge at



biologically relevant positions, we calculated the positional entropy of generated
sequences according to the Chothia numbering scheme. As expected, we observe
significantly higher entropy in the CDR loops, with temperature further increasing the
entropy at these positions (Figure SX).

For the sequences generated, does their V gene distribution follow that of the training data?

We agree with the reviewer that a comparison of V-gene distribution over the training
dataset and generated sequences would be an interesting analysis. However, the
frequent N-terminal truncations present in the OAS database complicate this analysis
on two fronts. First, with large segments of the N-terminal regions of sequences missing
in the training dataset, classification of the V-genes may be less accurate. Second, due
to these truncations, we needed to use initial-residue prompts to produce full-length
sequences. This has the effect of biasing the generated sequences towards particular
germline sequences.

Pg. 5, lines 171ff: The therapeutic antibody diversification part is not clear to me: how can the
authors be certain that the generated antibodies still bind the same target?

As the reviewer notes, there is no mention on whether the infilled sequences would
retain binding of the antigen. This is because we do not expect IgLM to retain binding of
the antigen but rather to act as a generative model that can generate diverse synthetic
libraries from an existing antibody while efficiently sampling the natural space of
antibodies. We have now expanded the text to clarify IgLM’s use case:

IgLM’s primary innovation is the ability to generate infilled residue spans at specified
positions within the antibody sequence. In contrast to traditional generative language
models that only consider preceding the residues, this enables IgLM to generate within
the full context of the region to be infilled. IgLM therefore acts as a tool for developing
synthetic libraries for large-scale experimental screening by diversifying regions of an
existing antibody. Because IgLM is trained on a massive dataset of natural antibodies, it
proposes sequences that more efficiently explore the sequence space of natural
antibodies, which can reduce the fraction of non-functional antibodies in IgLM-designed
libraries compared with randomized synthetic libraries.

Furthermore, to clarify the motive for infilling therapeutic antibody CDRs as a means of
library diversification rather than epitope-specific binder design, we have also added
the following text to the Therapeutic Antibody Diversification section:

Diversification of antibody CDR loops is a common strategy for antibody discovery or
optimization campaigns. Through infilling, IgLM is capable of replacing spans of amino
acids within antibody sequences, conditioned on the surrounding context. To



demonstrate this functionality, we generated infilled libraries for a set of therapeutic
antibodies and evaluated several therapeutically relevant properties. Based on in silico
measures of developability and humanness, we show that IgLM proposes libraries
containing antibody sequences resembling natural antibodies with controllable diversity,
which could then be experimentally screened to discover new high-affinity binders.

At what temperature threshold do antibodies turn from "being diversified" to "unnatural/random
sequences"

For this work, we judged the boundary between diversification and randomness
according to AlphaFold-Multimer structure predictions. To find this boundary, we
conducted an experiment where we gradually increase sampling temperature until
sequences were no longer confidently predicted to fold into structures. We have
expanded the following text and added a more detailed figure to present these results.
We have additionally expanded the Methods section to provide more details on
sampling parameters.

In general, IgLM generates sequences with correspondingly confident predicted
structures at lower temperatures (up to 1.2), before beginning to degrade in quality at
higher temperatures (Figure 1C). For subsequent experiments, we sampled with a
maximum temperature of 1.2 to remain within foldable antibody space, and utilized the
much faster IgFold model for high-throughput structure predictions.

Have you tried to classify generated from OAS sequences to measure whether the LM
introduced obvious biases?

To assess how realistic the infilled loops generated by IgLM are, we have now
computed infilling perplexities for all of the sequences produced by IgLM for the set of
therapeutic antibodies. These results (presented in a new supplemental figure) show
that IgLM favors loop lengths near the natural distribution, though occasionally
produces loops on extremes, which are scored unfavorably by the model. These results
are described in the following new text:

The median length of infilled loops across antibodies ranges from 11 to 16 residues.
IgLM occasionally generated very short CDR H3 loops (fewer than five residues), which
were assigned correspondingly low log likelihoods by the model (Figure SX).

Minor comments

Page 5, line 57: the (GPT2) addition is not true since GPT2 refers to a transformer pre-trained
on text data.



We have now updated the following text to clarify that our model utilizes the same
architecture as GPT2, but is not trained on text:

The IgLM model uses a Transformer decoder architecture based on a modified version
of the GPT-2 Transformer as implemented in the HuggingFace Transformers library.

pg. 3, line 73. Can the authors provide a definition of sampling temperature? While they explain
what the numbers indicate, it would be good for the reader to have a more precise idea about
this measurement.

We have now extended the methods to include further technical details on our sampling
procedure for generating sequences. The following added text describes sampling
temperature and nucleus sampling probability:

As we sampled sequences under the model, we applied temperature sampling to shape
the probability distribution for each token. Applying temperature T corresponds to scaling
the logits z from the last layer before applying softmax:

[EQUATION]

where p(xi) denotes the probability assigned during sampling to token i out of n possible
tokens in the vocabulary. Intuitively, sampling with higher temperatures results in more
diverse sequences, with the probability distribution across tokens becoming nearly
uniform when T is large.

In addition to applying temperature, we also applied nucleus sampling to vary the
diversity of sequences generated by IgLM. In nucleus sampling with probability P, the
probability distribution during sampling is clipped such that only the smallest set of
tokens whose cumulative probability exceeds P are considered during sampling.
Intuitively, a lower P restricts sampling to highly probable tokens, which decreases the
diversity of sequences while increasing confidence.

The authors may want to add this paper to the ref list
https://www.nature.com/articles/s41598-021-85274-7

We have now updated the introduction to highlight the contribution of this work, which
has trained LSTM models on phage display data to optimize antibody sequences.

LSTMs have also been trained on phage display data to aid in discovery of optimized
variants (Saka et al.).



N-Terminal truncations in OAS: why didn't the authors just remove such sequences from the
dataset? What is their frequency in the OAS?

The frequency of truncated sequences has been reported to be above 40% missing at
least fifteen of the N-terminal residues (Olsen et al., Bioinformatics Advances 2022).
Because of the pervasiveness of these truncations, it would significantly reduce the
amount of data available to train on. Instead, we expected the model could be
encouraged to start at the first residue by providing a short largely-conserved motif, and
then generate freely. We have expanded the text describing the justification for using
residue prompts, as well as the process for identifying appropriate initial residues in the
following text:

However, we observed that the sequences frequently featured N-terminal truncations.
These truncations are frequently observed in the OAS database used for training, with
over 40% of sequences missing the first fifteen or more residues. For heavy chains,
these N-terminal deletions appeared as a left-shoulder in the sequence length
distribution (Figure 2B, left) with lengths ranging from 100 to 110 residues. For light
chains, we observed a population of truncated chains with lengths between 98 and 102
residues (Figure 2B, right). To address truncation in generated sequences, we utilized a
prompting strategy, wherein we initialize each sequence with a three-residue motif
corresponding to the species and chain type tags. The specific initialization sequences
were selected according to germline sequences in the IMGT database and are
documented in Table S2. For light chains, we identified prompts corresponding to both
lambda and kappa classes and divided the generation budget between the two.

There are several typos throughout the text.

We thank the reviewer for bringing attention to typos throughout the text, we have now
corrected several such issues.

Reviewer 3

Shuai et al. describe an antibody specific language model, IgLM. The model is trained
autoregressively and allows a user to condition on relevant properties and the right-sequence
context during autoregressive sequence generation, which would potentially enable improved
and more controllable sequence sampling and design. Overall, the I think the work is
interesting, but also preliminary. More specifically, I would very much appreciate major
revisions in the form of comparisons with previous antibody-specific language models, as well
as general protein language models trained on generic protein sequence corpora, before I
would be able to make a recommendation for publication. This is important for assessing



where and when IgLM provides an advantage over existing tools. Additional details are
provided below.

The code availability and usability are very good. The GitHub describes a very easy-to-use
command line implementation. The model availability is also very good, and is easily
downloadable/installable. Optionally, it would be nice to also make the processed training data
available, or if the dataset size is too large to fit in common repositories like Zenodo or figshare,
making the dataset processing scripts available would be nice to have.

Major Comments:

A major question I had while reading the paper, and which I would like to see addressed, is
how well this language model compares to previous antibody language models (including
AntiBERTy/a, AbLang, Sapiens) as well as to general protein language models (ESM, ProGen
with and without antibody-specific conditioning or training). Foremost, the authors should
compare their perplexity results to these language models, and I would be very curious as to
how this model compares.

We have now expanded our language modeling evaluation to include additional
autoregressive language models (ProGen2-base and ProGen2-OAS) and to assess the
impact of bidirectional context on IgLM infilling perplexity. Several of the models noted
by the reviewer are not amenable to direct comparison with IgLM, as they are trained
via masked language modeling, for which perplexity calculation is not possible. Our
comparison with ProGen2-base and ProGen2-OAS highlights the value of
antibody-specific training, as well as the utility of bidirectional context for CDR loop
infilling. These results are described in the followed updated text:

We compared the infilling perplexity of IgLM and IgLM-S given bidirectional context
(IgLM [bi] and IgLM-S [bi]) and preceding context only (IgLM [pre] and IgLM-S [pre]) on a
heldout test dataset of 30M sequences. We additionally computed infilling perplexity for
ProGen2-base and ProGen2-OAS, which only utilize preceding context. Results are
tabulated by CDR loop for each method (Figure 1D). As expected, the CDR3 loop, which
is the longest and most diverse, has the highest infilling perplexity for all methods. For
IgLM, providing bidirectional context yielded reduced complexity, demonstrating that the
sequence following CDR loops is important for determining their content. Both ProGen2
models evaluated have 764M parameters, significantly more than the 13M parameters of
IgLM. However, with bidirectional context, IgLM is able to better fit the distribution of
CDR loops than either model, demonstrating the importance of aligning the model
pre-training objective with the downstream task.

In Figure 1D, we also compared IgLM infilling perplexity to methods using only preceding
context (IgLM [pre], IgLM-S [pre], ProGen2-base, ProGen2-OAS). For these methods,



rather than compute perplexity using our infilling formulation procedure, we instead
provide only the amino acid sequence context preceding the span to be predicted. We
additionally prepend the appropriate conditioning tokens for each model (i.e. the
chain-type and species-of-origin tokens for IgLM, and the 1 character token for the
ProGen2 models) prior to inference. We then compute per-token perplexity over the
predicted span and the first residue following the span, where the first residue following
the span acts as a proxy for the [ANS] token. In this way, we compute infilling perplexity
over the same number of tokens with these methods while only providing the preceding
amino acid sequence context.

Closely related to the above point is that the authors should compare across different language
models according to the various downstream metrics described in the paper, such as the
coherence of downstream structure prediction, developability, and humanness. There is some
comparison to this effect (e.g., involving ProGen2 trained on OAS), but the comparison should
be much more exhaustive in order to communicate where this model could or could not be
useful.

We have now conducted an extensive benchmark of the properties of sequences
generated by alternative infilling methods, including an OAS-derived baseline and three
additional protein language models (ESM-2, AntiBERTy, and ProGen2-OAS). Our results
show that all methods are capable of producing sequences with favorable aggregation
propensity and solubility, but only antibody-specific language models achieve these
properties while retaining high humanness. We describe these results in the follow
updated text and updated figures:

To contextualize the properties of IgLM-generated infilled libraries, we conducted a
benchmark using several alternative protein language models. The benchmark includes
ESM-2, a masked language model trained on diverse sequences, AntiBERTy, an
antibody-specific masked language model, and ProGen2-OAS, an autoregressive
language model trained on antibody sequences. We also compared with a baseline of
sequences generated from the OAS data used to train IgLM. Sequences for the OAS
baseline, OAS [parent], were generated by sampling from positional amino acid
frequencies for loop lengths matching the parent sequence.

For all infilled libraries, we predicted structures with IgFold and computed aggregation
propensity, solubility, and humanness for all sequences (Figure S11). To remove
length-dependent biases from the evaluation, we compared the developability properties
of only loops matching the parent CDR H3 loop length. In general, we found that all
methods were able to generate infilled libraries with improved aggregation propensity
and solubility relative to the parent sequences (Figure 4F-G). This illustrates the utility of
drawing from informed sequence distributions (such as those derived from OAS or
learned by language models), rather than randomly mutating sequences as is the norm



for library construction. The OAS baseline performed particularly well, indicating that the
natural makeup of CDR H3 loops are biophysically well-behaved. However, to produce
human-like antibody libraries, we found that antibody-specific language models were
significantly more effective than alternative approaches (Figure 4H). Among these
models, IgLM produced slightly more human-like sequences than ProGen2-OAS, in
accordance with the lower infilling perplexity demonstrated on the heldout set human
sequences (Figure S1).

The Methods section is extremely sparse and needs to be improved. The authors need to
provide enough experimental detail in the Methods to reproduce all analyses described in the
paper. This not only applies to the language model description and training details as currently
provided (which are still limited) but also to all of the downstream tasks and additional
benchmarking experiments.

We have now significantly expanded the Methods section, including more detailed
descriptions of the model, infilling perplexity calculations, generation settings, and
sequence characterization.

As an ablation, what happens if the authors sample, e.g., the CDR3 without including the right
context in their infilling task? Given that a central claimed improvement is the ability to
condition on both the left- and right-sequence context, the actual effect of this would be
interesting to see and I was not able to find an analysis like this in the manuscript.

Our expanded language modeling evaluation now includes comparisons for IgLM
models using bidirectional context and preceding context only. For IgLM, bidirectional
context significantly reduces CDR loop infilling perplexity, even below that of
ProGen2-OAS, which has over fifty times more parameters. The results are described in
the following updated text:

We compared the infilling perplexity of IgLM and IgLM-S given bidirectional context
(IgLM [bi] and IgLM-S [bi]) and preceding context only (IgLM [pre] and IgLM-S [pre]) on a
heldout test dataset of 30M sequences. We additionally computed infilling perplexity for
ProGen2-base and ProGen2-OAS, which only utilize preceding context. Results are
tabulated by CDR loop for each method (Figure 1D). As expected, the CDR3 loop, which
is the longest and most diverse, has the highest infilling perplexity for all methods. For
IgLM, providing bidirectional context yielded reduced complexity, demonstrating that the
sequence following CDR loops is important for determining their content.

In Figure 1D, we also compared IgLM infilling perplexity to methods using only preceding
context (IgLM [pre], IgLM-S [pre], ProGen2-base, ProGen2-OAS). For these methods,
rather than compute perplexity using our infilling formulation procedure, we instead
provide only the amino acid sequence context preceding the span to be predicted. We



additionally prepend the appropriate conditioning tokens for each model (i.e. the chain
type and species-of-origin tokens for IgLM, and the 1 character token for the ProGen2
models) prior to inference. We then compute per-token perplexity over the predicted
span and the first residue following the span, where the first residue following the span
acts as a proxy for the [ANS] token. In this way, we compute infilling perplexity over the
same number of tokens with these methods while only providing the preceding amino
acid sequence context.

Minor Comments:

One thing that is often seen when training on OAS, followed by sample sequences based on
high/maximum likelihood, is that the generated sequences reproduce the sequence distribution
of the antibody germline. This would potentially make such models useful for germline
reversion (though maybe less useful for tasks like affinity maturation). I was wondering if the
authors could comment on this in their Discussion. An optional revision is to evaluate the
model's ability to identify the germline sequence or to see if there's concordance between
maximum likelihood mutations and those recommended by common germline reversion tools.

As the reviewer notes, IgLM tends to reproduce germline sequences at low
temperatures (Figure 2E). We have now expanded on the analysis of this behavior
through the following added text and a new supplemental figure:

As temperature increases, sequences for every species begin to diverge from germline,
effectively acquiring mutations. To evaluate whether these mutations emerge at
biologically relevant positions, we calculated the positional entropy of generated
sequences according to the Chothia numbering scheme. As expected, we observe
significantly higher entropy in the CDR loops, with temperature further increasing the
entropy at these positions (Figure SX).


