Supplemental Information

Fig. S1. Infilling perplexity for IgLM and ProGen2 models on heldout test dataset of 30M sequences, divided by species-of-origin. Perplexity values for IgLM models are reported with preceding and bidirectional (infilling) context. Confidence intervals calculated from boostrapping (100 samples) had a width less than 0.2 and are therefore not shown.

Fig. S2. Infilling perplexity for IgLM and ProGen2 models on heldout test dataset of 30M sequences, divided by chain type. Perplexity values for IgLM models are reported with preceding and bidirectional (infilling) context. Confidence intervals calculated from boostrapping (100 samples) had a width less than 0.02 and are therefore not shown.

Fig. S3. Alignment of generated rabbit light chain sequences with the closest germline sequences assigned by ANARCI. Sequences were aligned with Clustal-Omega.

Fig. S4. Prediction of generated rabbit light chain sequences by IgFold. Structures are colored by predicted RMSD.

Fig. S5. Entropy of generated full-length sequences at Chothia numbered positions. Residues at insertion points in the numbering scheme are aggregated with the prior non-insertion residue. With increasing temperature, generated sequences acquire additional mutations and correspondingly higher positional entropy.

Fig. S6. Comparison of infilled CDR H3 loop length and infilling log likelihood from IgLM.

Fig. S7. Comparison of infilled CDR H3 loop length and change in aggregation propensity (relative to parent, lower is better) for individual infilled libraries.

Fig. S8. Comparison of infilled CDR H3 loop length and change in solubility (relative to parent, higher is better) for individual infilled libraries.

Fig. S9. Relationship between changes in aggregation propensity and solubility for individual infilled libraries.

Fig. S10. Impact of sampling parameters on developability of infilled libraries. Library properties are largely unaffected by choice of sampling temperature (T) and nucleus sampling probability (P).

Fig. S11. Comparison of infilled CDR H3 loop developability using IgLM, OAS sequence baselines, and alternative language models. OAS [parent] and OAS[natural] sequences were generated according to positional amino acid frequencies for natural loops matching the parent antibody length and the natural CDR H3 loop distributions, respectively. Sequences for ESM-2 [650M] and AntiBERTy were generated by sampling from masked language modeling likelihoods. ProGen2-OAS loops were generated using preceding context followed by back-mutation of the C-terminal residues to the parent sequence. Only sequences matching the parent loop length were used for autoregressive models to remove length-dependent effects on developability. Structures for all infilled sequences were predicted with IgFold to support computation of developability measurements.

Species	Heavy Chains	Light Chains	Total	
Human	412,807,447	70,584,881	483,392,328	
Mouse	93,360,086	3,198,407	96,558,493	
Camel	1,091,641	-	1,091,641	
Rat	3,700,086	0	3,700,086	
Rabbit	2,644,903	0	2,644,903	
Rhesus	381,021	719,674	1,100,695	
Total	513,985,184	74,502,962	588,488,146	

 $\label{eq:table_state} \textbf{Table S1.} \ Distribution \ of \ sequences \ in \ clustered \ OAS \ dataset.$

 Table S2. Full-length sequence generation parameters.

Description	Chain token	Species token	Initial residues	Number generated	
Human heavy chain	[HEAVY]	[HUMAN]	EVQ	20,000	
Human light chain (lambda)	[LIGHT]	[HUMAN]	QSA	10,000	
Human light chain (kappa)	[LIGHT]	[HUMAN]	DIQ	10,000	
Mouse heavy chain	[HEAVY]	[MOUSE]	QVQ	20,000	
Mouse light chain (lambda)	[LIGHT]	[MOUSE]	QAV	10,000	
Mouse light chain (kappa)	[LIGHT]	[MOUSE]	DIV	10,000	
Camel heavy chain	[HEAVY]	[CAMEL]	QVQ	20,000	
Rabbit heavy chain	[HEAVY]	[RABBIT]	QEQ	20,000	
Rabbit light chain (lambda)	[LIGHT]	[RABBIT]	QPA	10,000	
Rabbit light chain (kappa)	[LIGHT]	[RABBIT]	ALV	10,000	
Rat heavy chain	[HEAVY]	[RAT]	EVQ	20,000	
Rat light chain (lambda)	[LIGHT]	[RAT]	QAV	10,000	
Rat light chain (kappa)	[LIGHT]	[RAT]	GIQ	10,000	
Rhesus heavy chain	[HEAVY]	[RHESUS]	QVQ	20,000	
Rhesus light chain (lambda)	[LIGHT]	[RHESUS]	QSV	10,000	
Rhesus light chain (kappa)	[LIGHT]	[RHESUS]	AIQ	10,000	
Total				220,000	

Table S3. Adherence to species conditioning tags for full-length generation. Percentage of matches between conditioning tagused for generation and species classification from ANARCI for each generation configuration.

Chain token	Species token	T = 0.6	T = 0.8	T = 1.0	T = 1.2	Overall
[HEAVY]	[HUMAN]	99.98%	99.94%	99.66%	99.30%	99.72%
[HEAVY]	[MOUSE]	99.94%	99.34%	98.32%	96.62%	98.55%
[HEAVY]	[CAMEL]	98.36%	97.72%	96.76%	92.72%	96.39%
[HEAVY]	[RABBIT]	100.00%	100.00%	99.96%	99.98%	99.98%
[HEAVY]	[RAT]	0.00%	0.00%	0.00%	0.00%	0.00%
[HEAVY]	[RHESUS]	99.00%	94.82%	87.14%	71.58%	88.14%
[LIGHT]	[HUMAN]	100.00%	99.98%	99.92%	99.40%	99.82%
[LIGHT]	[MOUSE]	13.84%	86.62%	16.64%	22.46%	34.89%
[LIGHT]	[RABBIT]	14.56%	5.84%	1.37%	2.22%	6.89%
[LIGHT]	[RAT]	0.00%	0.00%	0.02%	0.15%	0.04%
[LIGHT]	[RHESUS]	70.14%	49.02%	44.80%	51.15%	54.03%