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8th May 2023 

 

Dear Professor Banovich, 

 

hope this email finds you well. 

 

I'm writing to let you know that your Article, "Cell type-specific and disease-associated eQTL in the 

human lung" has now been seen by 3 referees. You will see from their comments copied below that 

while they find your work of considerable potential interest, they have raised quite substantial 

technical concerns that must be addressed. In light of these comments, we cannot accept the 

manuscript for publication, but would be very interested in considering a revised version that 

addresses these serious concerns. 

 

We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 

submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 

the referees again in the absence of major revisions. 

 

If you choose to revise your manuscript taking into account all reviewer and editor comments, please 

highlight all changes in the manuscript text file. At this stage we will need you to upload a copy of the 

manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 
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If revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available <a 

href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

You may use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 

you cannot send it within this time, please let us know. We will be happy to consider your revision so 

long as nothing similar has been accepted for publication at Nature Genetics or published elsewhere. 

Should your manuscript be substantially delayed without notifying us in advance and your article is 

eventually published, the received date would be that of the revised, not the original, version. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss the required 

revisions further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

Thank you for the opportunity to review your work. 
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Best wishes, 

Chiara 

 

Chiara Anania, PhD 

Associate Editor 

Nature Genetics 

https://orcid.org/0000-0003-1549-4157 

 

 

Referee expertise: 

 

Referee #1: genetic epidemiology 

 

Referee #2: lung disease - GWAS studies 

 

Referee #3:human genetics - bioinformatics - systems biology 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors present the results of single-cell RNA-seq data from lung tissue samples of 116 

individuals (67 ILD and 49 unaffected donors) and show that cell specific expression data gives new 

insights into disease mechanism for ILD than from bulk eQTL data which is an important and novel 

result. 

 

My main criticism of the paper is that many multi-dimensional patterns in the data are presented in 

very large and complicated heatmaps with extra information around the peripheries. I don't think 

these attempts to present "everything" in one plot help the reader get a clear impression of what the 

data is showing, and personally didn't tell me anything extra to what was said in the text, for example 

there is just way too much going on in Figure 4b. Could some of the heatmaps be replaced by scatter 

plots to show trends instead of having to try to compare shades of multiple colours across columns 

e.g. Figure 4c? Are the numbers feeding into the heatmaps provided in supplementary tables so that if 

one does happen to spot an interesting difference in shade the numerical values can be obtained? 

 

In general there are too many figures (i.e. the multiple panels in each figure) not all of which are 

helpful. 

Figure 1a and 1c should be separate Figures. 1b & 1d could be tables (odd that there are no tables in 

the manuscript at all). 

 

Another concern is the conclusions around the different effect sizes and different distances to TSS 

sites between sc-eQTL and int-eQTL. The authors mention power effects but I am also wondering is 

how does the allele frequency spectrum compare between these 2 types of eQTL? 

 

In Figure 4b how exactly were the top-eQTL "pruned" to give a representative sample? 

 

I note some marginally significant P-values being presented as supporting conclusions, particularly in 
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Figure 4d (0.043, 0.04 - should be presented as same number of significant figures), is there really an 

important effect here? Also in Discussion "43% of int-eGenes were differentially expressed (adj. 

p<0.1)", why such a lenient threshold here, what is the proportion using p<0.05? 

Figure 5b - is a t-test appropriate given the very different shapes of the distributions? 

 

Difficult to keep track of what is meant by "top-eQTL". Top amongst what? Top for the cell type and 

gene? Can you be explicit - e.g. most significantly associated eQTL for the tissue/gene? 

 

Supplementary table 1 only has 88 rows and yet it is referred to in a sentence mentioning 116 

samples. 

 

2nd paragraph page 5: "This demonstrated that the relationships between the regulatory mechanisms 

across lung cell types largely reflected the differences in expression patterns across cell types". Is this 

as expected? How do you explain the ones that have swapped position such as Mesothelial and 

CD8/NKT? 

Also "Top eQTL are considered shared between two cell types if they are significant in both cell types 

and their mashr estimated effect size is within a factor of 0.5.", what is the rationale for this 

threshold? How sensitive are results to selection of this threshold? 

 

2nd paragraph page 8: "TopeQTL were considered to be associated with IPF if the identified eGene 

was previously reported (p<1×10-12 in an IPF GWAS meta-analysis9". Why this threshold? 

 

Figure 5: DEG should be defined - presumably differentially expression gene? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Natri and B Del Azodi et al. analyzed lung tissue single cell RNA sequencing data from IPF and controls 

and performed eQTL analysis using a pseudo-bulk approach to identify shared and cell type specific 

eQTLs. Authors describe the patterns of cell type specific eQTLs and identified disease-state 

interaction eQTLs that show differential regulation pattern by disease status. This study is a valuable 

resource for lung biology community for providing cell-type specific eQTL data. Pseudo-bulk approach 

is reasonable, but the study would be even more valuable if true single cell level heterogeneity could 

by incorporated in the analysis - such as eQTLs of cellular trajectories associated with alveolar 

epithelial regeneration and repair in this dataset with pulmonary fibrosis. 

 

Major comments 

1.Fig 4b: I believe the purpose of the figure is to demonstrate multi-cell type eQTLs tend to be lineage 

specific with similar effect sizes by lineage, but too much information is displayed which makes it less 

intuitive. Consider adding labels to the cluster figure as the text describes clusters by number, and 

focusing on a few representative, disease relevant eQTLs (that show concordant and discordant effects 

by cell types for example) in the main figure may be more helpful. 

2.Disease-specific eQTL, such as DSP is very interesting that same locus has differential regulatory 

effects. The authors examined TF motifs and differential expression of TFs but it is not directly liked 

back to DSP. Was TFs differentially expressed among the different genotype groups by disease status? 

Was this variant associated with DSP or other IPF risk variants? 

3.MUC5B GWAS variant colocalization is significant in AT2, transitional AT2, secretory cells and 
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macrophages while MUC5B is predominantly expressed in one secretory cell type 

(SCGB1A1+MUC5B+). As SCGB1A1+ secretory cells can transdifferentiate into other epithelial cell 

types in IPF, incorporating trajectory analysis and examining the dynamic eQTL pattern would further 

clarify the causal cell type. 

4.For single-cell type eQTLs, how many of them were explained by cell-type specific expression vs. 

more globally expressed but showing specific regulatory effect on a single cell type? 

5.KRT5-/KRT17+ cells are excluded from disease interaction analysis as it probably is not expressed 

enough in the non-diseased sample, however as it is a unique pathologic cell type in fibrosis, would be 

interesting to show the eQTL result/discussion on its findings. Similar to comment on 3 –trajectory 

analysis with AT2 cells and KRT5-/KRT17 will highlight the utility of single cell RNAseq. 

Minor comments: 

1.Providing the number of cells and relative abundance of cell types per subject and median number 

of genes in table S1 would be helpful. 

2.Was regional heterogeneity incorporated in the analysis? 

3.What covariates were used for the LIMIX? Smoking status will confound SNP-gene expression 

relationship, was it adjusted? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Natri et al presents a large data set of lung single cell data, and map eQTLs in this single cell cohort. 

The work is timely and to my knowledge reflects the first single cell eQTL study in lung. However, I 

think there are a lot of technical concerns that I have. Single cell data can be sparse, and pseuddobulk 

profiles may have variable sparsity if different numbers of cells are used to create profiles. I am 

worried that they may have a large number of false positives and may have inflated statistics. My 

major comments are below: 

 

1.I think it would be useful to assess how well their results co-localize with GTEX lung. I think this 

would be a useful sanity check for their results, and would give a sense as to what is being missed in 

bulk analyses. Currently there is some mention of overlap in Figure 5f, but this may be confounded by 

thresholding. Specifically, I would like to know, for lead SNP-gene pairs out of their data, how well do 

effect sizes (betas) correspond to GTEX betas for the same SNP-gene pair. Also – for a given tissue, 

what percentage of discovered eGenes colocalize with lung GTEX results. Is GTEX capturing some cell-

types better than others? 

 

2.I had a few questions about the single cell analysis. The authors used shared—nearest neighbor 

strategy to perform batch correction. Given the tissue derived nature of their data set I would worry 

about batch effects. I could not find any discussion around the potential for batch effects in their data. 

Can the authors provide some metrics and reassurance that batch has been adequately addressed? 

Given the relatively small number of cells per cell-type per individual, batch effects may be a 

particular issue. 

 

3.I noticed that the authors did build pseudobulk profiles from cell-types in individuals with as few as 

5 cells. That strikes me as somewhat dangerous, given how spare single cell data can be (as few as 

1000 non-zero genes per their QC). I would expect that in these pseudobulk profiles that many zero 

count genes are present. I think the authors probably need to apply more stringent QC to their 

pseudobulk profiles. Given the number of cell types examined (43), and the number of individuals 
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(100) assayed, and the cells generated (500K), it means that on average pseudibulk profile is only 

constituted from ~100 cells. They should assess the number of zero count values for genes in their 

analysis. If a profile has too many zero count values, probably it should be removed. If there is too 

much sparisity in their data, authors may want t consider using coarser cell-type definitions. 

 

4.Author’s should use a computational strategy like scrublet to remove doublets. Currently it appears 

this is done qualitatively. 

 

5.It isn’t clear to me what type of SNP QC was done by the authors. Typically low quality imputed 

SNPs are removed. 

 

6.Single cell eQTL maps are susceptible to statistical inflation. Given the relatively small number of 

individuals in their study (~100, with individual cell types having as few as ~50), and the potential for 

sparsity or outlier expression values to not work well with linear models, there is the potential for 

inflated p-values. To assess the possibility, I think it is important for authors to do permutations. The 

appropriate permutations here would be to reassign whole-genome genotype data to single cell data. 

E.g. each individual gets someone else’s genome-wide genotype data. They should then carry through 

their statistical procedure. If robust, they should find very few if any eQTLs. While cumbersome – it is 

the only way to understand if they are producing false positives in their analysis. 

 

7.To identify eQTL sharing, the authors identify the top SNP-gene pair for each cell-type and then 

assess consistently across cell types. This approach might suffer from thresholding of effects. One 

alternative strategy that might be more accurate might be to map eQTLs across all celltypes (e.g. 

pseudobulking all cell types together) or across major cell types (e.g. all epithelial cells). Then, they 

can use the single cell data to assess heterogeneity of effect sizes. Another alternative strategy is to 

apply colocalization analysis to assess if effects are similar or different across celltypes. 

 

8.The eQTLs found in an individual cell-type are perhaps the most susceptible to statistical artifact. 

Can the authors comment further? Permutation analysis here may be reassuring. Making sure that 

these genes do not have sparse expression in the cell-type of interest is important. Assessing overlap 

of SNPs with regulatory structures (Cis-regualtory elements, enahncers, etc) could be informative too. 

 

9.I am a little confused about Figure 4c. Is this a plot of 3,725 genes, or eQTL effects? Appears to be 

genes, right? Would the pathways and general structure be similar if the authors had simply clustered 

on gene expression? Why are the IPF implicated genes and the multi-cell eQTLs being analyzed 

together? I would imagine that the results are mostly dirven by the multi-cell eQtls, and that IPF 

eQTLs are a relatively small number? 

 

10.I have concerns about the interaction analysis. The number of interacting eQTLs seem high. I also 

noticed that the authors require only a minimum of 10 samples per group. Finding interactions in such 

a small number of samples could lead to highly inflated statistics. This may be compounded by the 

small number of cells creating sparsity. I would ask the reviewers to test using permutations; in this 

case permuting case-control status would be the way to do it. This way main effects are preserved, 

and interaction betas should be null. If the p-values are indeed inflated, I would encourage the 

authors to try using larger cell-type classifications to get around the sparsity issue. 
 

Author Rebuttal to Initial comments   
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Reviewer #1: 

Remarks to the Author: 

The authors present the results of single-cell RNA-seq data from lung tissue samples of 116 individuals 

(67 ILD and 49 unaffected donors) and show that cell specific expression data gives new insights into 

disease mechanism for ILD than from bulk eQTL data which is an important and novel result. 

 

My main criticism of the paper is that many multi-dimensional patterns in the data are presented in very 

large and complicated heatmaps with extra information around the peripheries. I don't think these 

attempts to present "everything" in one plot help the reader get a clear impression of what the data is 

showing, and personally didn't tell me anything extra to what was said in the text, for example there is 

just way too much going on in Figure 4b. Could some of the heatmaps be replaced by scatter plots to 

show trends instead of having to try to compare shades of multiple colours across columns e.g. Figure 

4c? Are the numbers feeding into the heatmaps provided in supplementary tables so that if one does 

happen to spot an interesting difference in shade the numerical values can be obtained? 

 

We want to thank the reviewer for their encouraging comments. We have addressed the reviewer’s 

criticism by (1) simplifying Figure 4 to make it more readable, (2) including additional information in 

Supplementary Tables 1, 3, and 5, and (3) providing all summary statistics for download. 

 

In general there are too many figures (i.e. the multiple panels in each figure) not all of which are helpful. 

Figure 1a and 1c should be separate Figures. 1b & 1d could be tables (odd that there are no tables in the 

manuscript at all). 

 

We have updated Supplementary Table 1 to include the information presented in Fig. 1b and 

Supplementary Table 3 with the information presented in Fig. 1d. We have elected to keep Fig. 1 panels 

b and d, as they provide a one-glance overview of the demographic and cell type information associated 

with the data. 

 

Another concern is the conclusions around the different effect sizes and different distances to TSS sites 

between sc-eQTL and int-eQTL. The authors mention power effects but I am also wondering is how does 

the allele frequency spectrum compare between these 2 types of eQTL? 



 
 

 

8 
 

 

 

 

We find a significant difference in minor allele frequencies between sc-eQTL and int-eQTL (p<2.2×10-16), 

with int-eQTL exhibiting higher MAFs. This difference, however, could also be attributed to power 

differences, as we have less confidence in int-eQTL with lower MAFs. These results are presented under 

the subheading “Disease-specific eQTL are highly cell type-specific.” 

 

In Figure 4b how exactly were the top-eQTL "pruned" to give a representative sample? 

 

We provide an explanation in the Methods section under “Assessing significance, sharing, and eQTL 

classification”: For each gene, if there is a single top-eQTL, that eQTL is retained. If there are two top-

eQTL, the Euclidean distance between the centered absolute values of the estimated effect sizes across 

cell types for the two eQTL are compared. If the distance is greater than the set threshold (dist=0.2), 

both are retained. If the distance is less than the threshold then the one that is significant in more cell 

types is retained. Finally, if there are more than three top-eQTL, the pairwise Euclidean distance 

between the centered absolute values of the estimated effect sizes for each pair of top-eQTL is 

calculated. If all pairwise distances are above the threshold, all are retained. Otherwise, hierarchical 

clustering is performed and the tree is cut using cutree at k between 2 and 5 that maximizes the 

Silhouette width. For each cluster, the top-eQTL that is significant in most cell types is retained. We have 

now included a note in this section of the Methods that this refers to Fig. 4. 

 

I note some marginally significant P-values being presented as supporting conclusions, particularly in 

Figure 4d (0.043, 0.04 - should be presented as same number of significant figures), is there really an 

important effect here? 

 

We believe the reviewer is referring to the local false sign rates (lfsr) presented in Figure 5. We have 

used lfsr in place of false discovery rate and considered eQTL with lfsr<0.05 significant. The lfsr is stricter 

than the false discovery rate as it requires significant 

discoveries to have a consistent sign. A threshold of 0.05 has been previously used in eQTL discovery 

(see, e.g., 10.1101/2023.05.29.542425). 

 

Also in Discussion "43% of int-eGenes were differentially expressed (adj. p<0.1)", why such a lenient 

threshold here, what is the proportion using p<0.05? 
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Here, we used a relaxed threshold for differential expression to more reliably select a set of int-eGenes 

that were equally expressed between the two groups. With p<0.05, the number of DE int-eGenes was 

32%. 

 

Figure 5b - is a t-test appropriate given the very different shapes of the distributions? 

 

We have repeated this analysis using the non-parametric Wilcoxon sum rank test. These tests yield 

similarly significant results of p<1×10-12 for each metric. 

 

Difficult to keep track of what is meant by "top-eQTL". Top amongst what? Top for the cell type and 

gene? Can you be explicit - e.g. most significantly associated eQTL for the tissue/gene? 

 

In the second paragraph of the section titled “Most eQTL are shared between cell types”, we have 

defined “top-eQTL” as the most significant eSNP for a given eGene in a given cell type. This definition is 

used throughout the manuscript. 

 

Supplementary table 1 only has 88 rows and yet it is referred to in a sentence mentioning 116 samples. 

 

This version of Supplementary Table 1 only contained the information for the previously unpublished 

sc-RNAseq samples. We have updated this table to include the demographic information for all analyzed 

samples. 

 

2nd paragraph page 5: "This demonstrated that the relationships between the regulatory mechanisms 

across lung cell types largely reflected the differences in expression patterns across cell types". Is this as 

expected? How do you explain the ones that have swapped position such as Mesothelial and CD8/NKT? 

 

Generally, we expected the PCA analyses conducted on the gene expression and eQTLs to share many 

features. This was driven by the logic that cis-eQTL are drivers of the overall gene expression patterns 
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observed in a cell type – even with the majority of eQTL being shared across cell types. Conversely, the 

broader expression program also impacts the cis-eQTL landscape - e.g. genes with high expression levels 

in a cell type are more likely to be detected as eQTL and transcription factor expression will drive cell 

type and lineage specific eQTL. Thus, we anticipate a plot very similar to what was presented in the 

manuscript. Importantly, the PCA loadings were calculated separately on each data set so we anticipate 

some subtle differences. In the case of Mesothelial cells these occupy a very different space on PC1, but 

are in similar regions in PC2 in both analyses. Mesothelial cells are a lower abundance cell type with an 

overall lower number of eQTL which may drive the shift in PC1. CD8 and NK cells do change their relative 

position but the nearest neighbors remain quite similar.  

 

Also "Top eQTL are considered shared between two cell types if they are significant in both cell types and 

their mashr estimated effect size is within a factor of 0.5.", what is the rationale for this threshold? How 

sensitive are results to selection of this threshold? 

 

To our knowledge, there is no universally agreed upon standard for calling an eQTL as shared. Because 

mashr reduces power imbalance issues and improves estimated effect sizes across cell types, we find 

that requiring significance and effect size similarity in both cell types is a robust method for calling 

sharing. The factor approach allows for greater differences in large effect size eQTL and requires small 

effect eQTL to be more similar, the specific factor was selected because it is easily interpretable and 

requires eQTL effect sizes to not only be in the same direction but also of a similar magnitude. 

 

2nd paragraph page 8: "TopeQTL were considered to be associated with IPF if the identified eGene was 

previously reported (p<1×10-12 in an IPF GWAS meta-analysis9". Why this threshold? 

 

We originally chose this threshold to obtain a reasonable number of high-confidence IPF-associated 

genes (2,406 variants flanking 92 genes) to project this information on the hierarchical clustering of 

eQTL. This includes the 20 genes reported in Allen et al. 2020, including the 4 genes that replicate across 

cohorts. We have since revised the figure to simplify it and have removed the annotation for GWAS, as 

no informative patterns were observed among the clusters presented in Fig. 4. We have also provided 

all the eQTL presented in Fig. 4 in Supplementary Table 5. 

 

Figure 5: DEG should be defined - presumably differentially expression gene? 
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We have now included a definition of this abbreviation in the figure legend. 

 

Reviewer #2: 

Remarks to the Author: 

Natri and B Del Azodi et al. analyzed lung tissue single cell RNA sequencing data from IPF and controls 

and performed eQTL analysis using a pseudo-bulk approach to identify shared and cell type specific 

eQTLs. Authors describe the patterns of cell type specific eQTLs and identified disease-state interaction 

eQTLs that show differential regulation pattern by disease status. This study is a valuable resource for 

lung biology community for providing cell-type specific eQTL data. Pseudo-bulk approach is reasonable, 

but the study would be even more valuable if true single cell level heterogeneity could by incorporated in 

the analysis - such as eQTLs of cellular trajectories associated with alveolar epithelial regeneration and 

repair in this dataset with pulmonary fibrosis. 

 

Major comments 

1.Fig 4b: I believe the purpose of the figure is to demonstrate multi-cell type eQTLs tend to be lineage 

specific with similar effect sizes by lineage, but too much information is displayed which makes it less 

intuitive. Consider adding labels to the cluster figure as the text describes clusters by number, and 

focusing on a few representative, disease relevant eQTLs (that show concordant and discordant effects 

by cell types for example) in the main figure may be more helpful. 

 

We thank the reviewer for this comment which was also brought up by reviewer 1. We have revised Fig. 

4 by moving the eQTL metric violin plots to Figure S9 and by simplifying the heatmap annotations. 

 

2.Disease-specific eQTL, such as DSP is very interesting that same locus has differential regulatory 

effects. The authors examined TF motifs and differential expression of TFs but it is not directly liked back 

to DSP. Was TFs differentially expressed among the different genotype groups by disease status? Was 

this variant associated with DSP or other IPF risk variants? 

 

The int-eQTL SNP rs2003916 was not significantly associated with IPF risk in the meta-analysis (p=

0.03377). When contrasting donors with 0/0 genotypes for rs2003916 and those with at least one ALT 

allele or those with two ALT alleles, we find no differential expression (thresholds for DE: AUC>0.6 and 
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adj. p<0.01 with Wilcoxon auROC method in presto) of the significantly enriched TFs in any of the 

epithelial cell types included in the eQTL analysis. 

 

3.MUC5B GWAS variant colocalization is significant in AT2, transitional AT2, secretory cells and 

macrophages while MUC5B is predominantly expressed in one secretory cell type (SCGB1A1+MUC5B+). 

As SCGB1A1+ secretory cells can transdifferentiate into other epithelial cell types in IPF, incorporating 

trajectory analysis and examining the dynamic eQTL pattern would further clarify the causal cell type. 

 

We agree that is interesting, but pseudobulk-based eQTL quantification inherently aggregates data from 

all of a given cell-type, so the effect cannot be modeled across a trajectory – that would require a 

fundamentally different approach - treating each individual cell as an observation. While we are excited 

about the concept of such analyses, we are not aware of sufficiently developed rigorous methods that 

are currently available to make such an analysis robust. Indeed our group is working to develop methods 

in this space, but they are not yet ready to be deployed in this manuscript. 

 

4. For single-cell type eQTLs, how many of them were explained by cell-type specific expression vs. more 

globally expressed but showing specific regulatory effect on a single cell type? 

 

Cell type-specific eQTL were detected for 29 cell types, and the 2,332 eQTL that were specific to a single 

cell type were associated with 1,828 genes. Out of these genes, 1,411 had eQTL only in one cell type. 

Out of these, 584 genes met the threshold of >5% of cells expressing the gene with a log2-transformed 

read count of 1. These eGenes were detected across 24 cell types. Out of these 584 robustly expressed 

cell type-specific eGenes, most met the expression threshold in multiple cell types. 13 were only 

expressed in the given cell type, and 14 were globally expressed across all cell types. As the genes 

included in eQTL testing were selected based on a threshold across all cell types, genes with lower 

expression levels were included in the analysis for each cell type. We have added a new Supplementary 

Figure 10 to present the expression levels of these eGenes to demonstrate that the cell type-specific 

eQTL are not largely driven by cell type-specific gene expression. 
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Supplementary Figure 10. Expression of eGenes unique to a single cell type (n=584). 

 

Of the int-eGenes, 43% were differentially expressed (adj. p<0.1) between ILD and unaffected samples in 

the particular cell type. 

 

5.KRT5-/KRT17+ cells are excluded from disease interaction analysis as it probably is not expressed 

enough in the non-diseased sample, however as it is a unique pathologic cell type in fibrosis, would be 

interesting to show the eQTL result/discussion on its findings. Similar to comment on 3 –trajectory 

analysis with AT2 cells and KRT5-/KRT17 will highlight the utility of single cell RNAseq. 
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We thank the reviewer for this comment. We obviously agree that KRT5-/KRT17+ cells are interesting! 

These cells were excluded from the interaction analysis due to insufficient cells in the control samples. 

Part of our motivation to build new eQTL models that capture the plasticity of cell types was due to our 

observations of the AT2 -> KRT5-/KRT17+ transitions. As we mentioned above, these models are not yet 

fully developed but we hope to apply them to this trajectory in the future. 

 

 

Minor comments: 

1.Providing the number of cells and relative abundance of cell types per subject and median number of 

genes in table S1 would be helpful. 

 

We have now included the number of cells, the relative abundance of cell types, and the proportion of 

genes included in the eQTL analysis that were expressed in at least 1%, 5%, or 10% of cells in at least one 

of the analyzed cell types for each sample in Supplementary Table S1. 

 

2.Was regional heterogeneity incorporated in the analysis? 

 

Our samples include paired more and less fibrotic samples from donors with ILD. In the pseudobulk-

eQTL analysis, we have aggregated gene expression across all cells from each donor, thus aggregating 

information across more and less fibrotic regions. We agree that it would be interesting to explore 

relationships within a given sample, but this dataset lacks sufficient statistical power for these analyses. 

We hope to perform these in the future on a larger dataset sufficiently powered for such an approach. 

 

3.What covariates were used for the LIMIX? Smoking status will confound SNP-gene expression 

relationship, was it adjusted? 

 

As described in the Methods, in order to control for unwanted technical effects as well as known and 

unknown confounders, we regressed out the first 20 cell type expression principal components before 

model fitting. We also accounted for variance due to population structure by including a random effect 

in the linear mixed model with covariance defined by an identity-by-descent relationship matrix 

between individuals. Further, to account for differences in cell type abundance across donors, we 
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included the number of cells aggregated as a second random effect. Random effects were marginalized 

from the model using the low-rank optimization method. We find that smoking status and other known 

covariates are correlated with PCs accounted for in our analysis, for example, PC2 accounts for tobacco 

usage in the epithelial AT2 model (new Supplementary Figure 5). 

 

Fig. S5: Heatmap of correlations between the PCs included as covariates in the eQTL analysis of AT2 cells 

and known covariates. 

 

Reviewer #3: 

Remarks to the Author: 

Natri et al presents a large data set of lung single cell data, and map eQTLs in this single cell cohort. The 

work is timely and to my knowledge reflects the first single cell eQTL study in lung. However, I think there 

are a lot of technical concerns that I have. Single cell data can be sparse, and pseuddobulk profiles may 

have variable sparsity if different numbers of cells are used to create profiles. I am worried that they may 

have a large number of false positives and may have inflated statistics. My major comments are below: 
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1.I think it would be useful to assess how well their results co-localize with GTEX lung. I think this would 

be a useful sanity check for their results, and would give a sense as to what is being missed in bulk 

analyses. Currently there is some mention of overlap in Figure 5f, but this may be confounded by 

thresholding. Specifically, I would like to know, for lead SNP-gene pairs out of their data, how well do 

effect sizes (betas) correspond to GTEX betas for the same SNP-gene pair. Also – for a given tissue, what 

percentage of discovered eGenes colocalize with lung GTEX results. Is GTEX capturing some cell-types 

better than others? 

 

As per the reviewer’s helpful suggestion, we have extended our analysis of the replication of sc-eQTL 

among GTEx lung eQTL in Supplementary Note 1 and Supplementary Figures S14 and S15. Overall, we 

find a significant correlation between cell type-eQTL and GTEx bulk-eQTL across cell types and tissues. 

This correlation is the strongest between immune cell type sc-eQTL and GTEx whole blood and non-

immune sc-eQTL and GTEx lung. These patterns are also observed in the colocalization analysis. 
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Fig. S14: Correlation of eQTL effect sizes (R2) between cell type-eQTL and GTEx bulk eQTL (above), and 

for each cell type, the proportion of the tested genes that colocalized with GTEx bulke-eQTL (below). 

 

 

Fig. S15: eQTL effect sizes from GTEx lung, whole blood, and brain cortex (y-axis) and epithelial AT2 cells 

and monocyte-derived macrophages (x-axis). 

 

2.I had a few questions about the single cell analysis. The authors used shared—nearest neighbor 

strategy to perform batch correction. Given the tissue derived nature of their data set I would worry 

about batch effects. I could not find any discussion around the potential for batch effects in their data. 

Can the authors provide some metrics and reassurance that batch has been adequately addressed? 

Given the relatively small number of cells per cell-type per individual, batch effects may be a particular 

issue. 

 

We have conducted additional analyses to evaluate batch mixing in our scRNAseq data, presented in a 

new Supplementary Figure 2. We also note that in our eQTL analysis, we control for any remaining 

batch effects by including the top 20 PCs as covariates in the LMM (new Supplementary Figure 5). 
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3.I noticed that the authors did build pseudobulk profiles from cell-types in individuals with as few as 5 

cells. That strikes me as somewhat dangerous, given how spare single cell data can be (as few as 1000 

non-zero genes per their QC). I would expect that in these pseudobulk profiles that many zero count 

genes are present. I think the authors probably need to apply more stringent QC to their pseudobulk 

profiles. Given the number of cell types examined (43), and the number of individuals (100) assayed, and 

the cells generated (500K), it means that on average pseudibulk profile is only constituted from ~100 

cells. They should assess the number of zero count values for genes in their analysis. If a profile has too 

many zero count values, probably it should be removed. If there is too much sparisity in their data, 

authors may want t consider using coarser cell-type definitions. 

 

We agree with the reviewer that sparsity is a difficult issue to address in analyses such as this. We used 5 

cells as a minimum threshold to include the donor in that cell-type analysis as recommended by Cuomo, 

Alvari, Azodi et al. 2021. This threshold was recommended to minimize donor loss (which would have a 

substantial negative impact on power) while removing donors with limited expression information. They 

show that using a mean aggregation approach, this threshold was effective at generating pseudobulk 

counts that replicated eQTL from bulk tissue studies. In our work, to further address the issue of 

sparsity, we applied a filtering to genes to only include genes in our analysis which had sufficient levels 

of expression by requiring both breadth (expression in >10% of cells) and magnitude (mean counts > 0.1 

across all cells) of expression. With these QC filters, the median frequency of zeros across genes and 

celltypes is just 9% (see new Supplemental Table 4). Finally, because mashr requires a complete eQTL 

matrix (i.e., no missing estimates for any eQTL for any celltype), we do run limix eQTL mapping on some 

genes for some celltypes where there is poor power. However, after applying mashr, we apply a stricter 

inclusion filter where mashr-adjusted eQTL effects are only reported for genes meeting the expression 

criteria for that given celltype.  

 

4.Author’s should use a computational strategy like scrublet to remove doublets. Currently it appears this 

is done qualitatively. 

 

We have assessed numerous methods to identify and remove doublets, including tools such as 

DoubletFinder, which has been reported to exceed scrublet in accuracy (10.1016/j.cels.2020.11.008). 

We find that our current approach performs equally well or better than strictly computational 

approaches: in the epithelial cell population, DoubletFinder only recovers 8,230 doublets (3.7%), while 

our approach identifies 18,588 doublets (8.5%), which is more in line with our expectation. Thus, have 

elected to employ this strategy. 
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5.It isn’t clear to me what type of SNP QC was done by the authors. Typically low quality imputed SNPs 

are removed. 

 

Biallelic, autosomal SNPs were filtered to include SNPs with a minor allele frequency > 5%, Hardy-

Weinberg equilibrium p>1×10-6, and further pruned to remove highly correlated SNPs, resulting in ~1.9 

million SNPs. We have now included additional permutation analyses to demonstrate the robustness of 

our findings. 

 

6.Single cell eQTL maps are susceptible to statistical inflation. Given the relatively small number of 

individuals in their study (~100, with individual cell types having as few as ~50), and the potential for 

sparsity or outlier expression values to not work well with linear models, there is the potential for inflated 

p-values. To assess the possibility, I think it is important for authors to do permutations. The appropriate 

permutations here would be to reassign whole-genome genotype data to single cell data. E.g. each 

individual gets someone else’s genome-wide genotype data. They should then carry through their 

statistical procedure. If robust, they should find very few if any eQTLs. While cumbersome – it is the only 

way to understand if they are producing false positives in their analysis. 

 

We thank the reviewer for this helpful suggestion. We employed a permutation analysis by shuffling 

genotypes and repeating the eQTL and mashr analyses for each cell type and comparing the observed p-

values to permuted p-values (new Supplementary Figure 6). Further, we compared the permuted p-

values to the expected statistical p-values under the null hypothesis (new Supplementary Figure 7). We 

observe no notable deviation of the permuted p-values compared to the null distribution, 

demonstrating that our approach is well-calibrated to avoid false positives. 
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Fig. S6: Quantile-quantile plots for each cell-type showing the observed empirical p-values of the top hit 

per gene (y-axis) against the permutation-based (genotypes were shuffled independently for each cell-

type) empirical p-values of the top hit per gene (x-axis). Empirical p-values are from the limix sc-eQTL 

mapping runs and are shown on the -log10 scale. Observed and permuted values were sorted from 

largest to smallest.  
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Fig. S7: QQ plots for each cell-type showing the expected statistical p-values under the null hypothesis 

(x-axis) against the permutation-based statistical p-values using limix to run sc-eQTL mapping with 

permuted genotypes (y-axis). The null hypothesis was generated by, for each gene, taking the minimum 

value after sampling N from a uniform distribution (min=0; max=1), where N is the number of SNPs 

tested for that gene. 

 

7.To identify eQTL sharing, the authors identify the top SNP-gene pair for each cell-type and then assess 

consistently across cell types. This approach might suffer from thresholding of effects. One alternative 

strategy that might be more accurate might be to map eQTLs across all celltypes (e.g. pseudobulking all 
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cell types together) or across major cell types (e.g. all epithelial cells). Then, they can use the single cell 

data to assess heterogeneity of effect sizes. Another alternative strategy is to apply colocalization 

analysis to assess if effects are similar or different across celltypes. 

 

To reduce the effect that thresholding would have on our eQTL sharing analysis, we (1) applied mashr, 

(2) used a two-stage significance thresholding that used a less stringent threshold for an eQTL in any 

second cell type to be considered significant, and (3) considered eQTL to be shared if their mashr 

estimated effect sizes were within a given factor.  

 

8.The eQTLs found in an individual cell-type are perhaps the most susceptible to statistical artifact. Can 

the authors comment further? Permutation analysis here may be reassuring. Making sure that these 

genes do not have sparse expression in the cell-type of interest is important. Assessing overlap of SNPs 

with regulatory structures (Cis-regualtory elements, enahncers, etc) could be informative too. 

 

In addition to the permutation analyses and inspecting the sparseness of our expression data, we have 

overlapped our different classes of cell type-eQTL as well as the int-eQTL with genic annotations from 

TxDb. These analyses reveal no statistically significant differences between the different types of eQTLs 

when inspecting the proportions of eQLT along promoters, genic, and intergenic regions 

(Supplementary Figure S12). We now present these results in the sections “Most eQTL are shared 

between cell types.” In the absence of reliable annotations for the relevant cell types, we did not pursue 

analyses on enhancers. 

 

9.I am a little confused about Figure 4c. Is this a plot of 3,725 genes, or eQTL effects? Appears to be 

genes, right? Would the pathways and general structure be similar if the authors had simply clustered on 

gene expression? Why are the IPF implicated genes and the multi-cell eQTLs being analyzed together? I 

would imagine that the results are mostly driven by the multi-cell eQtls, and that IPF eQTLs are a 

relatively small number? 

 

Figure 4 is of eQTL effect sizes. We have revised the figure so that eQTL effect sizes are shown in gray for 

genes expressed in <10% of cells of that cell-type. We included the IPF GWAS variants to explore 

whether they cluster with specific classes of multi-cell type-eQTL. However, we observe no significant 

enrichment of GWAS SNPs among the clusters in the old Fig. 4c. We have simplified the figure to clarify 

its purpose, which is to demonstrate the high level of lineage sharing of multi-cell type-eQTL, by 
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excluding some of the detailed annotations. We have also shared the eQTL presented in this figure in 

Supplementary Table 5. 

 

10.I have concerns about the interaction analysis. The number of interacting eQTLs seem high. I also 

noticed that the authors require only a minimum of 10 samples per group. Finding interactions in such a 

small number of samples could lead to highly inflated statistics. This may be compounded by the small 

number of cells creating sparsity. I would ask the reviewers to test using permutations; in this case 

permuting case-control status would be the way to do it. This way main effects are preserved, and 

interaction betas should be null. If the p-values are indeed inflated, I would encourage the authors to try 

using larger cell-type classifications to get around the sparsity issue. 

 

In our int-eQTL analysis, after running mashr we detect 83,596 int-eQTL. Following the reviewers 

suggestion, we permuted the disease status of the individuals and then repeated this analysis 

(interaction-eQTL mapping with limix + mashr + calling significance with lfsrs) and using the same 

significance thresholds only 829 int-eQTL from the permuted run were considered significant. These 

results support a 1% false positive rate in our int-eQTL mashr results, demonstrating that our minimum 

requirements for inclusion in the interaction eQTL mapping study were sufficient. We now report these 

results in the manuscript under “Disease-specific eQTL are highly cell type-specific.” 

 

 

Decision Letter, first revision: 

 
 7th Nov 2023 

 

 

Dear Professor Banovich, 

 

Your Article, "Cell type-specific and disease-associated eQTL in the human lung" has now been seen 

by 3 referees. You will see from their comments below that while they find your work of interest, some 

important points are raised. We are interested in the possibility of publishing your study in Nature 

Genetics, but would like to consider your response to these concerns in the form of a revised 

manuscript before we make a final decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 

including with the chief editor, with a view to identifying key priorities that should be addressed in 

revision and sometimes overruling referee requests that are deemed beyond the scope of the current 

study. In this case, we would like you to address Reviewers´ comments in full. We hope that you will 

find the prioritized set of referee points to be useful when revising your study. Please do not hesitate 

to get in touch if you would like to discuss these issues further. 
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We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 

this time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 



 
 

 

25 
 

 

 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

Chiara 

 

Chiara Anania, PhD 

Associate Editor 

Nature Genetics 

https://orcid.org/0000-0003-1549-4157 

 

 

Referee expertise: 

 

Referee #1: 

 

Referee #2: 

 

Referee #3: 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Figure 4 is clearer and more concise now. 

 

Even though the authors have added the category labels for diagnosis, smoking status and ethnicity to 

Supplementary Table 1 (although I think they were there in the previous version) it is still not possible 

to obtain the actual percentages of each category easily from Figure 1b (nor is this summary given in 

Supplementary Table 1) due to the inherent problem with stacked bar charts i.e. you can only read 

directly off the Y-axis scale what the percentage of the lower category is, also the choice of Y-axis tick 

marks is poor in that we have ticks at 0, 12.5, 25, 37.5 etc. making extracting the information at a 

glance even harder. Can you add the actual percentages below each category label in Figure 1b e.g. 

 

Control 

(37.8%) 

 

And perhaps add the summary percentages to Supplementary Table 1. 

 

In Figure5d I wasn’t questioning the choice of lsfr <0.05, just that the results only just passing this 

threshold aren’t as convincing, especially as 4 lsfrs are presented, unless the lsfr is also adjusted for 

the number of cell types tested? In the statement: “including rs2003916, which was not significantly 

associated with IPF risk in the GWAS meta-analysis (p=0.03377)....”, I think the standard error has 
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been given instead of the P value from the GWAS meta-analysis. However, I do not agree with the 

statement as it stands as a single SNP lookup does not require a correction for multiple testing. The 

same number of significant digits should be displayed for the lsfr for Sec, SCGBA32+. 

 

In Discussion "43% of int-eGenes were differentially expressed (adj. p<0.1)", the authors say “Here, 

we used a relaxed threshold for differential expression to more reliably select a set of int-eGenes that 

were equally expressed between the two groups”, this reason for this more lenient threshold should be 

stated in the text. 

 

I am satisfied with the responses and explanations to all my other outstanding comments and queries 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Authors have addressed most of the points I raised, except the following minor points. 

Fig 4 – in the revised figure authors omit the cell types previously specified in the bottom of the 

heatmap which makes the figure incomplete to understand, especially as the supplementary file is just 

listing the variants without cell types and effect sizes. The supplementary table should be expanded to 

include cell types and effect sizes. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Responses to my comments. (Reviewer #3) 

 

Authors have addressed some of my comments. I will say that their responses were somewhat more 

terse than I am used to, and in some instances I felt that they could have addressed comments 

better. 

 

Comment 1 

The authors examined colocalization between GTEX and their eQTLs. I felt that they did a minimal 

analysis here. Notably the colocalization seems pretty low. Do the authors have any comment on this? 

How well do their loci localize with non-lung, and non-blood tissues? 

 

Comment 2 

The authors did not really make any effort to evaluate their batch correction strategy rigorously, or 

compare it to other batch correction strategies. Taken at face-value, Supplementary Figure S2 reveals 

substantial batch effects. 

 

Comment 3 

I expressed concerns about the small number of cells in pseudobulk profiles. It isn’t clear form the 

author’s response, that they investigated the potential for the small number of cells for some profiles 

to be an issue or not. They cited Cuomo et al to defend their choice. However, few single cell eQTL 

studies have been done, and I am not sure that there is a good understanding of what an appropriate 

threshold is here. 
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Comment 4. 

I asked the authors what strategy they used to remove Doublets. In the response letter they indicated 

they used Doubletfinder. However, it doesn’t appear that this is described (or justified) in the methods 

of the main text. This is an important choice and should be described. 

 

 

Comment 8 

The authors did not bother to assess enrichment of their eQTLs in regulatory elements at all. 
 

Author Rebuttal, first revision: 

 

  

Reviewers' Comments: 

 
Reviewer #1: 

Remarks to the Author: 

Figure 4 is clearer and more concise now. 

 
Even though the authors have added the category labels for diagnosis, smoking status and ethnicity to 

Supplementary Table 1 (although I think they were there in the previous version) it is still not possible to 

obtain the actual percentages of each category easily from Figure 1b (nor is this summary given in 

Supplementary Table 1) due to the inherent problem with stacked bar charts i.e. you can only read 

directly off the Y-axis scale what the percentage of the lower category is, also the choice of Y-axis tick 

marks is poor in that we have ticks at 0, 12.5, 25, 37.5 etc. making extracting the information at a 

glance even harder. Can you add the actual percentages below each category label in Figure 1b e.g. 

 
Contr

ol 

(37.8

%) 

 
And perhaps add the summary percentages to Supplementary Table 1. 

 
We thank the Reviewer for their comments, and we are glad that our improvements 

were well received. We appreciate that it was still difficult to obtain actual percentages 

from these plots/tables and we have now added these percentages directly to the 
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figure legend under Figure 1b: “ Percentage proportions of donors by diagnosis 

(42.1% unaffected control, 34.2% IPF, 23.7% other ILD), self-reported ethnicity (66.7% 

European, 9.6% African American, 17.5% N/A, 6.1% other), and smoking history (46.5% 

ever smoker, 29.8% never smoker, 23.7% N/A).”We ultimately did not add these 

percentages to Table S1 as this table is on a per individual basis. 

In Figure5d I wasn’t questioning the choice of lsfr <0.05, just that the results only just passing this 

threshold aren’t as convincing, especially as 4 lsfrs are presented, unless the lsfr is also adjusted for 

the number of cell types tested? 

 
We thank the Reviewer for clarifying their question and further inquiring on the 

significance of the result presented in the figure. We are utilizing mashR for 

multivariate adaptive shrinkage; instead of relying on condition-by-condition effect 

size measurements and significance levels, this approach leverages information 

across all tested conditions, in this case, cell types. The lfsr, which is analogous to 

FDR, is more stringent as it considers the direction of the effect across conditions 

(that is, low lfsr indicates high confidence in the sign of an effect across our cell 

types). As this method and metric are optimized for the analysis of effect sizes across 

multiple conditions, further adjusting for multiple cell types tested is not necessary. A 

similar approach and threshold have been used in, for example, the analysis of GTEx 

eQTL across multiple tissues (doi:10.1126/science.aaz1776). 

 

In the statement: “including rs2003916, which was not significantly associated with IPF risk in the 

GWAS meta-analysis (p=0.03377) ................. ”, I think the standard error has been given instead of 

the P value from the GWAS meta-analysis. However, I do not agree with the statement as it stands as a 

single SNP lookup does not require a correction for multiple testing. 

 
We thank the Reviewer for spotting this error. We have revised the sentence as follows: 

“  including rs2003916, which was not significantly associated with IPF risk in the GWAS 

meta-analysis (p=0.15).” As this variant is not associated with the trait even at a nominal 

p-value threshold, we believe our statement that this variant was not associated with 

IPF risk accurately reflects available data. 

 
The same number of significant digits should be displayed for the lsfr for Sec, SCGBA32+. In 

Discussion "43% of int-eGenes were differentially expressed (adj. p<0.1)", the authors say “Here, 

we used a relaxed threshold for differential expression to more reliably select a set of int-eGenes 
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that were equally expressed between the two groups”, this reason for this more lenient threshold 

should be stated in the text. 

 
We thank the Reviewer for noting the differences in digits on the figure and for 

inquiring about the differential expression analysis. We have revised the figure to 

include the same number of digits for lfsr in Figure 5d to address the Reviewer's 

concern. We have removed the use of the word “relaxed” threshold from this 

paragraph, as an FDR of 10% is a generally accepted cut off for multiple testing of DE 

genes. In other studies we have used more stringent cutoffs, thus the use of the term 

“relaxed”, but after your comment we decided it would be more appropriate to change 

the text on page 11 to the following: “Out of the 37 genes encoding TFs disrupted by 

int-eQTL that were also tested for differential expression, 30 were DE between ILD and 

unaffected samples in at least one cell type when employing a significance threshold 

of adj. p<0.1.” Furthermore, we have 

clarified in the text that we considered genes to be equally expressed between cases 

and controls with an adj. p>0.1. 

 

I am satisfied with the responses and explanations to all my other outstanding comments and queries 

 
 

 
Reviewer #2: 

Remarks to the Author: 

Authors have addressed most of the points I raised, except the following minor points. 

Fig 4 – in the revised figure authors omit the cell types previously specified in the bottom of the 

heatmap which makes the figure incomplete to understand, especially as the supplementary file is just 

listing the variants without cell types and effect sizes. The supplementary table should be expanded to 

include cell types and effect sizes. 

 
We thank the Reviewer for their continued feedback with regards to Figure 4. We agree 

that the current figure would be improved by a full table with cell types and effect 

sizes. We have updated Table S5 to include the mashR posterior effect size estimates 

for each cell type. 

 
Reviewer #3: 
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Remarks to the Author: 

Responses to my comments. (Reviewer #3) 

 
Authors have addressed some of my comments. I will say that their responses were somewhat more 

terse than I am used to, and in some instances I felt that they could have addressed comments better. 

 
We sincerely thank the Reviewer for their thoughtful engagement in this work and for 

the critical comments that have enabled us to strengthen this manuscript. We strive to 

be direct and succinct in our responses and regret that our attempts to be concise 

resulted in responses that came across as terse. We are grateful for this opportunity to 

more fully address the Reviewer’s comments. 

 

Comment 1 

The authors examined colocalization between GTEX and their eQTLs. I felt that they did a minimal 

analysis here. Notably the colocalization seems pretty low. Do the authors have any comment on this? 

How well do their loci localize with non-lung, and non-blood tissues? 

 
We thank the Reviewer for further inquiring about the level of replication of our cell-type 

eQTL among bulk tissue eQTL. We have now expanded this analysis and, additionally, 

compared our findings with previously published cell type-eQTL studies. These 

expanded findings are contained within Supplementary Note 2 and Figure S15 as well 

as in the main text on page 11 and 12. 

 
In our comparison with GTEx, we have included lung, whole blood, as well as brain 

cortex bulk-eQTL as a non-blood tissue. To our knowledge, previous cell type-eQTL 

studies have not used a colocalization analysis to evaluate the level of replication 

among GTEx or other bulk tissue eQTL, making it impossible to compare our results to 

other work. However, we do find our colocalization analysis captures cell lineage level 

effects – specifically immune cell eQTL tend to have higher colocalization with GTEx 

whole blood, while non-immune cells tend to have higher colocalization with GTEx 

lung. 

In our additional analysis, we found the effect sizes of cell type and bulk-eQTL to be 

highly correlated with an R2 of 0.318 between AT2 cells and GTEx lung. In contrast, 

comparisons between lower abundance cell types and non-lung bulk-eQTL resulted in 

the lowest correlations, with an R2 of 0.0883 between cDC1 cells and brain cortex. 

Finally, we have to explore the level of top-eQTL overlap with GTEx on a cell-type 
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level, employing the same significance threshold as in our enrichment analysis (GTEx 

nominal p<1×10-6). We find that up to more than 10% of cell type-eQTL replicate in 

GTEx, with the highest overlap (10.37%) between Inflammatory monocytes and whole 

blood eQTL and the lowest (0.79%) between Alveolar fibroblasts and brain cortex. All 

three approaches, and the colocalization and effect size correlation, in particular, 

reveal a lineage-specific pattern of overlap that reflects the expected similarity of cell 

types and tissues included in the analysis. 

 
To contextualize our results, we compared the replication of cell type eQTL found in 

our study to a previous study of eQTL among 6 PBMC cell types (Yazar et al. 2022, 

n=982, 10.1126/science.abf3041). In this study, the authors found, 40.4% of cell type-

eQTL replicated among GTEx whole blood . When employing the same significance 

threshold as Yazar et al., we find that 12.6% of our immune cell type-eQTL replicate 

among GTEx blood, and 11.6% of all cell type-eQTL in our analysis replicate in GTEx 

lung. Given the smaller sample size in our study (114 vs 982) and the complexity of the 

lung compared to blood a modest reduction in replication is expected. Further, using 

the threshold employed by Yazar et al., 36.3%, 28.5%, and 38.3% of the GTEx lung, 

whole blood, and brain cortex eQTL were significant eQTL in at least one of the cell 

types in our study. We further compared the eQTL detected by Yazar et al. to our cell 

type-eQTL. Out of the 848 eQTL for NK cells and 104 eQTL for plasma cells detected by 

Yazar et al. that were also tested for in our study, 31.0% and 19.2% were significant in 

our analysis of these cell types, respectively. 
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Fig. S15: For each cell type, the proportion of the tested genes that colocalized with GTEx bulk-eQTL 

(top), the correlation of eQTL effect sizes (R2) between cell type-eQTL and GTEx bulk eQTL (middle), 

and the proportion of eQTL that replicate in GTEx with a nominal p<1×10-6 (bottom). 

 
Comment 2 
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The authors did not really make any effort to evaluate their batch correction strategy rigorously, or 

compare it to other batch correction strategies. Taken at face-value, Supplementary Figure S2 reveals 

substantial batch effects. 

We thank the Reviewer for further scrutinizing our integration approach. We have now 

expanded our description and analyses on batch correction strategies related to both 

our single cell data integration as well as our eQTL analysis. 

 
Beginning with data integration, we have compared three different methods using the 

epithelial subset of the dataset: rPCA, which we have employed in the current study, as 

well as Harmony and “atomic-sketch” integration. We find that all three methods 

perform similarly, with Harmony integration resulting in the highest level of batch 

mixing, rPCA performing next best, and atomic sketch performing the worst (iLISI 5.55, 

5.46, and 5.22 respectively). However, we found Harmony tended to mute some 

biological signal possibly through overintegration, resulting in less clear separation 

between cell types – a feature noted by some benchmarking papers 

(https://www.nature.com/articles/s41467-023-37126-3, 

https://www.biorxiv.org/content/10.1101/2021.08.04.453579v1.full). Given the 

similarities in iLISI score between rPCA and Harmony, and weighing the trade-off of 

batch mixing and preservation of biological variation, we have decided to employ 

rPCA, which performs well on large datasets. We have incorporated these 

comparisons into Supplementary Figure 1. 

 
Furthermore, we have added a new Supplementary Figure 2 of Pearson residuals when 

comparing the observed proportions of cell types across batches to the expected 

proportions. While in some cases, the proportions deviate from the expected, we note 

that these deviations are primarily observed in cell types/batches with fewer cells (Fig 

Sx). 

 
Finally, with respect to the eQTL models, we account for batch effects by regressing 

out the effects of the first 20 expression PCs. These PCs capture sequencing batches 

(Fig. S6, previously S5). This approach substantially increases power in eQTL studies 

(10.1371/journal.pcbi.1000770) and has been widely used in bulk-eQTL studies 

(0.1126/science.aaz1776) as well as pseudobulk cell type-eQTL studies 

(10.1038/s41593-022-01128-z, 10.1126/science.abf3041). 

http://www.nature.com/articles/s41467-023-37126-3
http://www.biorxiv.org/content/10.1101/2021.08.04.453579v1.full)
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Fig. S1: a, UMAP dimensionality reductions of cells included in the pseudobulking and eQTL mapping, 

pseudocolored by flowcell, processing site (TGen or Vanderbilt), cell cycle phase, proportions of 

mitochondrial reads, number of read counts, and number of features. b, Comparison of three 
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integration methods across the epithelial cell types. c, iLISI for batch mixing with the three 

integration methods. 

 
 

New Fig. S2. χ² residuals of the observed and expected proportions of cell types across batches. 
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Fig. S6: Heatmap of correlations between the PCs included as covariates in the eQTL analysis of AT2 

cells and known covariates. 

 

Comment 3 

I expressed concerns about the small number of cells in pseudobulk profiles. It isn’t clear form the 

author’s response, that they investigated the potential for the small number of cells for some profiles 

to be an issue or not. They cited Cuomo et al to defend their choice. However, few single cell eQTL 

studies have been done, and I am not sure that there is a good understanding of what an appropriate 

threshold is here. 

 
We thank the Reviewer for probing deeper about the potential effects of the choice of 
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lower threshold for the number of cells per cell type for pseudobulk profiles. As we 

believe our expanded answer will be of value to others, a slightly modified version of 

the response below has been added as Supplementary Note 1. 

 
A current challenge in the field, as the Reviewer identifies, is that few single-cell 

eQTL studies have been done, so as a field we lack the empirical evidence that 

would otherwise inform rules of thumb or heuristics like these. Eventually, as we 

gain 

experience we will likely see convergence on standards like we have with, for 

example, minimum sample sizes for eQTL mapping per tissue in GTEx. In the 

meantime, however, we have experience from only a small number of empirical studies 

to draw on and those studies, like ours here, do not have “ground truth” available to 

us to determine whether or not a particular choice of cell-number-threshold is optimal. 

 
Facing this situation, the best option we have for setting a cell-number-threshold is to 

draw on the detailed investigations that Cuomo et al undertook to define current “best 

practices” for single-cell eQTL mapping. It is unlikely that the Reviewer missed this 

detail, but for full transparency DJ McCarthy was a senior author on the Cuomo et al 

paper - as such we know it well. We cite that paper not only to defend our choice, but 

because it is the best source of information for an evidence-based choice of threshold 

given the current state of empirical experience in the sc-eQTL field. Although not a 

headline focus of that paper, the authors comment on the choice of 5 cells as a 

minimum threshold for inclusion of a pseudobulk profile: 

“In all cases (i.e., using any of the aggregation methods), aggregated expression values were only 

calculated for samples (i.e., donors or donor-run combinations) with at least 5 cells. This threshold 

was selected to be loose enough to minimize donor loss, while still eliminating donors with poor 

expression support.” [early in the results section] 

Although brief, this comment captures the dilemma in setting a cell-number-threshold 

for pseudobulking. There is always a tradeoff: 

 

Option Benefit Downside 
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Higher cell number 
threshold per pseudobulk 
profile 

Less noisy pseudobulk 
profiles as they average 
over more single cells 

Loss of cell types for 
analysis (e.g., if they have 
too few donors for 
inclusion, say <70 donors); 
Loss of power in remaining 
cell types due to loss of 
donors/individuals and 
thus reduced sample size 
for eQTL mapping in some 
cell types 

Lower cell number 
threshold per pseudobulk 
profile 

Retain more cell types for 
analysis, getting a fuller 
picture of genetic 
regulation of gene 
expression throughout the 
tissue; 
Maximize eQTL detection 
power 

Noisier pseudobulk 
expression profiles 

 
On balance, we found in that paper that the better balance was to err on the side of a 

lower cell-number-threshold to maximize power increases through maximizing the 

number of donors (and in our setting cell types too). Detailed simulation results that 

precisely define the tradeoffs of different choices of cell-number-threshold were not 

shown in that paper. However, the overall results shown in that paper that support the 

use of a cell-number-threshold of 5, as small as that may seem, as this threshold was 

used for the simulation studies and detailed benchmarking of single-cell eQTL 

mapping results against those derived from matched bulk RNA-seq data. 

 
In particular, the results in Fig S7 from Cuomo et al on effects on power, empirical 

FDR, and beta correlation of the number of donors and the average number of cells per 

donor are relevant for this discussion. The caption for Cuomo Fig S7 provides 

information on the distributions used to allocate cell numbers to individuals for the 

simulations underpinning those plots. The R code showing the distributions of cell 

number values per donor for an average of 50 cells per donor and an average of 120 

cells per donor are shown below: 

> ## settings from Cuomo et al "best practices" paper for ave 50 cells per donor and ave 120 cells per donor 

> set.seed(101) 

> ns <- round(sort(rgamma(50, shape = 2.1, rate=0.04))) 

> summary(ns) 
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Min. 1st Qu. Median Mean 3rd Qu. Max. 

8.00 24.25 44.00 48.68 67.00 157.00 

> ns <- round(sort(rgamma(50, shape = 2.1, rate=0.017))) 

> summary(ns) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

23.00 59.25 113.50 123.46 157.75 481.00 

 

First, we can see that the simulations include a distribution of cell numbers per donor, 

down to small (i.e., single-digit) numbers of cells for some donors in each simulation 

run, especially for the setting for an average of 50 cells per donor. The range of 

cells-per-donor explored in the simulations closely matches the empirical data in our 

studies, as we can see from Supplementary Table S3 in this manuscript: 

> summary(y$`Mean Cells Per Donor`) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

13.16 48.62 80.98 127.11 122.98 801.57 

 

So around 75% of the 38 cell types we study have at least 50 cells per donor, on average, 

and the middle 50% of cell types in our study have an average number of cells per donor 

between 50 and 120. Thus, the simulation settings explored in the Cuomo et al paper 

are directly relevant to our study here. Looking closely at Fig S7b (and focusing on the 

“dr-mean” results in dark blue as they match our approach in this study), we see very 

consistent values for the empirical FDR across values for average # cells per donor 

(on average the empirical FDR at around 0.07 is a little higher than the nominal FDR of 

0.05 whatever the average number of cells per donor used). As such, the eQTL 

mapping results are not enriched for false positive results if we allow for a smaller 

number of average cells per donor. (There is a strong effect on power for average # 

cells per donor - obviously if we have more cells available for analysis we should use 

them!). In Fig S7a, 

however, we do see an elevated empirical FDR for 50 donors relative to 87 donors and 

more. Thus, we should endeavor to maximize the number of donors available for 

analysis to bring the empirical FDR as close as possible to the nominal FDR. We can 

also see a stark reduction in eQTL discovery power for 50 donors compared with more 

donors. 

 
Across the 38 cell types we study for eQTL mapping in this work, we see a distribution 

of number of donors available for eQTL mapping at a min-cell-threshold of 5 (also from 

Supplementary Table 3): 
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> summary(y$`n Donors With ≥5 Cells`) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

42.00 56.75 76.00 75.71 92.50 113.00 

 

With this setting, we have at least 42 donors for all cell types, 75% of cell types have at 

least 56 donors, and half have at least 76 donors. Mapping this distribution of donor 

numbers per cell type against Fig S7 from the Cuomo et al paper we are confident that 

this is a sensible approach for our study to maximize detection power and control FDR 

(compare “power” and “empirical FDR” panels in Fig S7a with “empirical FDR” panel in 

Fig S7b). 

 
The clear conclusion from applying the results from the Cuomo et al paper to this 

study is that we should seek to retain as many donors as possible for eQTL mapping, 

even if there are on average fewer cells available per donor to enable maximizing the 

number of donors. Overall, the results of the Cuomo et al paper show that setting a 

minimum 

cell-per-donor threshold of 5 is reasonable, and even optimal where it maximizes the 

number of donors included in the analysis. 

 
A further, crucial, consideration is the coverage of cell types in a tissue for eQTL 

mapping. Lung is a complex tissue with many distinct cell types. We endeavor to 

maximize the inclusion of as many cell types, as far as is reasonable, to gain as full a 

picture as possible of the landscape of genetic regulation of gene expression in healthy 

and diseased lungs. 

 
Setting a threshold of at least 40 donors to include a celltype in eQTL mapping and 

downstream analyses, we can see in the table below what a large effect the minimum 

cell threshold (per cell type per donor) has. With the threshold we used (>=5 cell) we 

have 38 cell types for eQTL mapping. If we set a threshold of 10 cells instead of 5, then 

30 cell types are retained. This number drops starkly to 25 (>=20 cells), 21 (>=30 cells) 

and 16 (>=50 cells) as the minimum cell threshold is raised. 
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The plot below shows in detail how the minimum cell threshold changes the number of 

donors available, with one line shown per cell type. 

 

 
If we insisted on a threshold of at least 50 cells per donor per cell type then we would 

only be able to map eQTL in 30-50% of major cell types in the lung. Using a threshold 

of at least 5 cells per donor allows us to map eQTL for 38 cell types, almost complete 

coverage of the major lung cell types. 

 
Finally, to return to a discussion point raised in our previous response to this issue: 

because mashr requires a complete eQTL matrix (i.e., no missing estimates for any 
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eQTL for any celltype), we do run limix eQTL mapping on some genes for some cell 

types where there is relatively low power. The application of mashr itself, by modeling 

covariance and effect sharing between cell types, drastically improves eQTL detection 

power even in underpowered cell types. Further, after applying mashr, we apply a 

stricter inclusion filter where mashr-adjusted eQTL effects are only reported for genes 

meeting 

the expression criteria for that given celltype. Thus, on balance, we think the use of 

mashr supports a minimum-cell-threshold of 5 cells to include as many cell types in 

the analysis as possible and, simultaneously, using mashr mitigates against potential 

issues that might otherwise arise in eQTL mapping from cell types with smaller 

sample sizes and therefore lower power. 

In summary, we agree with the Reviewer that few single-cell eQTL studies have been done 

to date, which means that there is not a lot of collective experience from empirical studies 

to guide the choice of parameters in analysis workflows like the best choice for minimum 

cell threshold to set per donor per cell type. That being the case, the best information we 

have for making such choices comes from the Cuomo et al paper that explicitly sought to 

optimize single-cell eQTL mapping workflows. The results in that paper support the use of 

a minimum cell threshold of 5 cells, and the simulation settings used in the paper make 

their results directly relevant to our own study here. There is an inherent tradeoff between 

maximizing the number of cell types and donors for eQTL mapping and increasing the 

minimum number of cells per donor and cell type. On balance we think there are many 

good reasons to opt for a minimum cell threshold of 5 cells as this choice enables an 

increased inclusion of donors, and thus also cell types, which increases power for eQTL 

mapping and downstream mashr analysis combining eQTL results across cell types. Like the 

Reviewer, we expect standard approaches in the field to crystallize in the coming years. For 

now, we are confident that setting a minimum cell threshold of 5 is the best choice given 

the information we have available to us and the tradeoffs inherent in selecting the 

threshold. 

 

 

Comment 4. 

I asked the authors what strategy they used to remove Doublets. In the response letter they indicated 

they used Doubletfinder. However, it doesn’t appear that this is described (or justified) in the methods 

of the main text. This is an important choice and should be described. 

 
We apologize for the confusion around our doublet removal strategy. In our initial 
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response we had indicated while we have found automated double detection 

approaches to perform well, we have chosen a more conservative manual approach to 

remove doublets. We have used this approach in our previous work 

(https://www.science.org/doi/full/10.1126/sciadv.aba1972, 

https://www.nature.com/articles/s41467-021-24467-0). We have expanded upon our 

explanation in the methods section, as well as referenced our prior work justifying this 

approach. The new text now reads “We have removed doubles using a manual 

approach, as described previously 8,41, identifying clusters of cells that express 

markers from multiple lineages. Our prior work has found this method to be more 

conservative than automated approaches. Indeed, when applying DoubletFinder 44 to 

one lineage (epithelial cells), DoubletFinder recovered 8,230 doublets (3.7%), while the 

marker based approach identified 18,588 doublets (8.5%).“ 

Comment 8 

The authors did not bother to assess enrichment of their eQTLs in regulatory elements at all. 

 
We thank the Reviewer for identifying this missing analysis, and agree this is an 

important characterization. To this end, we have explored the genomic regions 

overlapping eQTL in Fig. S13 (previously S12). We have now also tested for the 

enrichment of eQTL among these regions by comparing the significant eQTL to a 

subset of non-eQTL SNPs. Non-interaction eQTL were more often found overlapping 

promoters (5.64-5.75% of eQTL) than int-eQTL (4.97%), the distributions of genic 

annotations of eQTL did not differ significantly from the null set. 

 
We have also explored the overlap of the various classes of eQTL among all enhancers 

in EnhancerAtlas 2.0 (doi: 10.1093/nar/gkz980), lung tissue enhancers, and human lung 

epithelial cell line (Calu-3) enhancers, as well as the cis-regulatory elements in the 

Human Cell Atlas (doi: 10.1101/2023.11.13.566791). Testing for the equality of 

proportions overlapping enhancer annotations between eQTL and the null set, we find 

that multi-state sc-eQTL were more likely to be found overlapping the HCA CREs than 

the null set (p=3.502E-11). Overall, our ability to test for the enrichment of sc-eQTL is 

limited, as reliable enhancer annotations are not available for all relevant cell types 

and conditions (ILD vs. unaffected lung). 

http://www.science.org/doi/full/10.1126/sciadv.aba1972
http://www.nature.com/articles/s41467-021-24467-0)
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Fig. S13. Cell type-eQTL, int-eQTL, and a null set of non-eQTL SNPs annotated for genic regions. 

The set of non-eQTL SNPs was selected to match the total number of significant sc-eQTL and 

their distribution of distances to target gene transcription start sites. 

 

 

Decision Letter, second revision:   

 
  
Our ref: NG-A62219R1 

 

8th Dec 2023 

 

Dear Dr. Banovich, 

 

Thank you for submitting your revised manuscript "Cell type-specific and disease-associated eQTL in 

the human lung" (NG-A62219R1). It has now been seen by the original referees and their comments 

are below. The reviewers find that the paper has improved in revision, and therefore we'll be happy in 

principle to publish it in Nature Genetics, pending minor revisions to satisfy the referees' final requests 

and to comply with our editorial and formatting guidelines. 

 

If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 

editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials and make any 
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revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics. 

Please do not hesitate to contact me if you have any questions. 

 

Best wishes, 

Chiara 

 

Chiara Anania, PhD 

Associate Editor 

Nature Genetics 

https://orcid.org/0000-0003-1549-4157 

 

 

Reviewer #3 (Remarks to the Author): 

 

Generally, I am happy with the author responses to my queries. One small request I have is that the 

authors add some discussion on the issue of the minimum number of cells used in their pseudobulk 

analysis As they articulated in their thoughtful response, they were influenced by the choice of power 

by including more individuals, and their experience from Cuomo et al. Clearly this is something that 

the field will struggle with for some time to come, and talking about the tradeoffs in the main text 

would be helpful for many. 

 

 

Final Decision Letter: 

 
28th Feb 2024 

 

Dear Dr. Banovich, 

 

I am delighted to say that your manuscript "Cell type-specific and disease-associated eQTL in the 

human lung" has been accepted for publication in an upcoming issue of Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 

style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any 

additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
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information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the 

next available issue. You can find out your date of online publication by contacting the Nature Press 

Office (press@nature.com) after sending your e-proof corrections. 

 

You may wish to make your media relations office aware of your accepted publication, in case they 

consider it appropriate to organize some internal or external publicity. Once your paper has been 

scheduled you will receive an email confirming the publication details. This is normally 3-4 working 

days in advance of publication. If you need additional notice of the date and time of publication, 

please let the production team know when you receive the proof of your article to ensure there is 

sufficient time to coordinate. Further information on our embargo policies can be found here: 

https://www.nature.com/authors/policies/embargo.html 

 

Before your paper is published online, we shall be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that Nature Genetics is a Transformative Journal (TJ). Authors may publish their research 

with us through the traditional subscription access route or make their paper immediately open access 

through payment of an article-processing charge (APC). Authors will not be required to make a final 

decision about access to their article until it has been accepted. Find out more about Transformative 

Journals 

 

Authors may need to take specific actions to achieve compliance with funder and 

institutional open access mandates. If your research is supported by a funder that requires 

immediate open access (e.g. according to Plan S principles) then you should select the gold OA route, 

and we will direct you to the compliant route where possible. For authors selecting the subscription 

publication route, the journal’s standard licensing terms will need to be accepted, including <a 

href="https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-

publish. Those licensing terms will supersede any other terms that the author or any third party may 

assert apply to any version of the manuscript. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs
https://www.springernature.com/gp/open-research/plan-s-compliance
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To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

An online order form for reprints of your paper is available 

at https://www.nature.com/reprints/author-reprints.html. Please let your coauthors and your 

institutions' public affairs office know that they are also welcome to order reprints by this method. 

 

If you have not already done so, we invite you to upload the step-by-step protocols used in this 

manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 

complete the upload by the time you receive your manuscript proofs, we can insert links in your article 

that lead directly to the protocol details. Your protocol will be made freely available upon publication of 

your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 

reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 

protocols and paper with increased utility and visibility. Please submit your protocol to 

https://protocolexchange.researchsquare.com/. After entering your nature.com username and 

password you will need to enter your manuscript number (NG-A62219R2). Further information can be 

found at https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#protocols 

 

 

Sincerely, 

Chiara 

 

Chiara Anania, PhD 

Associate Editor 

Nature Genetics 
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