# An experimental framework to assess biomolecular condensates in bacteria

### Authors

Y Hoang<sup>1,4</sup>, Christopher A. Azaldegui<sup>2,4</sup>, Rachel E. Dow<sup>1</sup>, Maria Ghalmi<sup>1</sup>, Julie S. Biteen<sup>2,3\*</sup>, and Anthony G. Vecchiarelli<sup>1\*</sup>

Supplementary information



Figure S1. Overexpression of mNG-McdB in E. coli BL21. a. mNG-McdB forms foci. The phase contrast channel is shown in gray and the mNG channel is in green. Images are representative of three biological replicates. White arrows highlight cells where McdB foci wet to the inner membrane inducing cell curvature. Scale bars: 5 µm. b. mNG-McdB foci are nucleoid-excluded. DAPI stain is shown in magenta. Scale bar: 1 µm. c. Effects of changing cell volume on focus stability. E. coli cell volume was increased by treating cells with the MreB inhibitor, A22 (10 µg/mL). Images were taken at 6 h post-treatment, when rod-shaped cells transitioned their morphology into round cells. Scale bar: 5  $\mu$ m. **d**. Quantification of cells shown in (c). Solid lines and shading represent the mean condensation coefficient of a representative cell population (n > 10 cells) and its 95% confidence interval. An intensity threshold of I = 0.5 was used; a condensation coefficient of 50 is equivalent to a homogenous pixel intensity distribution. e. Localized lysis of the cell. One cell pole was lysed using a high-intensity laser, focused within the indicated magenta circle. Representative frames show solubilization of the opposing focus and shift of fluorescent signal to the opposite end. Scale bar:  $1 \mu m$ . f. Quantification of three representative cells (n = 3) for each protein shown in (e). Solid lines and shading represent the mean condensation of three representative cells and the standard deviation. An intensity threshold of I = 0.1 was used.







**Figure S3.** mCherry fusion proteins form cellular foci. Representative images of indicated mCherry fusion protein foci in *E. coli* from 0 to 5 h post-induction. Phase contrast (blue) and mCherry (green) channels were merged. Images are representative of three biological replicates (n = 3). Scale bar: 1  $\mu$ m.



**Figure S4. Electron-multiplying charge-coupled detector (EMCCD) calibration for photon counting**. **a**. Signal variance versus signal average for different camera integration times. The data points correspond to the following camera integration times: 10, 20, 40, 80, 160, and 320 ms. The dashed red line is the linear regression. **b**. Electron multiplication conversion plot. The dashed red line is the linear regression constrained through the origin. **c**. Distribution of number of detected photons per localization per imaging frame for mCherry-McdB. Signal histogram was fit to a gamma distribution, determining a peak of 91.1 photons per localization at a 40-ms camera integration time. 35800 localizations were used to build the histogram.



**Figure S5.** Normalized pixel intensity histograms and condensation coefficients of mCherry fusion proteins. a-f. Normalized pixel intensity histograms for cells with no detected focus (left) and a detected focus (right). Black lines represent individual cells. The red dashed line and shading are the average and standard deviation across cells for each plot. **g**. Quantification of condensation coefficients. Condensation coefficient plots for cells with a detected focus and threshold values of I = 0.5 and 0.7. Data points correspond to individual cells. The curves next to the scatter plots were obtained via kernel density estimation. The shaded region represents the measurement range for cells expressing a uniform mCherry signal. Analysis was done on N > 900 cells for each fusion over three biological replicates.



**Figure S6. mCherry-McdB**<sup>sol</sup> **condenses by repulsive interactions with the nucleoid. a.** Representative images of mCherry-McdB foci in *E. coli* at 4 h post-induction (top). Cells were treated with ciprofloxacin (50 mM) for nucleoid compaction and stained with DAPI (2  $\mu$ M) for nucleoid visualization (bottom). mCherry channel (green), DAPI (magenta), and merged images overlaid with Phase contrast (blue) are shown. White arrows highlight the mCherry-McdB foci that remained after nucleoid compaction. Magenta bars highlight the size of the nucleoid before and after ciprofloxacin treatment. b. Normalized profile lines along the normalized lengths of the long axes of four representative cells (*n* = 4) from the population shown in (a). Green and magenta lines represent the mCherry and DAPI signals, respectively. Solid lines and dashed lines represent the signal before and after ciprofloxacin treatment, respectively. **c.** Same as in (a) for mCherry-McdB<sup>sol</sup> cells. Green bars indicate the length of the mCherry-McdB<sup>sol</sup> foci before and after ciprofloxacin treatment, respectively. Images are representative of three biological replicates. Scale bar: 1 µm.



**Figure S7. Condensate reversibility through cell growth, division, and osmolarity shift. a.** Generational dilution dissolves phase-separated foci. The phase contrast channel (blue) and the mCherry channel (green) are merged for a-c. White arrows demarcate the same cellular location of the same focus over time. Blank arrows demarcate the cellular position now absent of a focus. Images are representative of four biological replicates. Scale bars: 2  $\mu$ m. **b.** Cell elongation dissolves phase-separated foci. As in (a), except cells were treated with 10  $\mu$ g/ml cephalexin to block cell division prior to spotting on agar pads. **c.** Cells osmotically shocked with 300 mM NaCl. The first row of panels shows cells treated cells prewash; 15 and 30 min are cells post-wash. Images are representative of three biological replicates. **d.** Percent of cells with a fluorescent focus for osmotically shocked cells shown in (c) and for untreated control cells from three biological replicates. Bars indicate the standard deviation across the replicates. *N* > 50 cells for each protein at each time point per replicate.



**Figure S8. Diffusion coefficients of PAmCherry fusion proteins**. Normalized log apparent diffusion coefficient histograms and two-component Gaussian mixture fit. The solid black line corresponds to the two-component Gaussian fit. The dashed black lines represent the Gaussian fit of each component which we refer to as D<sub>app,slow</sub> and D<sub>app,fast</sub>. *N* indicates the number of trajectories analyzed for each protein per condition.



**Figure S9. The nature of IbpA chaperone association with foci informs their material state** *in vivo*. Wide-field fluorescence images of mCherry fusion foci (magenta) and IbpA-msfGFP foci (green). Phase Contrast is blue in the merge. Images are representative of three biological replicates. Scale bar: 2  $\mu$ m. **b.** Quantification of the association of the foci of mCherry fusions and IbpA-msfGFP. Data points correspond to the ratio of the mean full-width at half maximum (FWHM) for the two channels (FWHM<sub>IbpA</sub>/FWHM<sub>mCherry</sub>) for the sum projections of technical replicates (cl<sup>agg</sup>: 5, PopTag<sup>SL</sup>: 7, PopTag<sup>LL</sup>: 4, McdB: 5) over three independent experiments. n > 30 foci for each protein per technical replicate. Black lines represent the mean ratio and the error bars represent the standard deviation. \*\*\**p* < 0.001 by Welch's *t*-test.

| Supplementary rapie 1. Focus dissolution tracking analys | Supple | ementary | Table 1 | . Focus | dissolution | tracking | analy |
|----------------------------------------------------------|--------|----------|---------|---------|-------------|----------|-------|
|----------------------------------------------------------|--------|----------|---------|---------|-------------|----------|-------|

| Figure | Protein              | Number of<br>foci tracked | Number of foci<br>that dissolved | % of foci that dissolved | Lifespan of<br>dissolved foci (h) |
|--------|----------------------|---------------------------|----------------------------------|--------------------------|-----------------------------------|
| 4a-b   | Cl <sup>agg</sup>    | 93                        | 0                                | 0                        | na                                |
| 4a-b   | PopTag <sup>SL</sup> | 148                       | 111                              | 75                       | 1.6 ± 2                           |
| 4a-b   | PopTag <sup>LL</sup> | 64                        | 64                               | 100                      | 0.3 ± 0.2                         |
| 4a-b   | McdB                 | 87                        | 84                               | 96.6                     | 1.4 ± 1                           |
| 4d-e   | Cl <sup>agg</sup>    | 102                       | 0                                | 0                        | na                                |
| 4d-e   | PopTag <sup>SL</sup> | 119                       | 95                               | 75                       | 4.3 ± 2.3                         |
| 4d-e   | PopTag <sup>LL</sup> | 35                        | 35                               | 100                      | 0.3 ± 0.1                         |

Supplementary Table 2. Apparent diffusion coefficients and weight fraction resulting from two-state Gaussian mixture fitting (Fig. 5c-e and S8).

| Protein              | Sample<br>induction (100 μM) | D <sub>app,slow</sub> (µm²/s) | $\pi_{\sf slow}$ | D <sub>app,fast</sub> (μm²/s) | $\pi_{fast}$    |
|----------------------|------------------------------|-------------------------------|------------------|-------------------------------|-----------------|
| cl <sup>agg</sup>    | None                         | 0.007 ± 0.001                 | 0.38 ± 0.02      | 0.467 ± 0.024                 | 0.62 ± 0.02     |
|                      | 2 h                          | 0.006 ± 0.001                 | 0.62 ± 0.03      | 0.062 ± 0.006                 | 0.38 ± 0.03     |
|                      | 4 h                          | $0.008 \pm 0.001$             | 0.65 ± 0.03      | 0.074 ± 0.006                 | 0.35 ± 0.03     |
| PopTag <sup>sL</sup> | None                         | 0.013 ± 0.001                 | $0.20 \pm 0.01$  | 0.572 ± 0.016                 | 0.80 ± 0.01     |
|                      | 2 h                          | 0.024 ± 0.002                 | 0.28 ± 0.02      | 0.314 ± 0.010                 | 0.72 ± 0.02     |
|                      | 4 h                          | 0.023 ± 0.001                 | 0.43 ± 0.02      | 0.165 ± 0.006                 | 0.57 ± 0.02     |
| PopTag <sup>LL</sup> | None                         | 0.234 ± 0.021                 | 0.37 ± 0.04      | 0.559 ± 0.026                 | 0.63 ± 0.04     |
|                      | 2 h                          | 0.143 ± 0.006                 | 0.47 ± 0.03      | 0.347 ± 0.008                 | 0.53 ± 0.03     |
|                      | 4 h                          | 0.158 ± 0.004                 | 0.46 ± 0.03      | 0.347 ± 0.012                 | 0.54 ± 0.03     |
| McdB                 | None                         | 0.153 ± 0.026                 | 0.23 ± 0.05      | 0.576 ± 0.022                 | 0.77 ± 0.05     |
|                      | 2 h                          | 0.038 ± 0.005                 | 0.23 ± 0.02      | 0.293 ± 0.006                 | 0.77 ± 0.02     |
|                      | 4 h                          | 0.065 ± 0.003                 | $0.40 \pm 0.02$  | 0.268 ± 0.008                 | 0.60 ± 0.02     |
| McdB <sup>sol</sup>  | None                         | 0.063 ± 0.017                 | 0.14 ± 0.01      | 0.581 ± 0.010                 | 0.87 ± 0.01     |
|                      | 2 h                          | 0.068 ± 0.008                 | $0.23 \pm 0.01$  | 0.437 ± 0.009                 | 0.77 ± 0.01     |
|                      | 4 h                          | 0.030 ± 0.003                 | $0.19 \pm 0.01$  | 0.297 ± 0.003                 | $0.81 \pm 0.01$ |

| Strains & Plasmids        | Plasmids Description                                             |            |  |  |  |
|---------------------------|------------------------------------------------------------------|------------|--|--|--|
| Strains                   |                                                                  |            |  |  |  |
| BL21 AE                   |                                                                  |            |  |  |  |
| BL21 AI                   |                                                                  |            |  |  |  |
| MG1655 Δ <i>lacY</i>      |                                                                  |            |  |  |  |
| MG1655 ΔlacY ibpA-        | MG1655 encoding a C-terminal fusion of IbpA to                   | This study |  |  |  |
| msfgfp                    | msfGFP                                                           |            |  |  |  |
|                           |                                                                  |            |  |  |  |
| Plasmids                  |                                                                  |            |  |  |  |
|                           | pET-mNeonGreen-mcdB                                              | This study |  |  |  |
|                           | pET-His <sub>6</sub> -mNeonGreen-mcdB                            | This study |  |  |  |
| pYH79                     | pET-His <sub>6</sub> -mCherry-mcdB                               | This study |  |  |  |
| pTrc99A- <i>mCherry</i> - | pTrc99A expression vector allowing the inducible                 | 28         |  |  |  |
| с178 <sup>ЕР8</sup>       | expression (P <sub>trc</sub> promoter) of a N-terminal fusion of |            |  |  |  |
|                           | cI78 <sup>EP8</sup> (a mutagenized fragment of the lambda        |            |  |  |  |
|                           | prophage repressor protein) to the mCherry                       |            |  |  |  |
|                           | fluorescent protein                                              |            |  |  |  |
| pCA3                      | pTrc99A-PAmCherry- <i>cl78<sup>EP8</sup></i>                     | This study |  |  |  |
| pYH70                     | pTrc99A-PAmCherry-mcdB                                           | This study |  |  |  |
|                           |                                                                  |            |  |  |  |
| pYH71                     | pTrc99A- <i>mCherry-mcdB</i>                                     | This study |  |  |  |
|                           |                                                                  |            |  |  |  |
| pYH74                     | pTrc99A-mNeonGreen-mcdB                                          | This study |  |  |  |
|                           |                                                                  |            |  |  |  |
| pYH75                     | Ptrc99A-mCherry-L6-PopTag                                        | This study |  |  |  |
| pYH76                     | Ptrc99A-PAmCherry-L6-PopTag                                      | This study |  |  |  |
| pYH77                     | Ptrc99A-mCherry                                                  | This study |  |  |  |
| pYH78                     | Ptrc99A-PAmCherry                                                | This study |  |  |  |
| pYH80                     | Ptrc99A-mCherry-L78-PopTag                                       | This study |  |  |  |
| pYH88                     | trc99A-PAmCherry-L78-PopTag                                      | This study |  |  |  |
| pYH86                     | Ptrc- <i>mCherry-mcdB<sup>sol</sup></i>                          | This study |  |  |  |
| pYH89                     | Ptrc-PAmCherry-mcdB <sup>sol</sup>                               | This study |  |  |  |

## Supplementary Table 3. Strain and plasmids used in this study

## Supplementary Table 4 Primers used in this study.

| Primers | Description                               | Note                           |
|---------|-------------------------------------------|--------------------------------|
| YH1 F   | CACAGGAAACAGACCATGGCAGTGAGCAAGGGCGAGGAGG  | To make                        |
| YH1 R   | CTGCTGCCGCTGCCGGATCCCTTGTACAGCTCGTCCATGC  | pTrc99A-                       |
| YH2 F   | TGCCATGGTCTGTTTCCTGTG                     | PAmCherry-                     |
| YH2 R   | GGATCCGGCAGCGGCAGCAG                      | <i>cI78<sup>EP8</sup></i> from |
|         |                                           | pTrc99A-                       |
|         |                                           | mCherry-                       |
|         |                                           | c178 <sup>EP8</sup>            |
| YH3 F   | CACAGGAAACAGACCATGGCAGTGAGCAAGGGCGAGGAGG  | To make                        |
| YH3 R   | CATGCTGCCGCTGCCGGATCCCTTGTACAGCTCGTCCATGC | pYH70 from                     |
| YH4 F   | TGCCATGGTCTGTTTCCTG                       | pYH71                          |
| YH4 R   | GGATCCGGCAGCGGCAGCATG                     |                                |
| YH5 F   | AGGGATCCGGCAGCGGCAGCATGACTGACGCATTCGACCG  | To make                        |
| YH5 R   | CTTGCATGCCTGCAGGTCGACTCACCAACCGTGCAGCTTG  | pYH71 from                     |
| YH6 F   | GCTGCCGCTGCCGGATCCCT                      | pTrc99A-                       |
| YH6 R   | GTCGACCTGCAGGCATGCAAG                     | mCherry-                       |
|         |                                           | cI78 <sup>EP8</sup>            |
| YH7 F   | CACAGGAAACAGACCATGGCAGTGTCGAAAGGAGAAG     | To make                        |
| YH7 R   | CATGCTGCCGCTGCCGGATCCCTTGTATAATTCGTCCATC  | pYH74 from                     |
|         |                                           | pYH71                          |
| YH8 F   | AGGGATCCGGCAGCGGCAGCATGGTCGCGGAACAACTTG   | To make                        |
| YH8 R   | GCATGCCTGCAGGTCGACTCATTAAGCTCCGCGACCACG   | pYH75 from                     |
|         |                                           | pYH74                          |
| YH9     | GGATCCGGCAGCGGCAGCAT                      | To make                        |
| YH10    | ATGCTGCCGCTGCCGGATCCCTTGTACAGCTCGTCCATGC  | pYH76 from                     |
|         |                                           | pYH75                          |
| YH11    | GTCGACCTGCAGGCATGCA                       | To make                        |
| YH12    | TTGCATGCCTGCAGGTCGACTCACTTGTACAGCTCGTCC   | pYH77 from                     |
|         |                                           | pYH78                          |

Supplementary Table 5. Reagents used in this study.

| Reagent                                                    | Vendor                      | Catalog #   | Use                                                                                     |
|------------------------------------------------------------|-----------------------------|-------------|-----------------------------------------------------------------------------------------|
| 4-12% Bis-Tris<br>NuPAGE gel                               | Thermo Fisher<br>Scientific | NP0323BOX   | SDS-PAGE                                                                                |
| Bradford assay kit                                         | Bio-Rad<br>Laboratories     | 5000006     | To measure protein content                                                              |
| Carbenicillin                                              | Thermo Fisher<br>Scientific | MT46100RG   | To select for the plasmid in culture                                                    |
| DAPI                                                       | Thermo Fisher<br>Scientific | D1306       | To label the nucleoid                                                                   |
| Glucose                                                    | Thermo Fisher<br>Scientific | 15023021    | As a carbon source and to inhibit protein expression from the P <sub>trc</sub> promoter |
| Glycerol                                                   | Thermo Fisher<br>Scientific | G334        | As a carbon source for <i>E. coli</i><br>MG1665                                         |
| Goat anti-rabbit IgG<br>Secondary Antibody<br>IRDye 800 CW | LI-COR                      | 926-32210   | For western blots                                                                       |
| IPTG                                                       | Thermo Fisher<br>Scientific | 501126935   | To induce protein expression                                                            |
| L-arabinose                                                | Thermo Fisher<br>Scientific | AC365181000 | To induce protein expression                                                            |
| Mini-size<br>polyvinylidene<br>difluoride membrane         | Bio-Rad                     | 1704156     | For protein transfer during western blots                                               |
| Cephalexin                                                 | Thermo Fisher<br>Scientific | AAJ6317206  | To inhibit cell division                                                                |
| A22                                                        | Millipore Sigma             | SML0471     | As the MreB inhibitor, which converts rod-shaped into round cells                       |
| Casamino acids                                             | Millipore Sigma             | 65072-00-6  | For AB medium                                                                           |
| Thiamine                                                   | Millipore Sigma             | T4625-5G    | For AB medium                                                                           |
| Uracil                                                     | Millipore Sigma             | 66-22-8     | For AB medium                                                                           |
| UltraPure agarose                                          | Invitrogen                  | 16500100    | For agar pads                                                                           |
| Ciprofloxacin                                              | Thermo Fisher<br>Scientific | AAJ6131714  | To compact the nucleoid                                                                 |

## Supplementary Table 6. Parameters used to detect fluorescent foci for classification

| Protein              | norm_thresh | eccent_thresh |
|----------------------|-------------|---------------|
| Cl <sup>agg</sup>    | 0.55        | 0.85          |
| PopTag <sup>sL</sup> | 0.65        | 0.85          |
| PopTag <sup>LL</sup> | 0.75        | 0.85          |
| McdB                 | 0.8         | 0.85          |
| McdB <sup>sol</sup>  | 0.75        | 0.85          |
| mCherry              | 0.75        | 0.85          |