Supplementary Information

Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures

Pok Man Leung¹*, Rhys Grinter¹, Eve Tudor-Matthew¹, James P. Lingford¹, Luis Jimenez¹, Han-Chung Lee², Michael Milton¹, Iresha Hanchapola², Erwin Tanuwidjaya², Ashleigh Kropp¹, Hanna A. Peach³, Carlo R. Carere^{3,4}, Matthew B. Stott^{3,5}, Ralf B. Schittenhelm², Chris Greening¹*

¹ Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia

² Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia

³ Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō 3377, Aotearoa-New Zealand

⁴ Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch 8140, Aotearoa-New Zealand

⁵ Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch 8140, Aotearoa-New Zealand

* **Corresponding authors:** Pok Man Leung (bob.leung@monash.edu), Chris Greening (chris.greening@monash.edu)

Supplemental Note 1 – AlphaFold modelling of the Acidianus brierleyi hydrogenases

Hca - Group 1g hydrogenase

To generate the structural model of Hca from A. brierleyi, the amino acid sequences of the four putative structural subunits HcaS, HcaL, Isp1-1, and Isp2-1 were provided to AlphaFold multimer. AlphaFold convincingly assembled all four proteins into a single complex, supporting previous work indicating that HcaS, HcaL and Isp1-1 form a complex in Acidianus ambivalens ¹. As predicted based on sequence homology, lsp1-1 is an integral membrane di-heme *b*-type cytochrome protein that forms a complex with the extracellular [NiFe]-hydrogenase catalytic subunit formed by HcaS and HcaL, which is anchored to the membrane by a transmembrane helix at the C-terminus of HcaS. Based on homology to the Narl subunit of nitrate reductase, we modelled two heme molecules in the integral membrane region of lsp1, both exhibiting bidentate coordination by conserved histidine residues (Fig. 4B). Interaction between Isp1 and HcaS positions one of these hemes within electron transfer distance of the distal [4Fe-4S]-cluster of HcaS, providing a route for electrons produced by H_2 oxidation by HcaL. In hydrogenases and related enzymes, b-type cytochromes generally reduce or oxidize respiratory quinone, providing a link between the enzyme and the cellular electron transport chain ²⁻⁴ (Fig. 4B). As our proteomic data shows Hca primarily functions as a H₂-oxidizing enzyme during anaerobic sulfur-reducing metabolism, it is likely that lsp1 reduces quinone. Intriguingly, the previously uncharacterized Isp2-1 subunit forms a complex with Isp1-1 on the cytoplasmic side of the membrane. Isp2-1 contains three iron-sulfur clusters, two of which have a cubane [4Fe-4S] configuration, and one of which resembles the non-cubane [4Fe-4S] from the HdrBC subunits of CoB-CoM heterodisulfide reductase, which Isp2-1 is structurally homologous to ⁵. The role of Isp2 in Hca function requires experimental verification. However, this model indicates that it provides a conduit for electrons derived from H₂ oxidation to the cytoplasm, where they could be used to reduce NAD⁺ or ferredoxin to drive carbon fixation and other biosynthetic processes during autotrophic growth. The dual path for electrons within Hca creates the possibilities that electron path alternation in response to H_2 concentrations and redox conditions or electron bifurcation may occur, with electrons from H₂ split between relatively high potential quinone and a low potential electron acceptor like ferredoxin or NAD⁺. A potential mechanism for the latter to occur in such hydrogenases may be through quinonebased electron bifurcation where guinol reduced by H₂ acts as the bifurcation intermediate for both ferredoxin and quinone. The dual-heme arrangement of Hca is also reminiscent of the complex III known to mediate Q-cycle.

Hsu2 - SUL2 hydrogenase

While Hsu2 is from a distinct phylogenetic lineage to Hca (**Fig. 3**), based on its associated genes, its subunit composition appears to be analogous to Hca, consisting of HsuS2, HsuL2, Isp1-2, and Isp2-2 subunits (**Fig. 4A**). Consistent with this, the model of Hsu2 produced by AlphaFold is similar to Hca with an extracellular membrane-anchored [NiFe]-hydrogenase module composed of HsuS2 and HsuL2 interacting with the integral membrane Isp1-2, with heme and FeS cluster distances compatible with electron transfer. As with Hca, the Isp2-2 forms a complex with Isp1-2 on the cytoplasmic side of the membrane. Isp2-2 only coordinates two [4Fe-4S] clusters, lacking the predicted cubane cluster present in Isp2-1 (**Fig. 4C**). Despite this, like Isp2-1 in Hca, Isp2-2 provides a conduit for electrons from H₂ oxidation by Hsu to the cytoplasm, possibly for the direct reduction of substrates utilized for carbon fixation. The similarity of the structural models of Hca and Hsu2 is intuitive given their distinct expression profiles and likely allows these two proteins to fulfil analogous roles, with Hca acting under anaerobic conditions with sulfur as the electron acceptor and Hsu2 acting under aerobic conditions with O₂ as the electron acceptor.

Hys – Group 2e hydrogenase

Upstream of the genes encoding the Hys [NiFe]-hydrogenase catalytic subunits HysS and HysL, and encoded in the opposite direction, is a 165 amino acid protein distantly related to the HucM subunit of Huc, a group 2a hydrogenase produced by Mycobacterium smegmatis (Fig. 4A). Recent structural analysis of Huc shows that HucM forms a tetramer that acts as a scaffold, forming a complex with four dimers of the HucSL [NiFe]-hydrogenase catalytic subunit. Each catalytic subunit is composed of HucS and HucL proteins, with the Huc complex containing four HucM, eight Huc and eight HucS subunits ⁶. Based on this arrangement, we hypothesized that the Hys catalytic subunits form a dimer, which was confirmed by the AlphaFold model produced when the program was provided with two HysS and two HysL subunits. This structure is highly similar to the catalytic dimer of HucSL (RMSD = 1.55 Å for 5613/8158 atoms) and contains conserved amino acids responsible for coordinating menaquinone at the Huc electron acceptor site (Fig. 4D). Interestingly, when AlphaFold was provided with four HysM subunits, it produced a tetrameric coiled-coil tube that is topologically and structurally similar to HucM (Fig. 4E). Moreover, like HucM, the HysM tube is exclusively lined with hydrophobic residues. As well as serving as a scaffold for the Huc complex, the end of the HucM tube interacts with the cytoplasmic membrane, acting as a conduit allowing hydrophobic menaquinone to reach the electron acceptor site in HucS⁶. The analogous structure and hydrophobic nature of the HysM tube suggest that it plays a similar role in Hys,

which is remarkable considering the distant relationship between archaeal Hys and bacterial Huc. Unlike HucM, the AlphaFold model of HysM forms a compact tube, which lacks an obvious region that would facilitate the binding of Hys catalytic dimers. However, this may be a limitation of the AlphaFold modelling, as due to memory constraints we were not able to model all subunits concurrently. Alternatively, an additional unidentified subunit may be required to scaffold the complex. However, no candidates were identified by AlphaFold modelling of protein encoded by genes in proximity to HysS or HysL. Based on the similarity of Hys to Huc, we have generated a plausible model of the complete Hys complex (**Fig. 4E**).

Hsu1 – SUL1 hydrogenase

The Hsu1 gene cluster contains genes encoding the [NiFe]-hydrogenase catalytic HsuS1 and HsuL1 subunits (**Fig. 4A**). HusS1 is truncated compared to other [NiFe]-hydrogenase small subunits and, as a result, only contains a single [4Fe-4S]-cluster (**Fig. S4A**). Based on these subunits, it is unclear what the electron carrier for Hsu1 is. However, upstream of the HsuS1 gene are the three open reading frames encoding the proteins SdhB2, SdhC2, and SdhD2 (a gene encoding SdhA-like protein was not identified next to the three genes), homologous to the three subunits of succinate dehydrogenase. In succinate dehydrogenase, these subunits form a [FeS]-cluster and heme-containing integral membrane complex that relays electrons between the succinate oxidizing subunit and membrane-bound quinone ⁷. It is possible that these proteins serve as the electron relay from the Hsu1 catalytic subunit, meaning that Hsu1 also reduces quinone. However, while AlphaFold modelling placed the subunits within plausible electron transfer distance, a stable interface between the HsuS1/HsuL1 and SdhB2/SdhC2/ SdhD2 was not predicted (**Fig. S4B**). This makes it unclear if these proteins are functionally related.

Supplementary Tables

Hydrogenase	Subunits	Reference (PDB entries)	Reference description					
	HcaS	5AA5 chain A	5AA5 - Actinobacterial-type [NiFe]-					
	HcaL	5AA5 chain C	hydrogenase from Ralstonia eutropha					
Group 1g	lsp1_1	3EGW chain C	3EGW - The crystal structure of the NarGHI mutant NarH					
	lsp2_1	7BKB chains P/Q	7BKB – Formate dehydrogenase- heterodisulfide reductase - formylmethanofuran dehydrogenase complex from <i>Methanospirillum hungatei</i>					
	HysS	8DQV chain B	8DQV - CryoEM structure of the [NiFe]-					
Group 2e	HysL	8DQV chain A	hydrogenase Huc from <i>Mycobacterium smegmatis</i>					
	HysM	N/A	N/A					
	HsuS1	4C3O chain B	4C3O - Structure and function of an					
	HsyL1	4C3O chain B	oxygen tolerant [NiFe]-hydrogenase from Salmonella					
SULI	SdhB2	1NEK chain B	1NEK - Complex II (Succinate					
	SdhC2	1NEK chain C	dehydrogenase) from <i>E. coli</i> with					
	SdhD2	1NEK chain D	ubiquinone bound					
	HsuS2	4C3O chain B	4C3O - Structure and function of an					
	HsuL2	4C3O chain B	oxygen tolerant [NiFe]-hydrogenase from Salmonella					
SUL2	lsp1_2	3EGW chain C	3EGW - The crystal structure of the NarGHI mutant NarH					
	lsp2_2	7BKB chains P/Q	7BKB – Formate dehydrogenase- heterodisulfide reductase - formylmethanofuran dehydrogenase complex from <i>Methanospirillum hungatei</i>					

Table S1. Structures used to model cofactors of hydrogenases from Acidianus brierleyi.

Supplementary Figures

Fig. S1. Aerobic oxidation of atmospheric hydrogen (H₂) in ambient air during exponential growth of *Acidianus brierleyi* at 70°C and 25°C. Gas chromatography measurement of consumption of ambient H₂ (average 0.62 ppmv in lab air) by *A. brierleyi* grown at mid-exponential growth at 70°C and 25°C, with heat-killed cells as negative controls. Enclosed shows the abiotic production of H₂ in heat-killed control vial at 70°C, likely due to thermal degradation of butyl-rubber stopper as previously observed ⁸. Dotted line indicates the reported global average atmospheric H₂ mixing ratio (0.53 ppmv) ⁹. Data are presented as mean ± S.D. values of three biological replicates (n = 3).

Fig. S2. Time course of internal standard methane (CH₄) concentrations in *Acidianus brierleyi* cultures (A) and negative controls (B) used in gas chromatography experiments. Headspace CH₄ mixing ratio is presented on a logarithmic scale.

Fig. S3. Measurement of viability proxies of stationary phase cultures of *Acidianus brierleyi* maintained at low headspace H₂ levels at 70°C and 25°C. Measurement of (A) optical density at 600 nm (OD₆₀₀); (B) cell protein in culture (μ g / ml); (C) ATP level in culture (nM); and (D) ATP level normalized by cell protein (nmol / mg_{protein}) in stationary phase cultures of *A. brierleyi* supplemented daily with low levels of headspace H₂ within twenty days at 70°C and 25°C. For all panels, data are presented as mean ± S.D. values of three biological replicates (n = 3) while asterisks indicate significantly higher levels in H₂-supplemented cultures than cultures with no extra H₂ at the same timepoint based on one-sided Student's t-test (* *p* < 0.05; ** *p* < 0.005).

Fig. S4. AlphaFold modelling of Hsu1. (**A**) An AlphaFold model of the HsuS1 and HsuL1 subunits shown as a cartoon representation (**upper panel**) and the electron transport relay formed by modelled cofactors, with predicted electron donors and acceptors indicated (**bottom panel**). (**B**) An AlphaFold model of a complex between Hsu1 and the SdhB2, SdhC2 and SdhD2 proteins, which are encoded upstream of the HsuS1 subunit. An intimate complex was not predicted between HsuS1/HsuL1 and SdhB2/SdhC2/SdhD2. However, an [FeS]-cluster of both complexes is within electron transfer distance in the model suggesting SdhB2/SdhC2/SdhD2 may accept electrons from Hsu1 for the reduction of quinone via a transient interaction between the two complexes.

Fig. S5. Original blue native PAGE gel images as in Fig. 5A. Acidianus brierleyi cells were harvested during aerobic organotrophic exponential growth in a headspace with either 20% H_2 or ambient H_2 . Whole cell lysates, cytosols, and membranes were separated by blue native polyacrylamide gel electrophoresis and stained with Coomassie blue (left panel) and artificial electron acceptor nitrotetrazolium blue chloride (NBT) under a 7%- H_2 atmosphere (right panels). 10, 5, and 2.5 µl of each fraction were loaded on the gel. The protein ladder in the left lane was stained with Coomassie blue. Purple bands indicated by arrows suggest reduction of NBT by hydrogenase activity. The absence of positive bands in whole cell lysate likely reflects the dilute protein concentration as suggested by Coomassie stain.

Fig. S6. Carbon monoxide dehydrogenase operon of Acidianus brierleyi.

Fig. S7. Maximum-likelihood phylogenetic tree showing the evolutionary history of the catalytic subunit of the form I CO dehydrogenase (CoxL). Evolutionary distances were computed using the Poisson correction model, gaps were treated by partial deletion, and the tree was bootstrapped with 50 replicates. The tree was constructed using a representative subset of CoxL amino acid sequences from ref. ¹⁰. The major clades are color-shaded and the sequences from Thermoproteota including *A. brierleyi* are labelled in red text.

Fig. S8. Principal component analysis (PCA) showing distinct proteome clustering of *Acidianus brierleyi* grown at four different conditions. Mid-exponential growth on heterotrophic medium (EX); stationary phase on heterotrophic medium (ST); transition from heterotrophic to sulfur-dependent anaerobic hydrogenotrophic growth on mineral medium (AN); transition from heterotrophic to aerobic hydrogenotrophic growth on mineral medium (AE).

Fig. S9. Quantitative comparison of *Acidianus brierleyi* proteins involved in hydrogenase maturation, sulfur oxidation and iron uptake/oxidation under heterotrophic growth, stationary phase, sulfur-dependent hydrogenotrophic growth and aerobic hydrogenotrophic growth. Culture condition (four biological replicates each): EX, mid-exponential growth phase on heterotrophic medium; ST, stationary phase on heterotrophic medium; AN, anaerobic sulfur-dependent hydrogenotrophic growth; AE, aerobic hydrogenotrophic growth (**Methods**). Normalised protein abundance value represents MaxLFQ total intensity for the protein. Bubble size and color indicate protein abundance of the corresponding gene product in each biological replicate. Significant difference in fold changes of protein abundance of each condition pair is denoted by asterisks (two-sided Student's t-test with Benjamini-Hochberg correction, adjusted p value ≤ 0.001 , ***; ≤ 0.01 , **; ≤ 0.05 , *; > 0.05, ns).

				Protein expression Fold ch														Fo	old	cł	na	ng	е	Locus	Gene product				
5		,	•	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	٠	۰	۰	ns	ns	ns	***	***	***	DFR85_RS19780	Hydrogenase maturation nickel metallochaperone HypA1				
	2			•											•			ns	***	**	*	ns	*	DFR85_RS29580	Carbamoyltransferase HypF				
1	- 12			•	٠				•	٠	۰	۰				•		ns	ns	ns	ns	ns	ns	DFR85_RS29905	Hydrogenase maturation protease HyaD2				
	.									۰	۰	۰	۰						***	***	ns	ns	***	DFR85_RS19650	Hydrogenase formation protein HypD1 (group 1g associated)				
1																		ns	ns	ns	ns	ns	ns	DFR85_RS19655	Hydrogenase formation chaperone HypC1 (group 1g associated)				
1	s a	,	۰	۰	۰	۰	۰	۰	۰	0	0	0	0	۰	۰	٠	۰	ns	***	•••	ns	ns	•••	DFR85_RS19660	Hydrogenase formation protein HypE1 (group 1g associated)				
5	5		÷	-	÷					•	۰	٠	٠	·				ns	***	***	ns	ns	**	DFR85_RS19675	Hydrogenase maturation protease HyaD1 (group 1g associated)				
2	8.	•	۰	۰	۰	۰	۰	۰	۰		•			0	0	0	0	ns	***	***	ns	ns	***	DFR85_RS29980	Hydrogenase formation protein HypD2 (Sulfolobales clade 2 associated)				
3	<u>ا</u>		·	•	·	·	·	•	٠	÷		÷	÷	•	٠	٠	·	***	ns	•••	•••	ns	***	DFR85_RS29985	Hydrogenase formation chaperone HypC4 (Sulfolobales clade 2 associated)				
É	•	,	۰	0	۰	۰	0	۰	٥	•	•	•		0	0	0	0	***	***	***	***	***	***	DFR85_RS29995	Hydrogenase formation protein HypE2 (Sulfolobales clade 2 associated)				
	1	•	•	۰	0					0	0	0	0	۰	۰	۰	۰	***	***	***	**	***	***	DFR85_RS22105	Sulfur oxygenase reductase Sor				
	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ns	***	***	***	***	***	DFR85_RS21135	Sulfide:quinone oxidoreductase Sqr1 (V)				
		, ,	•	۰	0	0	0	0	0					۰	٠	۰	۰	***	••••	•••	•	***	**	DFR85_RS22040	Sulfide:quinone oxidoreductase Sqr2 (III)				
	.									0	0	0	0					ns	***	***	ns		***	DFR85_RS22730	Sulfide:quinone oxidoreductase Sqr3 (III)				
			0	•	0	0	0	0	0	0	0	0	0	0				*	ns	**	ns	**	ns	DFR85_RS24240	Sulfide:quinone oxidoreductase Sqr4 (V)				
			0	0	0					0	۰	٥	۰		Ó		Ō	***	••••	•••	***	ns	***	DFR85_RS30520	Sulfide:quinone oxidoreductase Sqr5 (III)				
	.														-	÷		ns	ns	ns	*	ns	ns	DFR85_RS16325	Tetrathionate hydrolase TetH1				
		>	0	0	0	0	0	0	0	۰	0	0	0	0	0	0	0	*		***	ns	**		DFR85_RS16180	Thiosulfate:quinone oxidoreductase small subunit DoxA1				
5	5	, ,	•	0	۰	0	0	0	0	0	۰	۰	۰	۰	0	۰	0	ns	**	***	ns	**		DFR85_RS16185	Thiosulfate:quinone oxidoreductase large subunit DoxD1				
ť	. 1									۰	۰	۰	۰					ns	***	***	ns	ns	***	DFR85_RS19210	Thiosulfate:quinone oxidoreductase small subunit DoxA2				
3	2									٠	٠	•	٠					ns	***	***	ns	ns	•••	DFR85_RS19215	Thiosulfate:quinone oxidoreductase large subunit DoxD2				
0		,	•	۰	۰	•	•	•	•	0	0	0	0	۰	٠	•	۰	***	••••	***	***	***	***	DFR85_RS17965	Sulfite:acceptor oxidoreductase Saor				
ľ			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ns	***	***	**	***	***	DFR85_RS27255	DsrE family protein DsrE1				
		X									0	0	0					**	***	***	**	ns	***	DFR85_RS27260	DsrE family protein DsrE2				
		5	ŏ	ŏ	õ	0	Ō	Õ	0	0	•	0	0	Ō	0	Ó	0	ns	•••	•••	ns	ns	***	DFR85_RS27265	Sulfurtransferase TusA				
	0		0	0	0	۰	۰	۰	0	0	0	0	0	۰	0	۰	0	***	ns	***	***	**	**	DFR85_RS27270	CoBCoM heterodisulfide reductase Fe-S subunit C family protein HdrC1				
	•)	0	0	٥	۰	۰	۰	۰	0	0	0	0	۰	۰	۰	۰	***	ns	***	***	*	***	DFR85_RS27275	CoBCoM heterodisulfide reductase Fe-S subunit A family protein HdrB1				
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	***	ns	***	**	***	ns	DFR85_RS27280	CoBCoM heterodisulfide reductase Fe-S subunit A family protein HdrA1				
	0		0	0	0	۰	۰	۰	٥	٥	0	0	0	0	0	۰	0	***		***	***	***	ns	DFR85_RS27290	CoBCoM heterodisulfide reductase Fe-S subunit C family protein HdrC2				
	0		0	0	0	۰	٥	۰	۰	0	0	0	0	٥	0	۰	0	•••	ns	•••	**	***	*	DFR85_RS27295	CoBCoM heterodisulfide reductase Fe-S subunit A family protein HdrB2				
	٦.																							DFR85_RS31590	Putative iron-oxidising cytochrome FoxA				
				-	÷	·			÷					÷										DFR85_RS31630	Putative iron-oxidising cytochrome FoxB				
																		**	ns	ns	ns	ns	ns	DFR85_RS21610	ABC iron transporter ATPase FepC				
			0	0	0	۰	۰	0	0	0	0	0	0	0	•	0	0	•••		•••	ns	***	ns	DFR85_RS21620	ABC iron transporter substrate-binding subunit FepB				
2	•		۰	•	٠	•	•	•	•	•	٠	•	•	۰	۰	۰	۰	***	ns	**	•	***	***	DFR85_RS21750	ABC anion transporter ATPase TauB				
			۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	0	0	0	**	ns	*	***	***	***	DFR85_RS28840	Carbonic anhydrase CynT1				
			0	0	0	0	0	0	0	0	0	0 0		• •		0	0	***	ns	•••	ns	•••		DFR85_RS30485	Carbonic anhydrase CynT2				
_																		~	+	~	t	4	~	Normaliz	ed protein abundance Log ₂ fold change				
			E	Х			S	Т			A	N		AF					4	5	<i>4</i> 7	50	Υ,						
				-				-								_	at	3	\$	4	45	4							
																	~	×	x	、	ì	×		0	2.5 10 5 10 -10 -5 0 5 10				

Fig. S10. Quantitative comparison of *Acidianus brierleyi* proteins involved in carbon reserve degradation and amino acid/peptide/sugar/acid transport under heterotrophic growth, stationary phase, sulfur-dependent hydrogenotrophic growth and aerobic hydrogenotrophic growth. Culture condition (four biological replicates each): EX, midexponential growth phase on heterotrophic medium; ST, stationary phase on heterotrophic medium; AN, anaerobic sulfur-dependent hydrogenotrophic growth; AE, aerobic hydrogenotrophic growth (**Methods**). Normalised protein abundance value represents MaxLFQ total intensity for the protein. Bubble size and color indicate protein abundance of the corresponding gene product in each biological replicate. Significant difference in fold changes of protein abundance of each condition pair is denoted by asterisks (two-sided Student's t-test with Benjamini-Hochberg correction, adjusted p value ≤ 0.001 , ***; ≤ 0.01 , **; ≤ 0.05 , *; > 0.05, ns).

		Protein expression Fold change														Locus	Gene product							
	•	0	0	0	•	•	•	•	0	0	0	0	0	0	0	0	***	***	***	**	***	ns	DFR85_RS31545	Acyl-CoA dehydrogenase Acd
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ns		ns	***	***	***	DFR85_RS23180	Adenosylhomocysteinase AhcY
Ę	•	۰	۰	۰					۰	۰	۰	۰	٠	٠	٠	۰	***	ns	***	ns	***	**	DFR85_RS16945	Glucoamylase Sga1_1
da	•	•	۰	۰	0	0	o	0	٥	•	0	0	۰	۰	۰	۰	***	***	***	ns	***	***	DFR85_RS18180	Glucoamylase Sga1_2
ğ	•	•	۰	۰	0	۰	٥	0	۰	۰	۰	۰	٠	۰	۰	۰	***	ns	***	ns	***	ns	DFR85_RS21385	Glucoamylase Sga1_3
D D	•	۰	۰	۰	0	0	0	0	۰	۰	۰	۰	۰	۰	۰	۰	***	•	***	**	***	ns	DFR85_RS21530	Glucoamylase Sga1_4
۳	•	۰	۰	•	•				۰	۰	۰	۰	٠	٠	۰	۰	**	***	***	**	***	**	DFR85_RS26945	Glucoamylase Sga1_5
Ð	•				•		•	۰				•					***	***	***	ns	***	***	DFR85_RS31985	Glucoamylase Sga1_6
Š	0	0	0	0	۰	۰	0	0	0	0	0	0	0	0	0	0	***	ns	***	ns	***	*	DFR85_RS16935	Glucoamylase GH57_1
ŝ		•	•	•				•	•	•	•	•					**	ns	×	**	ns	*	DFR85_RS28560	Glucoamylase GH57_2
Å	•	۰	۰	۰	0	0	٥	0	۰	۰	۰	۰	۰	۰	٥	۰	***	**	***	**	***	ns	DFR85_RS27455	Glycogen debranching protein GlgX
-	•	•	•	•					·	•			·	·	·		•••	ns	*	ns	**	ns	DFR85_RS16950	Glycogen debranching enzyme Gde
	1.																ns	ns	*	ns	ns	ns	DFR85_RS19150	APC amino acid permease PotE1
													٠	۰	٠	۰	ns	**	ns	***	***	***	DFR85_RS21255	APC amino acid permease PotE2
ť	•	0		۰					•								*	ns	ns	ns	ns	ns	DFR85_RS22140	APC amino acid permease PotE3
ō	0	۰	٥	۰	0	0	0	0	0	0	٥	0	٥	0	0	0	***	ns	***	ns	***	ns	DFR85_RS27610	APC amino acid permease PotE4
S							•		•		•	•			•		ns	•••	***	***	***	ns	DFR85_RS29375	APC amino acid permease PotE5
an	۰	۰	•	٠	٠	٠	۰	۰	۰	۰	۰	۰		٠	۰	۰	ns	•	ns	ns	ns	ns	DFR85_RS29400	APC amino acid permease PotE6
Ę							÷										ns	ns	ns	*	**	*	DFR85_RS31020	APC amino acid permease PotE7
Ð		0	0	0													***	***	***	*	***	ns	DFR85_RS18075	Extracellular solute-binding protein DppA1
ti o	•	•	•	•	•	$\overline{\cdot}$	÷	~	÷	•	•	÷	•	•	•	•	***	***	ns	***	ns	*	DFR85_RS18085	ABC dipeptide transporter permease DppB1
ğ	•	۰	۰	۰		٠		۰	۰	۰	۰	٠		•	•		***	**	*	***	*	***	DFR85_RS18090	ABC dipeptide transporter permease DppC1
ă	•	۰	۰	۰	•			۰	۰	۰	۰	•		٠	•	۰	•••	•••	ns	***	ns	ns	DFR85_RS18095	ABC dipeptide transporter ATPase DppD1
p	•	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	•••	***	ns	***	ns	ns	DFR85_RS18100	ABC dipeptide transporter ATPase DppF1
a	0	0	0	0									0	0	0	0	***	***	***	ns	***	***	DFR85_RS18465	Extracellular solute-binding protein DppA2
σ	•	۰	٠		·	÷	÷	÷		•	-	÷					***	***	**	***	ns	ns	DFR85 RS18440	ABC dipeptide transporter permease DppB2
<u>c</u>	•		۰														*	•	ns	ns	ns	ns		ABC dipeptide transporter permease DppC2
9	•	0	0	0	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•••	•••	ns	***	ns	ns	DFR85 RS18450	ABC dipeptide transporter ATPase DppD2
Ĕ	•	۰	۰	۰	•			•	۰	۰	٠	•	•	۰	•	۰	•••	•••	ns	***	**	ns		ABC dipeptide transporter ATPase DppF2
i E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	**	ns	*	***	***	***	DFR85 RS19975	Extracellular solute-binding protein DppA3
Ā	•	۰	۰	۰	۰	۰	0	0	0	0	0	0	0	0	0	•	***	***	**	**	ns	***	DFR85 RS19985	Extracellular solute-binding protein DppA4
	۰	٠	٠		•	•	•	٠	•	٠	•	•	•	•	•	٠	ns	**	88	ns	ns	**		ABC dipeptide transporter ATPase DppD3
	•	•	۰	•	•	•	•	•	•	•	•	·	•	•	•	٠	ns	***	***	ns	ns	**	DFR85 RS20000	ABC dipeptide transporter ATPase DppF3
	1.																ns	ns	*	ns	**	ns	DFR85 RS18990	ABC sugar transporter permease UgpAE
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	***	**	ns	ns	***	*	DFR85 RS18980	Extracellular solute-binding protein UgpB
	•																***	**	ns	ns	***	***		ABC sugar transporter ATPase UpgC
	•	0	۰	0	۰	۰	۰	۰	0	•	۰	۰	۰	۰	۰	۰	***	***	*	***	ns	**	DFR85_RS28550	ABC sugar transporter ATPase MalK
		0	0	0	•	0							0	\bigcirc	\bigcirc	0	ns	***	***	**	***	***	DFR85_RS28565	Extracellular solute-binding protein TreS
	•	•	٠	•	•	•		•	•	•	•	÷				•	ns	ns	*	**	ns	**	DFR85_RS28570	ABC sugar transporter permease TreT
2	0	۰	0	0	۰	۰	۰	0	0	0	٥	۰	۰	۰	۰	0	ns	ns	*	***	***	***	DFR85_RS28575	ABC sugar transporter permease TreU
ă	•	۰	0	۰	۰	۰	0	۰	0	۰	۰	0	۰	۰	۰	۰	ns	ns	*	***	**	***		ABC sugar transporter ATPase TreV
ŝ					•	•											***	ns	***	ns	***	ns	DFR85_RS13445	MFS sugar/acid transporter MSAT1
ra							•	•									ns	ns	ns	ns	ns	ns	DFR85 RS21375	MFS sugar/acid transporter MSAT2
÷		•	•	•	•	•	٠	٠		•	•			•		•	***	***	***	ns	***	***	DFR85_RS28395	MFS sugar/acid transporter MSAT3
č.			•	•	٠	۰	۰	۰			•				•			ns	**	ns	ns	ns	DFR85 RS28400	MFS sugar/acid transporter MSAT4
ā	•	۰	۰	۰	۰	٥	۰	۰				•	۰	0	۰	۰	ns	•••	***	ns	ns	***	DFR85 RS28490	MFS sugar/acid transporter MSAT5
L	•			٠	•								۰	۰	۰	۰	ns	*	*	***	***	***	DFR85 RS29280	MFS sugar/acid transporter MSAT6
ga	•	0	۰	•	۰	۰	۰	¢	•	•	•	•				•	ns	**	**	**	***	ns	DFR85 RS30810	MFS sugar/acid transporter MSAT7
Ĵ	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰				•	ns	ns	ns	***	***	***	DFR85 RS30900	MFS sugar/acid transporter MSAT8
0	۰	0	0	0	0	0	0	0	0	0	۰	0	0	0	0	0	***	••	***	***	ns	***	DFR85 RS30905	MFS sugar/acid transporter MSAT9
	۰	۰	۰	۰	۰	۰	۰	۰						•	•	•	ns	••••	***	***	***		DFR85 RS30910	MFS sugar/acid transporter MSAT10
	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	۰	·		•	•	ns	ns	ns	**	***	**	DFR85 RS30985	MFS sugar/acid transporter MSAT11
	۰	۰	۰	۰	0	0	0	0				•				•	***	***	***	***	***	ns	DFR85 RS31345	MFS sugar/acid transporter MSAT12
							-										ns	ns	ns	ns	ns	ns	DFR85 RS31490	MFS sugar/acid transporter MSAT13
	•	•		•													ns	ns	ns	ns	*	*	DER85_RS21590	MFS sugar/acid transporter MSAT14
~	•	•	•	۰	۰	0	0	0	•	۰	۰	۰	۰	0	0	•	•••	•	***	***		**	DFR85 RS16765	Extracellular solute-binding protein FSB1
SE	0	0	0	0									0	0	0	0	ns		ns	ns	ns	ns	DFR85 RS18800	Extracellular solute-binding protein ESB2
ш	0	0	0	0	ŏ	ॉ	Ĭ	ŏ	õ	õ	õ	õ	0	0	0	0	***		**	ns	***	**	DFR85 RS27095	Extracellular solute-binding protein ESB3
	·				_	-				-	-						~	+	~	+	~	4	Normalized protei	n abundance Log fold change
		F	Х			S	т			А	N			А	E		s, s	ψ,	5	4	Ś	× s		
		-	~ •			0	•								_	*	2	2	4	4	4	~	. 10	-10 -10 -
	4										0 3010 601	N 9010 _10 _5 0 5 10												

Supplementary References

- Laska, S., Lottspeich, F. & Kletzin, A. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon *Acidianus ambivalens*. *Microbiology* 149, 2357–2371 (2003).
- 2. Bertero, M. G. *et al.* Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. *Nature Structural Biology* **10**, 681–687 (2003).
- Volbeda, A. *et al.* Crystal structure of the O₂-tolerant membrane-bound hydrogenase 1 from *Escherichia coli* in complex with its cognate cytochrome *b. Structure* 21, 184–190 (2013).
- Bernhard, M., Benelli, B., Hochkoeppler, A., Zannoni, D. & Friedrich, B. Functional and structural role of the cytochrome *b* subunit of the membrane-bound hydrogenase complex of *Alcaligenes eutrophus* H16. *European Journal of Biochemistry* 248, 179–186 (1997).
- Watanabe, T. *et al.* Three-megadalton complex of methanogenic electron-bifurcating and CO₂-fixing enzymes. *Science* **373**, 1151–1156 (2021).
- Grinter, R. *et al.* Structural basis for bacterial energy extraction from atmospheric hydrogen. *Nature* 615, 541–547 (2023).
- Yankovskaya, V. *et al.* Architecture of succinate dehydrogenase and reactive oxygen species generation. *Science* 299, 700–704 (2003).
- Nauer, P. A., Chiri, E., Jirapanjawat, T., Greening, C. & Cook, P. L. M. Technical note: inexpensive modification of exetainers for the reliable storage of trace-level hydrogen and carbon monoxide gas samples. *Biogeosciences* 18, 729–737 (2021).
- 9. Novelli, P. C. C. *et al.* Molecular hydrogen in the troposphere: global distribution and budget. *Journal of Geophysical Research Atmospheres* **104**, 30427–30444 (1999).
- 10. Cordero, P. R. F. *et al.* Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. *ISME Journal* **13**, 2868–2881 (2019).