Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Content						
Acid hydroly	sis of compounds 1-7	3				
α-Glucosidase inhibitory assay						
α-Amylase inhibitory assay						
Table S1. The	e α -glucosidase and α -amylase inhibitory effects of the compounds 1-13	5				
Figure S1	IR spectrum of compound 1	6				
Figure S2	HR-ESI-MS of compound 1	6				
Figure S3	¹ H-NMR spectrum of compound 1 in CD ₃ OD	7				
Figure S4	Extended ¹ H-NMR spectrum of compound 1 in CD ₃ OD	8				
Figure S5	¹³ C-NMR spectrum of compound 1 in CD ₃ OD	9				
Figure S6	HSQC spectrum of compound 1 in CD ₃ OD	10				
Figure S7	HMBC spectrum of compound 1 in CD ₃ OD	11				
Figure S8	Expanded HMBC spectrum of compound 1 in CD ₃ OD	12				
Figure S9	COSY spectrum of compound 1 in CD ₃ OD	13				
Figure S10	NOESY spectrum of compound 1 in CD ₃ OD	14				
Figure S11	IR spectrum of compound 2	15				
Figure S12	HR-ESI-MS of compound 2	15				
Figure S13	¹ H-NMR spectrum of compound 2 in CD_3OD	16				
Figure S14	Extended ¹ H-NMR spectrum of compound 2 in CD_3OD	17				
Figure S15	¹³ C-NMR spectrum of compound 2 in CD ₃ OD	18				
Figure S16	HSQC spectrum of compound 2 in CD ₃ OD	19				
Figure S17	HMBC spectrum of compound 2 in CD ₃ OD	20				
Figure S18	Expanded HMBC spectrum of compound 2 in CD ₃ OD	21				
Figure S19	Expanded HMBC spectrum of compound 2 in CD ₃ OD	22				
Figure S20	COSY spectrum of compound 2 in CD ₃ OD	23				
Figure S21	NOESY spectrum of compound 2 in CD ₃ OD	24				
Figure S22	IR spectrum of compound 3	25				
Figure S23	HR-ESI-MS of compound 3	25				
Figure S24	¹ H-NMR spectrum of compound 3 in CD_3OD	26				
Figure S25	Extended ¹ H-NMR spectrum of compound 3 in CD ₃ OD	27				
Figure S26	¹³ C-NMR spectrum of compound 3 in CD_3OD	28				
Figure S27	HSQC spectrum of compound 3 in CD_3OD	29				
Figure S28	HMBC spectrum of compound 3 in CD ₃ OD	30				
Figure S29	Expanded HMBC spectrum of compound 3 in CD ₃ OD	31				
Figure S30	COSY spectrum of compound 3 in CD_3OD	32				
Figure S31	NOESY spectrum of compound 3 in CD_3OD	33				
Figure S32	IR spectrum of compound 4	34				
Figure S33	HR-ESI-MS of compound 4	34				
Figure S34	¹ H-NMR spectrum of compound 4 in CD ₃ OD	35				
Figure S35	Extended ¹ H-NMR spectrum of compound 4 in CD ₃ OD	36				
Figure S36	¹³ C-NMR spectrum of compound 4 in CD ₃ OD	37				
Figure S37	HSQC spectrum of compound 4 in CD ₃ OD	38				
Figure S38	HMBC spectrum of compound 4 in CD ₃ OD	39				
Figure S39	Expanded HMBC spectrum of compound 4 in CD ₃ OD	40				
Figure S40	Expanded HMBC spectrum of compound 4 in CD ₃ OD	41				
Figure S41	COSY spectrum of compound 4 in CD ₃ OD	42				
Figure S42	NOESY spectrum of compound 4 in CD ₃ OD	43				
Figure S43	IR spectrum of compound 5	44				
Figure S44	HR-ESI-MS of compound 5	44				
Figure S45	¹ H-NMR spectrum of compound 5 in CD ₃ OD	45				
Figure S46	Extended ¹ H-NMR spectrum of compound 5 in CD ₃ OD	46				
Figure S47	¹³ C-NMR spectrum of compound 5 in CD ₃ OD	47				

Figure S48	HSQC spectrum of compound 5 in CD ₃ OD	48
Figure S49	HMBC spectrum of compound 5 in CD ₃ OD	49
Figure S50	Expanded HMBC spectrum of compound 5 in CD ₃ OD	50
Figure S51	COSY spectrum of compound 5 in CD ₃ OD	51
Figure S52	NOESY spectrum of compound 5 in CD ₃ OD	52
Figure S53	IR spectrum of compound 6	53
Figure S54	HR-ESI-MS of compound 6	53
Figure S55	¹ H-NMR spectrum of compound 6 in CD ₃ OD	54
Figure S56	Extended ¹ H-NMR spectrum of compound 6 in CD ₃ OD	55
Figure S57	¹³ C-NMR spectrum of compound 6 in CD ₃ OD	56
Figure S58	HSQC spectrum of compound 6 in CD ₃ OD	57
Figure S59	HMBC spectrum of compound 6 in CD ₃ OD	58
Figure S60	Expanded HMBC spectrum of compound 6 in CD ₃ OD	59
Figure S61	COSY spectrum of compound 6 in CD ₃ OD	60
Figure S62	NOESY spectrum of compound 6 in CD ₃ OD	61
Figure S63	IR spectrum of compound 7	62
Figure S64	HR-ESI-MS of compound 7	62
Figure S65	¹ H-NMR spectrum of compound 7 in CD ₃ OD	63
Figure S66	Extended ¹ H-NMR spectrum of compound 7 in CD ₃ OD	64
Figure S67	¹³ C-NMR spectrum of compound 7 in CD ₃ OD	65
Figure S68	HSQC spectrum of compound 7 in CD ₃ OD	66
Figure S69	HMBC spectrum of compound 7 in CD ₃ OD	67
Figure S70	Expanded HMBC spectrum of compound 7 in CD ₃ OD	68
Figure S71	Expanded HMBC spectrum of compound 7 in CD ₃ OD	69
Figure S72	COSY spectrum of compound 7 in CD ₃ OD	70
Figure S73	NOESY spectrum of compound 7 in CD ₃ OD	71
Figure S74	¹ H-NMR spectrum of compound 8 in CD3OD	72
Figure S75	¹³ C-NMR spectrum of compound 8 in CD3OD	72
Figure S76	¹ H-NMR spectrum of compound 9 in CD3OD	73
Figure S77	¹³ C-NMR spectrum of compound 9 in CD3OD	73
Figure S78	¹ H-NMR spectrum of compound 10 in CD3OD	74
Figure S79	¹³ C-NMR spectrum of compound 10 in CD3OD	74
Figure S80	¹ H-NMR spectrum of compound 11 in CD3OD	75
Figure S81	¹³ C-NMR spectrum of compound 11 in CD3OD	75
Figure S82	¹ H-NMR spectrum of compound 12 in CD3OD	76
Figure S83	¹³ C-NMR spectrum of compound 12 in CD3OD	76
Figure S84	¹ H-NMR spectrum of compound 13 in CD3OD	77
Figure S85	¹³ C-NMR spectrum of compound 13 in CD3OD	77

Acid hydrolysis of compounds 1-7

Compounds 1-7 (each, 5.0 mg) were separately dissolved in 1.0 M HCl (dioxane–H₂O, 1:1, v/v, 1.0 mL) and heated to 80 °C in a water bath for 3 h. For each compound, the acidic solution was neutralized with silver carbonate, the precipitated silver chloride was removed, and the solution was concentrated thoroughly under a nitrogen atmosphere. The residue was re-dissolved in 1.0 mL of water and extracted with chloroform (three times, each 1 mL). The aqueous layer was concentrated to dryness using nitrogen gas and monosaccharides were purified by preparative TLC (pre-coated silica gel 60 F_{254} , MeCOEt–isoPrOH–Me₂CO–H₂O (20:10:7:6). The specific rotations [α]_D²⁵ of sugars were determined after dissolving in H₂O.

For compound 1: glucose (1.2 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 48.0$), arabinose (0.8 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 42.0$), rhamnose (0.8 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 18.0$).

For compound **2**: glucose (1.3 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 47.0$), arabinose (0.7 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 41.0$), rhamnose (0.8 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 19.0$).

For compound **3**: glucose (1.2 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 47.0$), arabinose (0.8 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 41.5$), rhamnose (0.9 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 19.0$).

For compound 4: glucose (1.2 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 48.5$), arabinose (0.8 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 41.5$), rhamnose (0.8 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 18.0$).

For compound 5: glucose (1.2 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 48.0$), arabinose (0.8 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 42.0$), rhamnose (0.8 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 18.0$).

For compound 6: glucose (1.3 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 48.0$), arabinose (0.8 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 41.0$), rhamnose (0.9 mg, $R_f = 0.65$, $[\alpha]_D^{25} + 18.0$).

For compound 7: glucose (1.3 mg, $R_f = 0.42$, $[\alpha]_D^{25} + 48.0$), arabinose (0.9 mg, $R_f = 0.48$, $[\alpha]_D^{25} + 41.0$).

α-Glucosidase inhibitory assay

The α -glucosidase (G0660, Sigma-Aldrich, St. Louis, MO) enzyme inhibition assay was performed according to the previously described method. In brief, 20 µL of sample solution and 40 µL of α -glucosidase solution were well mixed with 100 µL of 0.1 M phosphate buffer (pH 7.0) in a 96-well plate. After 5 min pre-incubation at 37 °C, the substrate, *p*-nitrophenyl- α -D-glucopyranoside solution (40 µL) was added, and the reaction mixture was incubated at 37 °C for 30 min. The absorbance of was then measured at 405 nm by using an ELISA Bio-Rad microplate reader. Reaction mixture containing acarbose solution instead of sample solution was used as positive control.

α-Amylase inhibitory assay

The α -amylase (A3176, Sigma-Aldrich, St. Louis, MO) enzyme inhibitory activity was measured using the reported method. Substrate was prepared by boiling 100 mg potato starch in 5 mL phosphate buffer (pH 7.0) for 5 min, then cooling to room temperature. The sample solution (20 μ L) and substrate (30 μ L) were mixed with 30 μ L of 0.1 M phosphate buffer (pH 7.0). After 5 min pre-incubation, 20 μ L of α -amylase solution was added and the reaction mixture was incubated at 37°C for 15 min. The reaction was stopped by adding 50 μ L HCl 1 M and then 50 μ L iodine solution. The absorbances were then measured at 650 nm by a microplate reader. Reaction mixture containing acarbose solution instead of sample solution was used as positive control. And reaction mixture containing buffer solution instead of sample solution was used as negative control.

	α-glucosidas	se inhibition	α-amy	lase inhibition
Comp.	(%)		(%)	
	Mean	SD	Mean	SD
1	94.65	2.19	88.29	2.50
2	82.25	1.87	85.03	1.84
3	84.26	1.59	92.42	1.86
4	81.48	2.42	91.11	2.51
5	64.73	2.64	31.91	1.72
6	60.81	2.37	64.46	1.80
7	55.34	1.38	44.92	2.94
8	92.68	1.12	94.22	1.57
9	90.95	1.23	83.88	2.25
10	67.98	1.20	48.04	2.32
11	53.62	1.15	62.71	2.06
12	46.36	2.36	69.74	2.20
13	42.20	2.70	57.38	2.64
Acarbose*	84.05	2.58	61.23	2.15

Table S1. The α -glucosidase and α -amylase inhibitory effects of the compounds 1-13 (200 μ M)

[*]Acarbose was used as a positive control (at 100 μ g/mL ~ 155 μ M). Experiments were peformed in

triplicate.

HR-ESI-MS *m/z*: 1227.5586 [M+Na]⁺, (calcd. for $[C_{61}H_{88}O_{24}Na]^+$, 1227.5558, Δ =+2.3 ppm); *m/z*: 1205.5728 [M+H]⁺, (calcd. for $[C_{61}H_{89}O_{24}]^+$, 1205.5739, Δ =-0.9 ppm). Figure S2. HR-ESI-MS of compound **1**

Figure S3. ¹H-NMR spectrum of compound 1 in CD₃OD

Figure S4. Extended ¹H-NMR spectrum of compound 1 in CD₃OD

Figure S5. 13 C-NMR spectrum of compound 1 in CD₃OD

Figure S6. HSQC spectrum of compound 1 in CD₃OD

Figure S7. HMBC spectrum of compound 1 in CD₃OD

Figure S8. Expanded HMBC spectrum of compound 1 in CD₃OD

Figure S9. COSY spectrum of compound 1 in CD₃OD

Figure S12. HR-ESI-MS of compound 2

Figure S13. ¹H-NMR spectrum of compound **2** in CD₃OD

Figure S14. Extended ¹H-NMR spectrum of compound 2 in CD₃OD

Figure S15. ¹³C-NMR spectrum of compound **2** in CD₃OD

Figure S16. HSQC spectrum of compound 2 in CD₃OD

Figure S17. HMBC spectrum of compound 2 in CD₃OD

Figure S19. Extended HMBC spectrum of compound 2 in CD₃OD

Figure S20. COSY spectrum of compound 2 in CD₃OD

Figure S21. NOESY spectrum of compound 2 in CD₃OD

Figure S22. IR spectrum of compound 3

Figure S25. Extended ¹H NMR spectrum of compound **3** in CD₃OD

Figure S26. ¹³C NMR spectrum of compound **3** in CD₃OD

Figure S27. HSQC spectrum of compound 3 in CD₃OD

Figure S28. HMBC spectrum of compound **3** in CD₃OD

Figure S30. COSY spectrum of compound 3 in CD₃OD

Figure S31. NOESY spectrum of compound **3** in CD₃OD

HR-ESI-MS m/z 1235.5839 [M-H]⁻, (calcd. for [C₆₂H₉₁O₂₅]⁻, 1235.5855, Δ =-1.3 ppm), m/z 1271.5568 [M+³⁵Cl]⁻, (calcd. for [C₆₂H₉₂O₂₅³⁵Cl]⁻, 1271.5521, Δ =-4.2 ppm), m/z 1273.5563 [M+³⁷Cl]⁻, (calcd. for [C₆₂H₉₂O₂₅³⁷Cl]⁻, 1273.5592, Δ =-2.3 ppm) Figure S33. HR-ESI-MS spectrum of compound 4

Figure S35. Extended ¹H NMR spectrum of compound 4 in CD₃OD

Figure S37. HSQC spectrum of compound **4** in CD₃OD

Figure S41. COSY spectrum of compound 4 in CD₃OD

Figure S42. NOESY spectrum of compound 4 in CD₃OD

HR-ESI-MS m/z 1075.5679 [M+H]⁺, (calcd. for $[C_{53}H_{87}O_{22}]^+$, 1075.5684, Δ =-0.5 ppm), m/z1097.5476 [M+Na]⁺, (calcd. for $[C_{53}H_{86}O_{22}Na]^+$, 1097.5503, Δ =-2.5 ppm) Figure S44. HR-ESI-MS spectrum of compound **5**

Figure S45. ¹H NMR spectrum of compound 5 in CD₃OD

Figure S48. HSQC spectrum of compound 5 in CD₃OD

Figure S50. Extended HMBC spectrum of compound 5 in CD₃OD

Figure S52. NOESY spectrum of compound 5 in CD₃OD

HR-ESI-MS m/z 1061.5553 [M+H]⁺, (calcd. for $[C_{52}H_{85}O_{22}]^+$, 1061.5527, Δ =+2.5 ppm), m/z 1083.5373 [M+Na]⁺, (calcd. for $[C_{52}H_{84}O_{22}Na]^+$, 1083.5347, Δ =+2.4 ppm)

Figure S55. ¹H NMR spectrum of compound 6 in CD₃OD

Figure S56. Extended ¹H NMR spectrum of compound 6 in CD₃OD

Figure S58. HSQC spectrum of compound 6 in CD₃OD

Figure S60. Extended HMBC spectrum of compound 6 in CD₃OD

Figure S61. COSY spectrum of compound 6 in CD₃OD

Figure S62. NOESY spectrum of compound 6 in CD₃OD

HR-ESI-MS m/z 929.5128 [M+H]⁺, (calcd. for $[C_{47}H_{77}O_{18}]^+$, 929.5105, Δ =+2.5 ppm), m/z 951.4913 [M+Na]⁺, (calcd. for $[C_{47}H_{76}O_{18}Na]^+$, 951.4924, Δ =-1.7 ppm

Figure S64. HR-ESI-MS spectrum of compound 7

Figure S65. ¹H NMR spectrum of compound 7 in CD₃OD

Figure S67. ¹³C NMR spectrum of compound 7 in CD₃OD

Figure S69. HSQC spectrum of compound 7 in CD₃OD

Figure S70. HMBC spectrum of compound 7 in CD₃OD

Figure S71. Extended HMBC spectrum of compound 7 in CD₃OD

Figure S72. Extended HMBC spectrum of compound 7 in CD_3OD

Figure S73. COSY spectrum of compound 7 in CD_3OD

Figure S74. NOESY spectrum of compound 7 in CD_3OD

Figure S76. ¹³C-NMR spectrum of compound 8 in CD₃OD

Figure S78. ¹³C-NMR spectrum of compound 9 in CD₃OD

Figure S80. ¹³C-NMR spectrum of compound **10** in CD₃OD

Figure S81. ¹H-NMR spectrum of compound **11** in CD₃OD

17 17 144.8 02 17 144.4 8 02 17 1002 03 02 17 04.0 02 02 17 04.0 02 02 17 04.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 02 02 17 05.0 03 05 17 05.0 03 05 17 05.0 03 05 17 05.0 03 05 17 05.0 05 05 17 05.0 05 05 18 05 05 05 17 05 05 05 18 05 05 05 17 05 05 05 17 05 05 05 18 05 05 05 19 <td

Figure S82. ¹³C-NMR spectrum of compound **11** in CD₃OD

Figure S84. ¹³C-NMR spectrum of compound **12** in CD₃OD

Figure S86. ¹³C-NMR spectrum of compound **13** in CD₃OD