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Abstract: Background

The accurate identification of the functional elements in the bovine genome is a
fundamental requirement for high quality analysis of data informing both genome
biology and genomic selection. Functional annotation of the bovine genome was
performed to identify a more complete catalogue of transcript isoforms across bovine
tissues.

Results

A total number of 171,985 unique transcripts (50% protein-coding) representing 35,150
unique genes (64% protein-coding) were identified across tissues. Among them,
118,563 transcripts (70% of the total) were structurally validated by independent
datasets (PacBio Iso-seq data, ONT-seq data, de novo assembled transcripts from
RNA-seq data) and comparison with Ensembl and NCBI gene sets. In addition, all
transcripts were supported by extensive data from different technologies such as
WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large proportion of identified
transcripts (69%) were un-annotated, of which 87% were produced by annotated
genes and 13% by un-annotated genes. A median of two 5’ untranslated regions were
expressed per gene. Around 50% of protein-coding genes in each tissue were
bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we
identified 3,744 genes that functioned as non-coding genes in fetal tissues, but as
protein coding genes in adult tissues. Our new bovine genome annotation extended
more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations.
The resulting bovine transcriptome was integrated with publicly available QTL data to
study tissue-tissue interconnection involved in different traits and construct the first
bovine trait similarity network.

Conclusions

These validated results show significant improvement over current bovine genome
annotations.
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Response to Reviewers: Dear Editor

Manuscript number: GIGA-D-23-00037

We are thankful to the reviewers for their thorough review. We have revised the
present research manuscript in the light of their useful suggestions and comments. We
hope this revision has improved the manuscript to a level of their satisfaction. Point by
point answers to their specific comments are as follows. Please notice that that the line
numbers were changed after revision. However, any changes were highlighted with red
color in the revised version. With the exception of text that was deleted. Supplemental
files 5, 14, 16, and 22 were submitted to GigaDB database.
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Reviewer#1

Comment 1: Maybe a flow chart including samples (their number), methods, etc. will be
helpful for authors to understand of the outline of this study when it supplied so much
information. Besides, subheadings for the Results part needs to be detailed to supply a
clear aim or result, for example, "Transcript level analyses".

Response: Lines 582 to 583 the overview of the bioinformatics steps used in this study
has been provided. Lines 103 and 187, the “Transcript level analysis” and “Gene level
analysis” have been changed to “Transcript-based analysis” and “Gene-based
analysis” to provide more clear title for the subsections.

Comment 2: Predicted un-annotated genes and transcripts were highly supported by
independent Pacific Biosciences single molecule long-read isoform sequencing
(PacBio Iso-Seq), Oxford Nanopore Technologies sequencing (ONT-seq), Illumina
high-throughput RNA sequencing (RNA-seq), Whole Transcriptome Termini Site
Sequencing (WTTS-seq), RNA Annotation and Mapping of Promoters for the Analysis
of Gene Expression (RAMPAGE), chromatin immunoprecipitation sequencing (ChIP-
seq), and Assay for Transposase-Accessible Chromatin using sequencing ATAC-seq)
data.

How did this validation applied using those different datasets? Which one was treated
as standard, or were they validated mutually by overlapping? Detail information is
needed to supply to help others to refer this study when they compare with their own
datasets. Standard workflow will help the cattle study to go faster, and this will be a
very important contribution.

Response: Lines 646 to 657, the detailed description of the comparison of transcript
structures across dataset has been provided.

Comment 3: Testis showed the highest number of expressed genes with observed
transcripts compared to other tissues. Fetal brain and fetal muscle tissues showed the
highest number and percentage of non-coding genes compared to that observed in
other tissues.

When evaluated the gene/transcript number for different tissues, were the numbers
corrected by the sequencing depth/the sample number of different tissues? How to
define the testis including the highest number of expressed genes? Is there any
potential interesting biological mechanism for this phenomenon?

Response: Lines 111-115, and 628-629, the quantified gene, transcript counts were
normalized for the sequencing depth using reads per kilobase of transcript per Million
reads mapped (RPKM) method.

Testis showed the highest number of expressed genes compared to other tissues
(Supplemental file 2: Fig. S8). In addition, the testis stands out, compared to other
tissues, for the high number of tissue-specific genes and transcripts (Supplemental file
2: Fig. S28C, Supplemental file 13). The same results have been observed in human
[1-4]. Although the reason behind these phenomena is largely remained unknown, it
can be referred to the complex anatomical and functional features of testis [4].
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Reviewer#2

Comment 1: My main concern is regarding the way that the results are presented and
discussed. Despite the authors presenting very interesting results, the manuscript is
very difficult to follow. In addition to a very long manuscript, which could be
understandable due to the amount of analysis and results, the text seems to be
extremely repetitive and basically descriptive. The results section, which has almost 20
pages, is composed of a series of sub-sections that are mainly descriptive statistics of
the data. This kind of information could be summarized in Tables/Figures and the main
results presented in the text. I suggest the authors perform a deep review in the
Results section in order to provide a reduced version with the most relevant results,
which will be further discussed. Additionally, the same information is presented in
several parts of the manuscript. For example, the tissue-specific genes and transcripts
are mentioned in multiple parts of the results section. In my opinion, the main objective
of the authors "to facilitate the functional genomics of cattle" relies much more on other
results rather than on the description of a number of transcripts, expressed genes, etc.
For example, a deeper analysis of the alternative splicing across tissues would result in
much more interesting results from the functional point-of-view. Additionally, the
authors could focus on the functionality of the transcript with specific expression
signatures (in a cluster of tissues, for example). The extensive description of summary
statistics reduces substantially the impact and novelty of the results.

Response: The redundant summary statistics and unnecessary results were removed
throughout the manuscript. The detailed description of different alternative splicing
events was moved to the method section, to make the manuscript shorter (lines 734-
750). The redundant tissue-specific transcript result was removed as it caused
confusion (lines 103-105).  Tissue sample collection and sequencing library
preparation methods were moved to the Supplemental file 23, to make the manuscript
shorter (lines 581-582)
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The functionality of transcripts/genes were discussed thought the manuscript (lines
222-224, 235-238, 244-248, 260-262, 345-347, 371-374, 396-400, and 519-533). we
provided an initial publication from which additional publications will arise. We fully
acknowledge that there are additional analyses that can be performed based on this
data, however it is beyond the scope of this publication.

Comment 2: The material and methods section should be improved. I understand that
due to the length of the manuscript, the authors decided to not show some details
regarding the analysis and only cite the original manuscript where the analyses were
performed. However, the authors should present the most relevant points, arguments,
and decisions from each methodology. A reduction in other parts of the manuscript will
allow the authors to improve this section as well.

Response: Lines 641-645, and 700-705, a brief description of the independent Oxford
Nanopore and ChIP seq experiments that their resulted data were used in this study,
has been added to the manuscript to improve the section.

Comment 3: The Discussion section is pretty much an overview of the results section. I
believe that because the authors choose to focus mainly on the description of the
number of transcripts, isoforms, genes, etc. providing discussion based on functionality
became a difficult task. Here, the authors should discuss how the results help to
improve the functional annotation in the cattle genome. In general, the discussion is
generic and don't cover specific results obtained in the analysis. For example, which is
the functional profile of the genes with specific alternative splicing in a given tissue or
group of tissues? This is interesting from the functional perspective. The results of the
QTL-transcriptome associations should be discussed more in detail, providing more
information regarding these associations and the specific patterns of association
regarding the tissues and isoforms. However, it is very important to highlight the
limitation of this approach, such as the limitations related to the database, the original
association studies, breed-specific associations, etc.

Response: In the discussion section, we explained how our effort improved the current
annotation of cattle genome both in quantity, i.e., number of novel
genes/transcripts/miRNAs (lines 437-448), and quality, i.e., UTRs and regulatory
elements (lines 449-457), bifunctional genes (lines 458-473), known gene border
extensions (lines 497-501), through comparison our assembled transcriptome with
current genome annotations or greatly annotated human genome. We latter discussed
our finding on (1) pseudogene-derived lncRNAs and their role in gene regulation (lines
492-496), (2) similarity of alternative splicing events in cattle and other vertebrates
(lines 506-509), (2) change of the alternative splicing between fetal and adult tissues
and how this finding supported by other experiments in human genome (lines 509-
511), (3) integration of our assembled transcriptome with previously published
QTL/gene association data and how this novel approach can be used to identify tissue-
tissue communication mechanisms (lines 512-541), and study trait similarity network
(lines 542-551). The limitation of this approach was presented in lines 558-562.

The functional enrichment analysis of the top five percent of genes with the highest
number of alternative-splicing events was presented in lines 344-347 It should be
noted that due to the genome-wide scope of this experiment, and the number of
studied tissues, there are so many contests that could be performed, and addressing
all of them would make the manuscript extremely long, which constricts the reviewer's
first comment. While we fully understand the review comment, we will not be able to
provide all possible evidence.
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Comment 4: Finally, I would suggest the authors remove multi-omics from the title. The
study focuses on a multi-platform and multi-technique approach to evaluate
transcriptomics. The closest analysis from other omics was the integration of ATAC-
Seq and Chip-Seq data. However, the main results are focused on a single omics,
transcriptomics.

Response: The manuscript title was changed to “Utilization of functional genomics data
to identify relationships between phenotypic traits in cattle”.

Comment 5: The abstract should be substantially improved. There are few
explanations about the scientific question and hypothesis of the study. Additionally, the
authors don't provide basic information regarding the dataset used in the study. Which
were tissues analyzed? How many animals? The conclusions are vague and don't
provide a perspective of the results.

Response: The nature of this experiment is different than a traditional treatment by
treatment experiment in combination of limitation of the length of the abstract is not
possible to state all of the hypothesis that been tested.

Comment 6: Lines 51-53: This sentence is not connected with the previous one.
Please, inform us how functional elements may help to fill the mentioned gap.

Response: Lines 61-63, a new sentence was added to the paragraph to fill the gap.

Comment 7: Line 56: Reference 2, Does this reference really reach this conclusion?

Response: Lines 66-68, the citation was changed as it caused confusion.

Comment 8: Line 58: Reference 3, The reference regarding this topic is quite old.
Please, provide an updated one since the topic of the sentence passed through an
intense development and increase in the number of publications in the last decade.

Response: Line 70, the citation was updated.

Comment 9: The last paragraph of the introduction presents a summary of the results
obtained. The authors could use this part of the introduction to clearly state the
objectives of the study.

Response: Lines 83-89, the paragraph was rewritten to reflect the study objectives.
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Comment 10: Line 85: The word "diversity" is repeated in the sentence.

Response: Lines 91, the redundant word was removed.

Comment 11: Line 91: Where is the description of all tissues?

Response: Line 91-93, the list of tissues was provided in Supplemental file 1.

Comment 12: Line 103-105: How? It is not clear how these 20,010 transcripts were
actually expressed in multiple tissues.

Response: Lines 109-115, reliance solely on assembled transcripts in a given tissue to
predict a tissue transcript atlas may overestimate tissue specificity due to a high false-
negative rate for transcript detection. To solve this problem of over-prediction of tissue
specificity, we marked a transcript as “expressed” in a given tissue only if (1) it had
been assembled from RNA-seq data in that tissue; or (2) its expression and all of its
splice junctions has been quantified using RNA-seq reads in the tissue of interest with
an expression level more than 1 reads per kilobase of transcript per Million reads
mapped (RPKM)

Comment 13: Line 156: "Significantly higher than that was", please, review this
sentence.

Response: Line 116-146, the sentence was corrected as it caused confusion.

Comment 14: Line 159-163: This sentence is confusing.

Response: Line 148-151, the sentence was corrected as it caused confusion.

Comment 15: Line 226-227: Please, replace "This supported an intersection analysis"
with "This supports an intersection analysis".

Response: Line 201-203, the sentence was corrected as it caused confusion.

Comment 16: Line 247-250: This is a very broad BP term. How this could be
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interpreted?

Response: The details of all over-represented GO terms were provided in the
supplemental file 7, and only the most enriched term was reported in the manuscript
body.  High level of similarity between enriched GO terms (based on the similarity of
their associated genes), makes it fair to use “response to protozoan” as the
representative biological function for genes with the highest number of UTRs
(Supplemental file 2: Fig. 11)

Comment 17: Line 266-267: How does a protein-coding gene transcribe only non-
coding transcripts? Please, provide more details to the readers.

Response: Line 239-241, the sentence was re-written as it caused confusion. In
addition, bifunctional genes were discussed in more detail in the discussion section
(lines 458-473).

Comment 18: Line 409-410: It seems that this information is repeated.

Response: Lines 115-117, the redundant sentence was removed

Comment 19: Line 611: It is missing a parenthesis.

Response: Line 554, the missed parenthesis was fixed.

Comment 20: The conclusions are generic and don't cover the main results obtained in
the studies from a perspective of how those results fill the current gap observed in the
literature. How the specific results obtained.

Response: Lines 566-578, the conclusion section was modified to cover the study
objectives provided in lines 83-89

Reviewer#3

Comment 1: In the Methods section, sub heading RNA-seq library construction it says,
"Tissue samples (Supplemental file 22) were collected from storage at -80 °C". A
section prior to that describes adult tissue collection methods stating that 2 male and 2
female cattle were used. Neither section nor Sup file 22 include the animal identifier or
any means to determine which tissue samples were used from which donor animal.
Maybe sup file 22 could be expanded to include columns for each of the 4 animals with
y/n datum to identify which tissues were sequenced from each animal? Or perhaps
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instead of y/n you could include the BioSample accession number of the deposited
data for those used.

Response: The number of sampled animals were corrected in the Supplemental file 23
(lines 18, and 24). In addition, the detail of datasets generated in the experiment was
provided in Supplemental file 1 (line 81).

Comment 2: The RNA-seq library construction section also mentioned that RNA
quantity and quality was measured. While not required, we would encourage you to
share those results in GigaDB.

Response: Given the Information is not required for the manuscript; we would prefer
not to provide those Information.

Comment 3: Mammary gland tissue collection and RNA-seq library construction
section; previous discussion on this topic resulted in you changing the text to:

"Mammary gland tissue collection. The 14 animals used in this study were Holstein-
Friesian heifers from a single herd managed at the AgResearch Research Station in
Ruakura, NZ. All experimental protocols were approved by the AgResearch, NZ, ethics
committee and carried out according to their guidelines. Samples were collected from
animals at 4-time points: virgin state before pregnancy between 13 and 15 months of
age (virgin), mid-pregnant at day 100 of pregnancy, late pregnant ~2 weeks pre-
calving, and early lactation ~2 weeks post-calving. Tissue samples were obtained by
mammary biopsy using the Farr method [2]. Lactating cows were milked before biopsy
and sampled within 5 hours of milking. Biopsy sites were clipped and given aseptic
skin preparation (povidone-iodine base scrub and iodine tincture) and subcutaneous
local anesthetic (4 ml per biopsy site). Core biopsies were taken using a powered
sampling cannula (4.5 mm internal diameter) inserted into a 2 cm incision. The

resulting samples of mammary gland parenchyma measured 70 mm in length with a 4
mm diameter.

Due to the limited amount of tissue samples collected from an individual animal. RNA
for RNA-seq analysis was isolated from 4 animals, RNA for miRNA-seq was isolated
from 6 animals, RNA for WTTS-seg was isolated from 4 animals, and DNA for ATAC-
seq analysis from 7 animals (SUPPLEMENT FILE NO)."

Based on the revised text it is still not possible to determine which individuals have
been used for which assays. Could a similar table to the one suggested for the tissue
samples above (1) be created here?

Response: Lines 91-93, and Supplemental file 23 (line 43) the detail of datasets
generated in the experiment was provided in Supplemental file 1.

Comment 4: The Illumina RNA-Seq technologies section includes the text "Only
samples with RIN values >8 were used for cDNA synthesis" (note- RIN needs to be
added to the list of abbreviations in the document), it is not possible to determine from
this which samples were actually used in this experiment and which were not. Perhaps
it would be appropriate to share the RNA integrity analysis results here? GigaDB can
host electrophoresis gel images if that is how it was performed.
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Response: Given the Information is not required for the manuscript; we would prefer
not to provide those Information.

Comment 5: The supplemental files provided in the user115 area. These all include the
tissue name in their file-names, some have spelling mistakes, but even taking those
into account I find 51 different tissues in those names, but the manuscript states 47
were investigated. Its probably just a classification and/or different subsets of things,
but for transparency using a consistent nomenclature and providing accession
numbers will be useful. Please ensure the files are named correctly with the
appropriate tissue names.

Response: Lines 91-93, The diversity of RNA and miRNA transcript among 50 different
bovine tissues and cell types was assessed using polyadenylation (poly(A)) selected
RNA-seq (47 tissues) and miRNA-seq (46 tissues) and data (Supplemental file 1). The
misspelled tissue names were corrected in figures and supplemental files.

Comment 6: miRNAs. The set of "supplemental file 21" files provided in user115 area
all list the miRNAs by some sort of identifier and state whether they are known or
novel. Do those identifiers relate directly to miRbase? And have they all been
deposited and released already? I tried to search for one of the novel ones "bta-miR-
X44036" in miRbase but it did not find anything.

Response: The second column in supplemental file 22 identifies the novelty of
predicted miRNAs. All miRNA with “bta-miR-X…” ID structure, were identified as
“novel” in supplemental file 22.

Comment 7: Gene expression analysis. I believe from the methods section that you
pooled all transcripts from all similar/same tissues and determined the tissue the
expression levels based on those. From my limited understanding of statistics, I would
assume it better to do a per sample analysis of the expression levels first to enable one
to determine confidence levels by biological replicates.

The methods also state that "…outlier samples were expressed and removed from
downstream analysis. Samples from each tissue were combined to…". For
transparency and reproducibility, please provide a list of the removed samples and a
list of those samples data that were combined (ideally that will include both the tissue
names and the relevant SRA sequence run accession numbers).

Response: Sample-wise analysis were used to detect outlier samples (lines 592-594,
and Supplemental file 2: Fig. S39), and tissue-tissue interconnection analysis (lines
390-391, Supplemental file 2: Fig. S39). The outlier samples were removed from the
downstream analysis and were not submitted to SRA. Samples from each tissue were
combined to get the most comprehensive set of data in each tissue for transcriptome
assembly process (lines 595-596, Supplemental file 2: Fig. S39). The detail of datasets
generated in the experiment was provided in Supplemental file 1 (lines 91-93).

Comment 8: "The resulting transcripts from each tissue were re-grouped into gene
models using an in-house Python script. Structurally similar transcripts from the
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different tissues (see Comparison of transcript structures across datasets/tissues
section) were collapsed using an in-house Python script to create the RNA-seq based
bovine transcriptome."

Please confirm that those two in-house scripts are included in the GitHub repository
cited in the data availability section? If not, please add them there.

Response: Lines 1032-1033, custom codes used in the experiment are available at
https://github.com/hamidbeiki/Cattle-Genome.

Comment 9: ONT data analysis. You have cited the manuscript describing the data you
have reused (Halstead et al 2021) which is great, thank you. However, having had a
quick look at that manuscript it is not clear exactly what data you have reused, the only
accession they quote in that manuscript is to a massive series of data hosted in GEO
(GSE160028) which includes Pig, Cow and Chicken data. For the convenience of your
readers would you also be able to point to a more useful accession of the data you
actually utilized here e.g. the assembled isoform sequences?

Response: Lines 641-645, the detail of ONT samples used in the study was provided
in Supplemental file 24

Comment 10: The correlation between the various methods sections and the data
being made available is very difficult to determine with any certainty. Perhaps it would
be beneficial to expand the sample table provided to include all the unique identifiers
for every sample and correlate those to the methodologies listed in the manuscript. It
maybe appropriate to incorporate a column to denote the samples removed from
certain analysis, with an explanation as to why?

Including the ENA sample and/or BioSample accessions in the sample table (the ENA
sample accessions start with ERS, BioSample accessions start with SAMEA) will
greatly enhance the transparency of the data utilised in this study. In addition it will
allow you to double check the metadata you have provided on each sample.

For example; I picked one at random to look into more closely. It is listed in the
Samples_meta-daat.tsv spreadsheet you provided as having the accession
"ERR10162191" (which is a run accession not a sample accession). I have compared
this to the data submitted to Array Express
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12052/sdrf?full=true)
to find that run accession number and look up the relevant BioSample and ENA
Sample accessions (ERS13425945, SAMEA111328380). In doing so I noticed that the
"individual" value given in your spreadsheet says "M08" yet in Array Express it says
"M22"? Clearly, one of those cannot be correct. As it was honestly the first and only
sample, I looked at in such depth, it worries me that there maybe other inconsistencies
that you will need to check and correct.

May I suggest you have someone in your team take a very careful look at the Samples
submitted to Array Express, including the various different accessions that they assign
(ENA sample accessions and BioSample accessions) and ensure that all sample have
been submitted and have accurate and complete metadata, the geolocation
information should be included with all samples. (NB the more metadata you can
provide to the archives the more discoverable and reusable your data becomes). Then
prepare the Samples spreadsheet from that information and relate it directly to the
experiments described in the manuscript at the sample level.
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Response: The detail of datasets generated in this experiment and independent
datasets used in the experiment was provided in Supplemental file 1 (lines 91-93) and
Supplemental file 24 (lines 641-645), respectively. The “ENA Accession” was corrected
to “ENA Run Accession” in Supplemental file 1 as it caused confusion. The
misunderstanding was raised from “Description” column provided by ArrayExpress
database. This column reflecting the old animal id that we used in this study. The
animal related to the "ERR10162191" sample is M08 in both Supplemental file 1 and
ArrayExpress database. To check this sample metadata on the ArrayExpress database
we followed the following steps: (1) find the related experiment id (E-MTAB-12052)
from the Supplemental file 1 in the database
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12052?query=E-
MTAB-12052); (2) download the experiment metadata file (E-MTAB-12052.sdrf.txt); (3)
look for ERR10162191 sample at “Comment[ENA_RUN]” column and related it’s
animal id at “Characteristics[individual]” column. Samples metadata were checked to
ensure the accuracy of information. We are in the progress of working with the
ArrayExpress database to fix the metadata issues.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 32 

Background 33 

The accurate identification of the functional elements in the bovine genome is a fundamental 34 

requirement for high quality analysis of data informing both genome biology and genomic 35 

selection. Functional annotation of the bovine genome was performed to identify a more 36 

complete catalogue of transcript isoforms across bovine tissues. 37 

Results 38 

A total number of 171,985 unique transcripts (50% protein-coding) representing 35,150 unique 39 

genes (64% protein-coding) were identified across tissues. Among them, 118,563 transcripts 40 

(70% of the total) were structurally validated by independent datasets (PacBio Iso-seq data, 41 

ONT-seq data, de novo assembled transcripts from RNA-seq data) and comparison with 42 

Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from 43 

different technologies such as WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large 44 

proportion of identified transcripts (69%) were un-annotated, of which 87% were produced by 45 

annotated genes and 13% by un-annotated genes. A median of two 5’ untranslated regions 46 

were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional 47 

and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes 48 

that functioned as non-coding genes in fetal tissues, but as protein coding genes in adult 49 

tissues. Our new bovine genome annotation extended more than 11,000 annotated gene 50 

borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was 51 
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integrated with publicly available QTL data to study tissue-tissue interconnection involved in 52 

different traits and construct the first bovine trait similarity network. 53 

Conclusions 54 

These validated results show significant improvement over current bovine genome 55 

annotations. 56 

Introduction 57 

Domestic bovine (Bos taurus) provide a valuable source of nutrition and an important disease 58 

model for humans [1]. Furthermore, cattle have the greatest number of genotype associations 59 

and genetic correlations of the domesticated livestock species, which means they provide an 60 

excellent model to close the genotype-to-phenotype gap. Furthermore, the functional elements 61 

of genome provide a means whereby complex biological pathways responsible for variation in a 62 

particular phenotype can be identified. Therefore, the accurate identification of these elements 63 

in the bovine genome is a fundamental requirement for high quality analysis of data from which 64 

both genome biology and genomic selection can be better understood. 65 

Current annotations of farm animal genomes largely focus on the protein-coding regions [2] 66 

and fall short of explaining the biology of many important traits that are controlled at the 67 

transcriptional level [3-5]. In humans, 93% of trait-associated single nucleotide polymorphisms 68 

(SNP) identified by genome-wide association studies (GWAS) are found in non-coding regions 69 

[6]. Therefore, elucidating non-coding functional elements of the genome is essential for 70 

understanding the mechanisms that control complex biological processes. 71 
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Untranslated regions play critical roles in the regulation of mRNA stability, translation, and 72 

localization [7], but these regions have been poorly annotated in farm animals [2, 8]. A recent 73 

study of the pig transcriptome using single-molecule long-read isoform sequencing technology 74 

resulted in the extension of more than 6000 annotated gene borders compared to Ensembl or 75 

National Center for Biotechnology Information (NCBI) annotations [2]. 76 

Small non-coding RNAs, such as microRNAs (miRNA), are known to be involved in gene 77 

regulation through post-transcriptional regulation of expression via silencing, degradation, or 78 

sequestering to inhibit translation [9-11]. The number of annotated miRNAs in the current 79 

bovine genome annotation (Ensembl release 2018-11; 951 miRNAs) is much lower than the 80 

number reported in the highly annotated human genome (Ensembl release 2021-03; 1,877 81 

miRNAs). 82 

This study used a comprehensive set of transcriptome and chromatin state data from 50 cattle 83 

tissues and cell types to (1) increase the complexity of the bovine transcriptome, comparable to 84 

that reported for the highly annotated human genome, (2) improve the annotation of protein-85 

coding, non-coding, and miRNA genes, (3) integration of transcriptome data with publicly 86 

available Quantitative Trait Loci (QTL) and gene association data to study tissue-tissue 87 

interconnection involved in different traits, and 4) construction the first bovine trait similarity 88 

network that recapitulates published genetic correlations. 89 

Results 90 

The diversity of RNA and miRNA transcript among 50 different bovine tissues and cell types was 91 

assessed using polyadenylation (poly(A)) selected Illumina high-throughput RNA sequencing 92 
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(RNA-seq) data (47 tissues) and/or miRNA-seq (46 tissues) and data (Supplemental file 1). Most 93 

of the tissues studied were from Hereford cattle closely related to L1 Dominette 01449, the 94 

individual from which the bovine reference genome (ARS-UCD1.2) was sequenced. The 50 95 

tissues and cell samples included follicular cells, myoblasts, 14 mammary gland samples from 96 

various stages of mammary gland development and lactation, eight fetal tissues (78-days of 97 

gestation), eight tissues from adult digestive tract, and 16 other adult organs (Supplemental file 98 

1). A total of approximately 4.1 trillion RNA-seq reads and 1.2 billion miRNA-seq reads were 99 

collected, with a minimum of 27.5 million RNA-seq and 9.3 million miRNA-seq reads from each 100 

tissue/cell type (average 87.8 ± 49.7 million and 27.6 ± 12.9 million, respectively) (Supplemental 101 

file 2: Fig. S1 and Supplemental file 3). 102 

Transcript-based analyses 103 

The summary of predicted transcript/genes is presented in Table 1. All of the predicted splice 104 

junctions across tissues were supported by RNA-seq reads that spanned the splice junction, 105 

substantiating the accuracy of the transcript definition from RNA-seq reads. 106 

A total of 31,476 transcripts appeared tissue-specific by virtue of being assembled from RNA-107 

seq reads in just a single tissue, but 20,100 of those transcripts (64%) were actually expressed in 108 

multiple tissues. Thus, reliance solely on assembled transcripts in a given tissue to predict a 109 

tissue transcript atlas may overestimate tissue specificity due to a high false-negative rate for 110 

transcript detection. To solve this problem of over-prediction of tissue specificity, we marked a 111 

transcript as “expressed” in a given tissue only if (1) it had been assembled from RNA-seq data 112 

in that tissue; or (2) its expression and all of its splice junctions has been quantified using RNA-113 
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seq reads in the tissue of interest with an expression level more than 1 reads per kilobase of 114 

transcript per Million reads mapped (RPKM) (see Methods section). This resulted in 156,423 115 

transcripts (91%) expressed in more than one tissue (Fig. 1), among which 9,125 transcripts 116 

(5%) were found in all 47 tissues examined.   117 

The unique transcripts identified were equally distributed between protein-coding transcripts 118 

and non-coding transcripts (ncRNAs) (Fig. 2). Non-coding transcripts were further classified as 119 

long non-coding RNAs (lncRNAs), nonsense-mediated decay (NMD) transcripts, non-stop decay 120 

(NSD) transcripts, and small non-coding RNAs (sncRNAs). While the majority of expressed 121 

transcripts in each tissue were protein coding (median of 62% of tissue transcripts), NMD 122 

transcripts and antisense lncRNAs each made up more than 10% of the transcripts 123 

(Supplemental file 2: Fig. S2A and B, Supplemental file 4 and 5). Fetal muscle and fetal gonad 124 

tissues showed the highest proportion of antisense lncRNAs compared to that observed in 125 

other tissues, and around 60% of antisense lncRNAs were expressed from these two tissues 126 

(Supplemental file 2: Fig. S2B). Compared to non-coding transcripts, protein-coding transcripts 127 

were more likely to have spliced exons (p-value < 2.2e-16) and were expressed in a higher 128 

number of tissues (p-value < 2.2e-16; Additional file1: Fig. S2C).  129 

There were no significant correlations between the number of RNA-seq reads for a given tissue 130 

and the number of transcripts identified, except for a modest correlation for the antisense 131 

lncRNA class (Supplemental file 2: Fig. S3A). There was a significant positive correlation (p-value 132 

1.3e-04) between the number of NMD transcripts in a tissue and the number of protein-coding 133 

transcripts, and the NMD transcript class showed the lowest median expression level across 134 

tissues compared to other transcript biotypes (Supplemental file 2: Fig. S2D and Fig. S3B).  135 
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Transcript similarity to other species 136 

Protein/peptide homology analysis of transcripts with an open reading frame (protein-coding 137 

transcripts, lncRNAs, and sncRNAs) revealed a higher conservation of protein-coding transcripts 138 

compared to lncRNA and sncRNA transcripts (p-value < 2.2e-16) (Table 2). Bovine non-coding 139 

transcripts had significantly (p-value < 2.2e-16) less similarity to other species than protein-140 

coding transcripts (Table 2 and Table 3). Within non-coding transcripts, sense intronic lncRNAs 141 

showed the highest conservation rate (Table 4). 142 

Transcript expression diversity across tissues 143 

A median of 70% of protein-coding transcripts were shared between pairs of tissues 144 

(Supplemental file 2: Fig. S4A), was significantly higher than that was observed for non-coding 145 

transcripts (53%; p-value < 2.2e-16; Supplemental file 2: Fig. S5). Clustering of tissues based on 146 

protein-coding transcripts was different than that observed based on non-coding transcripts 147 

(Supplemental file 2: Fig. S4B and Fig. S5B, Fig. S35F). The fetal tissues clustered together and 148 

were generally more similar to one another than to the corresponding adult tissue in both 149 

dendrograms. In addition, fetal tissues had significantly higher proportions of non-coding 150 

transcripts compared to protein-coding transcripts (p-value < 2.2e-16; Supplemental file 6). 151 

Transcript validation 152 

Prediction of transcripts and isoforms from RNA-seq data may produce erroneous predicted 153 

isoforms. The validity of transcripts was therefore examined by comparison to a library of 154 

isoforms taken from Ensembl (release 2021-03) and NCBI gene sets (Release 106), as well as 155 

isoforms identified through complete isoform sequencing with Pacific Biosciences, a de novo 156 
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assembly produced from its matched RNA-seq reads, and isoforms identified from Oxford 157 

Nanopore platforms (see Methods section). A total of 118,563 transcripts (70% of predicted 158 

transcripts) were structurally validated by independent datasets (Biosciences single-molecule 159 

long-read isoform sequencing (PacBio Iso-Seq), Oxford Nanopore Technologies sequencing 160 

ONT-seq) data, de novo assembled transcripts from RNA-seq data) and comparison with 161 

Ensembl and NCBI gene sets. A total of 160,610 transcripts were expressed in multiple tissues 162 

(93% of predicted transcripts), providing further support for their validity (Fig. 3). All transcripts 163 

were also extensively supported by data from different technologies such as Whole 164 

Transcriptome Termini Site Sequencing (WTTS-seq), RNA Annotation and Mapping of 165 

Promoters for the Analysis of Gene Expression (RAMPAGE), histone modification (H3K4me3, 166 

H3K4me1, H3K27ac), CTCF-DNA binding, and Assay for Transposase-Accessible Chromatin using 167 

sequencing (ATAC-seq) (Fig. 3). 168 

Comparison of predicted transcript structures with annotated transcripts in the current bovine 169 

genome annotations (Ensembl release 2021-03 and NCBI Release 106) resulted in a total of 170 

52,645 annotated transcripts that exactly matched previously annotated transcripts (31% of all 171 

transcripts), including 47,054 annotated NCBI transcripts, 31,740 annotated Ensembl 172 

transcripts, and 26,149 transcripts that were common to both annotated gene sets (Fig. 3). The 173 

median expression level of annotated transcripts in their expressed tissues was similar to that 174 

observed for un-annotated transcripts (Supplemental file 2: Fig. S6). Annotated transcripts were 175 

expressed in higher number of tissues than that observed for un-annotated transcripts (p-value 176 

7.4e-03; Supplemental file 2: Fig. S6). In addition, compared to un-annotated transcripts, 177 
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annotated transcripts were enriched with protein-coding (p-value 1.37e-02) and spliced 178 

transcripts (p-value 3.76e-02). 179 

The median length of coding sequence (CDS) of annotated transcripts was significantly longer 180 

than that observed in un-annotated transcripts (p-value 0.0) (Additional file1: Fig. S7A). In 181 

addition, un-annotated transcripts had longer 5’ untranslated regions (UTR) compared to 182 

annotated transcripts (p-value 2.631E-06; Additional file1: Fig. S7A). Annotated protein-coding 183 

transcripts showed a higher GC content in their 5’ UTRs than un-annotated transcripts (p-value 184 

5.562E-18), but both classes of transcripts showed similar GC content within their CDS 185 

(Supplemental file 2: Fig. S7B). 186 

Gene-based analyses 187 

The transcripts correspond to a total of 35,150 genes, which were classified into protein coding, 188 

non-coding, and pseudogenes (Supplemental file 4 and 5, and Fig. 4). Genes transcribed at least 189 

a single “expressed” transcript (see Transcript level analysis section) in a given tissue, were 190 

marked as “expressed gene” in that tissue. Most genes expressed in each tissue were protein 191 

coding, followed by non-coding, and pseudogenes (Supplemental file 2: Fig. S8). Testis showed 192 

the highest number of expressed genes compared to other tissues (Supplemental file 2: Fig. S8). 193 

In addition, the proportion and number of transcribed pseudogenes was higher in testis than in 194 

other tissues (Supplemental file 2: Fig. S8). Fetal brain and fetal muscle tissues showed the 195 

highest number and percentage of non-coding genes compared to that observed in other 196 

tissues (Supplemental file 2: Fig. S8). There was no significant correlation between the number 197 

of input reads and the number of expressed genes across tissues, but the numbers of genes 198 
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from different coding potential classes were significantly correlated across tissues 199 

(Supplemental file 2: Fig. S9). 200 

Transcripts corresponding to the predicted genes that had at least one exon overlapping an 201 

Ensembl- or NCBI-annotated gene were considered to belong to an annotated gene. This 202 

supports an intersection analysis of predicted and previously annotated genes that indicated 203 

22,452 (64%) of our predicted genes correspond to previously annotated genes. Approximately 204 

87% of un-annotated transcripts (103,387) were associated with this set of annotated genes. 205 

The remaining 12,698 genes (36% of predicted genes) represent un-annotated genes, i.e., genes 206 

not found on Ensembl (release 2021-03) or NCBI (release 106), with which 15% of un-annotated 207 

transcripts (22,364 transcripts) were associated. The median number of unique transcripts per 208 

annotated gene (tpg) was four, which was higher than that observed in either the Ensembl (1.5 209 

tpg) or NCBI (2.3 tpg) annotated gene sets, while the median number of transcripts per un-210 

annotated gene was one, with an average of 1.31 and standard deviation of 1.36. Most of the 211 

transcripts identified were transcribed from annotated genes, including 96% of protein-coding 212 

transcripts (82,060), 79% of lncRNA transcripts (38,662), 78% of sncRNA transcripts (413), and 213 

more than 95% of NMD transcripts (31,422). Annotated genes were enriched with protein-214 

coding genes (p-value < 2.2e-16). The median transcript abundance from annotated genes in 215 

their expressed tissues was significantly higher than that observed for un-annotated genes (p-216 

value < 2.2e-16; Supplemental file 2: Fig. S10A). The median number of tissues in which 217 

annotated genes were expressed was also significantly higher than that observed for un-218 

annotated genes (p-value < 2.2e-16; Supplemental file 2: Fig. S10B). 219 



 12 

More than a third (37%) of genes with at least one predicted protein-coding transcript 220 

displayed either multiple 5’ UTRs or multiple 3’ UTRs among associated transcript isoforms (Fig. 221 

5). The 496 genes with the highest number of UTRs (the top 5% in this metric) were highly 222 

enriched (q-value 1.7E-7) for the “response to protozoan” Biological Process (BP) Gene 223 

Ontology (GO) term (Supplemental file 2: Fig. S11 and Supplemental file 7). 224 

A median of 51% of the expressed protein-coding genes in each tissue transcribed both protein-225 

coding and non-coding transcripts and were denoted as bifunctional genes. These genes were 226 

mostly previously annotated (95%) and had both coding and non-coding transcripts in a median 227 

of 21 tissues, representing 57% of their expressed tissues (Fig. 6A and B). Protein-coding 228 

transcripts and NMD transcripts covered more than 90% of the exonic length in bifunctional 229 

genes (Fig. 6C). This percentage was significantly lower for other types of non-coding transcripts 230 

transcribed from bifunctional genes (Fig. 6C). Although transcript terminal sites (TTS) of 231 

transcripts encoded by bifunctional genes were centralized around these genes’ 3’ ends, 232 

transcript start sites (TSS) varied greatly among transcript biotypes (Fig. 6C). The TTSs of NSD 233 

transcripts, sncRNAs, and intragenic lncRNAs were shifted from their protein-coding genes’ 234 

start sites (Fig. 6C). Genes that transcribed both protein-coding and non-coding transcripts in all 235 

of their expressed tissues were highly enriched for “mRNA processing” (q-value 6.08E-16) and 236 

“RNA splicing” (q-value 1.35E-14) BP GO terms that were mostly (65%) related to different 237 

aspects of transcription and translation (Fig. 6D and Supplemental file 8).  238 

A total of 3,744 genes were acting as noncoding in a median of two tissues (equivalent to 15% 239 

of their expressed tissues) and were switched to protein-coding in the remaining expressed 240 

tissues. Detailed investigation of these bifunctional genes in tissues from both adult and fetal 241 
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samples (brain, kidney, muscle, and spleen) revealed the total of 106 non-coding genes (90% 242 

annotated) in fetal tissues that were switched to protein-coding genes with only protein-coding 243 

transcripts in their matched adult tissues (Supplemental file 2: Fig. S12). Functional enrichment 244 

analysis of these genes resulted in the identification of enriched BP GO terms related to 245 

“humoral immune response”, “sphingolipid biosynthetic process”, “negative regulation of 246 

wound healing”, “cellular senescence”, “symporter activity”, “regulation of lipid biosynthetic 247 

process”, and “filopodium assembly” (Supplemental file 2: Fig. S12, Supplemental file 9). 248 

A median of 32% of protein-coding genes in each tissue expressed at least a single potentially 249 

aberrant transcript (PAT), i.e., NMDs and NSDs. In this group of genes, the number of PATs was 250 

strongly correlated with the total number of transcripts (median correlation of 0.61 across all 251 

tissues). The median expression level of these genes in their expressed tissues (11.52 RPKM) 252 

was significantly higher (p-value < 2.2e-16) than for protein-coding genes with no PATs (4.48 253 

RPKM). In each tissue, protein-coding genes with PATs showed a significantly higher number of 254 

introns (p-value < 2.2e-16; median of 65 introns per gene) than that observed in the remainder 255 

of protein-coding genes (median of 15 introns per gene). In addition, genes from this group 256 

were expressed in a median of 47 tissues, significantly higher (p-value < 2.2e-16) than that 257 

observed for the other group of genes (Supplemental file 2: Fig. S13A and B). These genes 258 

transcribed a median of two PATs in half of their expressed tissues, equivalent to a median of 259 

22% of all their transcripts in each tissue. Protein-coding genes that transcribed PATs as their 260 

main transcripts (PATs comprised >50% of their transcripts) in all of their expressed tissues 261 

were highly enriched with RNA splicing–related BP GO terms (Supplemental file 10). 262 
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Gene similarity to other species 263 

Eighty-five percent of protein-coding genes (18,087) encoded either homologous proteins or 264 

homologous ncRNAs (Supplemental file 2: Fig. S14A). Nineteen percent of protein-coding genes 265 

(4,043) encoded cattle-specific proteins (Supplemental file 2: Fig. S14A). Most of these genes 266 

(68%) were either annotated genes or genes with homology to another cattle gene(s) that has 267 

established homology to genes in other species (Supplemental file 2: Fig. S14C). The remaining 268 

32% of cattle-specific, protein-coding genes (1,293) were denoted as protein-coding orphan 269 

genes (Supplemental file 2: Fig. S14C). A median of 70 protein-coding orphan genes were 270 

expressed in each tissue. The expression level of these genes was significantly lower than other 271 

types of protein-coding genes (Additional file 2: Fig. S15A and B). The median number of 272 

expressed tissues for protein-coding orphan genes was lower than for other types of protein-273 

coding genes (Supplemental file 2: Fig. S15C). In addition, protein-coding orphan genes only 274 

transcribed protein-coding transcripts in their expressed tissue(s). 275 

Fifty percent of non-coding genes (5,559) encoded either homologous short peptides (9-43 276 

amino acids) or homologous ncRNAs (Supplemental file 2: Fig. S14B). There were 5,546 non-277 

coding genes (51% of non-coding genes) that encoded cattle-specific ncRNAs (Supplemental file 278 

2: Fig. S14B). Ninety-nine percent of these genes were either annotated genes or genes with 279 

homology to another cattle gene(s) that has established homology to genes in other species 280 

(Supplemental file 2: Fig. S14C). The remaining 1% (nine non-coding genes) were denoted as 281 

non-coding orphan genes (Supplemental file 2: Fig. S14C). The median number of expressed 282 

tissues for non-coding orphan genes was was higher (p-value < 2.2e-16) than for homologous 283 

non-coding genes and protein-coding orphan genes (Supplemental file 2: Fig. S15C).   284 
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A total of 3,029 pseudogenes were expressed. The median expression level of these genes in 285 

their expressed tissues was lower than that observed for protein-coding genes and similar to 286 

that observed for non-coding genes (Supplemental file 2: Fig. S16A). Pseudogenes were 287 

expressed in a median of four tissues (Supplemental file 2: Fig. S16B). In addition, a total of 288 

1,038 pseudogene-derived lncRNAs were expressed. The median expression of pseudogene-289 

derived lncRNAs was similar to that observed for other lncRNAs (Supplemental file 2: Fig. S17A). 290 

In addition, pseudogene-derived lncRNAs were expressed in fewer tissues than observed for 291 

other lncRNAs (Supplemental file 2: Fig. S17B). 292 

Testis had the highest number of expressed pseudogene-derived lncRNAs compared to other 293 

tissues (Supplemental file 2: Fig. S8A and B). The correlation between the number of input 294 

reads and the number of pseudogene-derived lncRNAs was not significant (0.25, p-value 0.09). 295 

Gene expression diversity across tissues 296 

Tissue similarities increased dramatically from transcript level to gene level (Supplemental file 297 

2: Fig. S4A, Fig. S5A, Fig. S18A, Fig. S19A). The median percentage of shared genes between 298 

pairs of tissues was significantly higher in protein-coding genes compared to non-coding genes 299 

(p-value < 2.2e-16; Supplemental file 2: Fig. S18A, Fig. S19A). Clustering of tissues based on 300 

protein-coding genes was similar to that observed based on protein-coding transcripts 301 

(Supplemental file 2: Fig. S18B, Fig. S19B). The same result was observed in non-coding genes 302 

and transcripts. In addition, clustering of tissues based on protein-coding genes was different 303 

than that of non-coding genes (Supplemental file 2: Fig. S4B, Fig. S5B, Fig. S18B, Fig. S19B, Fig. 304 

S35F). 305 
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Tissues with both fetal and adult samples (brain, kidney, muscle, and spleen) were used to 306 

investigate gene biotype differences between these developmental stages. Similar to what was 307 

observed at transcript level, fetal tissues were significantly enriched for non-coding genes and 308 

pseudogenes and were depleted for protein-coding genes (p-value < 2.2e-16; Supplemental file 309 

10). These results were consistent across all tissues with both adult and fetal samples 310 

(Supplemental file 11). 311 

Gene validation 312 

A total of 32,460 genes (92% of predicted genes) were structurally validated by independent 313 

datasets (PacBio Iso-seq data, ONT-seq data, de novo assembled transcripts from RNA-seq data) 314 

and comparison with Ensembl and NCBI gene sets (see Method section). In addition, a total of 315 

31,635 genes (90% of predicted genes) were expressed in multiple tissues (31,635 genes or 316 

90%) (Fig. 7). All genes were extensively supported by data from different technologies such as 317 

WTTS-seq, RAMPAGE, histone modification (H3K4me3, H3K4me1, H3K27ac) and CTCF-DNA 318 

binding, and ATAC-seq data generated from the samples (Fig. 7). 319 

Identification and validation of annotated gene border extensions 320 

This new bovine gene set annotation extended (5′ end extension, 3′ end extension, or both) 321 

more than 11,000 annotated Ensembl or NCBI gene borders. Extensions were longer on the 3′ 322 

side, but the median increase was 104 nt for the 5’ end (Table 5). To validate gene border 323 

extensions, independent WTTS-seq and RAMPAGE datasets were utilized. More than 80% of 324 

annotated gene border extensions were validated by independent data (Fig. 8). The extension 325 

of annotated gene borders on both ends resulted in an approximate nine-fold expression 326 
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increase of these genes in the new bovine gene set annotation compared to their matched 327 

Ensembl and NCBI genes (Table 6).  328 

Alternative splicing events 329 

A total of 102,502 transcripts (85% of spliced transcripts) were involved in different types of 330 

Alternative Splicing (AS) events (see Methods section and Supplemental file 1: Fig. S20A), a 331 

large increase over Ensembl (63% of spliced transcripts) and NCBI (75% of spliced transcripts) 332 

annotations (Additional file1: FigureS20B). Skipped exons were observed in a greater number of 333 

transcripts compared to other types of AS events (Supplemental file 2: Fig. S21).  334 

A median of 60% of tissue transcripts showed at least one type of AS event (Supplemental file 335 

1: Fig. S22A). There was no significant correlation between the number of input reads and the 336 

number of AS event transcripts across tissues (Supplemental file 2: Fig. S22B).  337 

The median expression level of AS transcripts (111,366) was similar to that observed for other 338 

types of transcripts (Supplemental file 2: Fig. S23A). In addition, AS transcripts were expressed 339 

in a higher number of tissues compared to the other transcript types (Supplemental file 2: Fig. 340 

S23B). Alternatively spliced transcripts were enriched with protein-coding transcripts (p-value < 341 

2.2e-16). A switch from protein-coding to ncRNAs was the main biotype change resulting from 342 

AS events (Supplemental file 2: Fig. S24).   343 

A median of four AS events were expressed in alternatively spliced genes (14,260 genes) 344 

(Supplemental file 2: Fig. S25). The top five percent of genes with the highest number of AS 345 

events were highly enriched for several BP GO terms related to different aspects of RNA splicing 346 

(Supplemental file 2: Fig. S26B, Supplemental file 12). 347 
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Comparison of tissues with both fetal and adult samples (brain, kidney, Longissimus Dorsi (LD) 348 

muscle, and spleen) revealed a significantly higher rate of AS events in fetal tissues (only genes 349 

expressed in both fetal and adult samples were included in this analysis) (Supplemental file 2: 350 

Fig. S27). 351 

Tissue specificity 352 

Nine percent of all genes and transcripts were only expressed in a single tissue and were 353 

denoted as tissue-specific (Supplemental file 2: Fig. S28A). Most tissue-specific genes (75%) and 354 

transcripts (84%) were un-annotated. Forty-nine percent of tissue-specific transcripts (11,748) 355 

were produced by annotated genes. Most tissue-specific genes and transcripts were protein-356 

coding (Supplemental file 2: Fig. S28A and B). In addition, more than 70% of tissue-specific 357 

transcripts (11,222) were transcribed from non-tissue-specific genes. Compared to other 358 

tissues, testis and thymus had the highest number of tissue-specific genes and transcripts 359 

(Supplemental file 2: Fig. S28C, Supplemental file 12). The expression level of tissue-specific 360 

genes and transcripts was significantly lower than that of their non-tissue-specific counterparts 361 

(p-value < 2.2e-16; Supplemental file 2: Fig. S28D). A median of 71% of tissue-specific 362 

transcripts showed any type of AS event in their expressed tissues (Supplemental file 2: Fig. 363 

S29). This was only 3.9% for tissue-specific genes (Supplemental file 2: Fig. S29). Testis, 364 

myoblasts, mammary gland, and thymus had the highest proportion of tissue-specific genes 365 

displaying any type of AS event (Supplemental file 2: Fig. S29). 366 

A total of 16,806 multi-tissue expressed genes (53% of all multi-tissue expressed genes) and 367 

74,487 multi-tissue expressed transcripts (51% of all multi-tissue expressed transcripts) showed 368 
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Tissue Specificity Index (TSI) scores greater than 0.9 and were expressed in a tissue-specific 369 

manner (Supplemental file 14). These genes and transcripts were expressed in a median of six 370 

tissues and four tissues, respectively (Supplemental file 2: Fig. S30A and B). Functional 371 

enrichment analysis of the top five percent of genes with the highest TSI score resulted in the 372 

identification of “sexual reproduction” (p-value 3.06e-24) and “fertilization” (p-value 1.04e-8) 373 

as their top enriched BP GO terms (Supplemental file 2: Fig. S30C-E, Supplemental file 15). 374 

Tying genes to phenotypes 375 

There were 9,800 predicted genes identified as the closest expressed gene to an existing QTL 376 

(QTL-associated genes) in their expressed tissues (Supplemental file 16). These genes had either 377 

QTLs located inside (6,511 genes) or outside (5,306 genes) their genomic borders (either from 378 

their 5’ end or 3’ end) with a median distance of 51.9 kilobases (KB) and a maximum distance of 379 

2.6 million bases (MB) (Supplemental file 2: Fig. S31). Most QTL-associated genes were 380 

annotated genes (8,130 genes or 83%). In addition, the median number of AS events in these 381 

genes (eight) was significantly higher than that observed in other genes (median of seven AS 382 

events; p-value 5.69e-09).  383 

Potential testis-pituitary axis 384 

Testis tissue was not clustered with any other tissues and had the highest number of tissue-385 

specific genes compared to the rest of the tissues (Supplemental file 2: Fig. S4, Fig. S5, Fig. S18, 386 

and Fig. S19). Testis-specific genes were highly enriched with different traits related to fertility 387 

(e.g., percentage of normal sperm and scrotal circumference), body weight (e.g., body weight 388 

gain and carcass weight), and feed efficiency (e.g., residual feed intake) (Supplemental file 17). 389 
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The extent of testis-pituitary axis involvement in the “percentage of normal sperm” was 390 

investigated using animals with both testis and pituitary samples (three samples per tissue). 391 

The SPACA5 gene was the only testis-specific gene encoded protein with a signal peptide (SP) 392 

that was close to the “percentage of normal sperm” QTLs. The expression of this gene in testis 393 

samples showed significant positive correlation with 70 pituitary expressed genes that were 394 

closest to the “percentage of normal sperm” QTLs (Supplemental file 2: Fig. S32, Supplemental 395 

file 18). These pituitary genes were enriched with the “signal transduction in response to DNA 396 

damage” BP GO term (Supplemental file 2: Fig. S32). In addition, the expression of testis genes 397 

that encoded protein with a signal peptide that were close to the “percentage of normal 398 

sperm” QTLs was significantly correlated with expression of pituitary genes close to this trait 399 

(Fig. 9, Supplemental file 19). The same result was observed for the pituitary-testis tissue axis 400 

(Supplemental file 2: Fig. S33, Supplemental file 20). 401 

Trait similarity network 402 

The extent of genetic similarity between different bovine traits was investigated using their 403 

associated QTLs. A total of 1,857 significantly similar trait pairs (184 different traits) were 404 

identified and used to create a bovine trait similarity network 405 

(https://www.animalgenome.org/host/reecylab/a; Supplemental file 21). 406 

miRNAs 407 

A total of 2,007 miRNAs (at least ten mapped reads in each tissue) comprised of 973 annotated 408 

and 1,034 un-annotated miRNAs were expressed (Supplemental file 22). In each tissue, a 409 

median of 704 annotated miRNAs and 549 un-annotated miRNAs were expressed (Fig. 10A). 410 

https://www.animalgenome.org/host/reecylab/a
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The median expression of un-annotated miRNAs was significantly lower than that observed for 411 

annotated miRNAs (p-value 3.25e-25; Fig. 10B). In addition, un-annotated miRNAs were 412 

expressed in significantly lower number of tissues than for annotated miRNAs (p-value 1.00e-413 

45; Fig. 10C). A median of 84.53% of miRNAs were shared between pairs of tissues 414 

(Supplemental file 2: Fig. S34). Clustering of tissues based on miRNAs was similar to what was 415 

observed based on non-coding genes (Supplemental file 2: Fig. S35). 416 

A total of 113 miRNAs (5.6%) were expressed in a single tissue and were denoted as tissue-417 

specific (Supplemental file 2: Fig. S36A). The proportion of tissue-specific miRNAs was higher for 418 

un-annotated miRNAs, such that 75% of the tissue-specific miRNAs were un-annotated. The 419 

number of un-annotated miRNAs was higher in pre-adipocytes compared to other tissues, 420 

followed by fetal gonad and testis (Supplemental file 2: Fig. S36B). Un-annotated miRNAs 421 

showed a significantly lower expression level compared to annotated miRNAs (p-value 1.4e-19; 422 

Supplemental file 2: FigureS36 C). In addition, a total of 1,047 multi-tissue expressed miRNAs 423 

were expressed in a tissue-specific manner (Supplemental file 2: Fig. S36D). These miRNAs were 424 

expressed in a median of 19 tissues (Supplemental file 2: Fig. S36E). 425 

Chromatin features across 500-base pair (bp) windows surrounding upstream of miRNA 426 

precursors’ start sites or downstream of miRNA precursors’ terminal sites from independent 427 

cattle experiments were used to investigate the relationship between miRNAs and chromatin 428 

accessibility. More than 99% of un-annotated miRNAs and 94% of annotated miRNAs were 429 

supported by at least one of the H3K4me3, H3K4me1, H3K27ac, CTCF-DNA binding, or ATAC-430 

seq peaks (Fig. 11). 431 
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Summary of expressed transcripts, genes, and miRNAs 432 

The numbers of expressed transcripts, genes, and miRNAs in different tissues are summarized 433 

in Supplemental file 2: Fig. S37. In addition, the number of annotated and un-annotated genes, 434 

transcripts, and miRNAs in different tissues are summarized in Supplemental file 2: Fig. S38. 435 

Discussion  436 

Despite many improvements in the current bovine genome annotation ARS-UCD1.2 assembly 437 

(Ensembl release 2021-03 and NCBI release 106) compared to the previous genome assembly 438 

(UMD3.1), these annotations are still far from complete [12, 13]. In this study, using RNA-seq 439 

and miRNA-seq data from 50 different bovine tissues/cell types, 12,698 un-annotated genes 440 

and 1,034 un-annotated miRNAs were identified that have not been reported in current bovine 441 

genome annotations (Ensembl release 2021-03, NCBI release 106 and miRbase [14]). In 442 

addition, we identified protein-coding transcripts with a median ORF length of 270 nt for 822 443 

annotated bovine genes that have been annotated as non-coding in current bovine genome 444 

annotations (Supplemental file 2: Fig. S14C). The high frequency of validation of these un-445 

annotated genes and un-annotated miRNAs using multiple independent datasets from different 446 

technologies verifies the improvement in terms of the number of genes and miRNAs using our 447 

methods. 448 

Five prime and 3‘untranslated region length plays a critical role in regulation of mRNA stability, 449 

translation, and localization [7]. However, only a single 5’ UTR and 3’ UTR per gene is annotated 450 

in current bovine genome annotations (Ensembl release 2021-03 and NCBI release 106), and 451 

variations in UTR length are not available. In this study, 7,909 genes (22% of predicted genes) 452 
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with multiple UTRs were identified. Genes with multiple 5′ UTRs are common, primarily due to 453 

the presence of multiple promoters [15] or alternative splicing mechanisms within 5’ UTRs [15]. 454 

Fifty-four percent of human genes have multiple transcription start sites [15]. In addition, the 455 

length of 3′ UTRs often varies within a given gene, due to the use of different poly(A) sites [7, 456 

16].  457 

In this study, around 50% of expressed protein-coding genes in each tissue transcribed both 458 

coding and non-coding transcript isoforms. Several studies have shown evidence of the 459 

existence of bifunctional genes with coding and non-coding potential using RNA-seq and 460 

ribosome footprinting followed by sequencing (Ribo-seq) [17-19]. For example, steroid receptor 461 

RNA activator (SRA), a known bifunctional gene, acting as a lncRNA while also encoding a 462 

conserved protein SRAP, both of which contribute to the development and progression of 463 

prostate and breast cancers [20]. More than 20% of human protein-coding genes have been 464 

reported to transcribe non-coding isoforms, often generated by alternative splicing [21] and 465 

recurrently expressed across tissues and cell lines [19]. A considerable number of non-coding 466 

isoform variants of protein-coding genes appear to be sufficiently stable to have functional 467 

roles in cells [22]. It has been shown that the proportion of non-coding isoforms from protein-468 

coding genes dramatically increases during myogenic differentiation of primary human satellite 469 

cells and decreases in myotonic dystrophy muscles [23]. In this study, 106 non-coding genes 470 

were identified in fetal tissues that switched to protein-coding genes in their matched adult 471 

tissues. Taken together this supports the notion that protein-coding/non-coding transcript 472 

switching plays an important role in tissue development in cattle as well. 473 
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Nonsense-mediated RNA decay is an evolutionarily conserved process involved in RNA quality 474 

control and gene regulatory mechanisms [24]. For instance, the RNA-binding protein 475 

polypyrimidine tract binding protein 1 (PTBP1) can promote the transcription of NMD 476 

transcripts via alternative splicing, which negatively regulates its own expression [25]. In this 477 

study, NMD transcripts comprised 19% of bovine transcripts that were transcribed from 30% of 478 

bovine genes (10,498). In humans, NMD-mediated degradation can affect up to 25% of 479 

transcripts [26] and 53% of genes [27]. As expected, in this study, most genes that transcribed 480 

NMD transcripts were protein coding (83% or 8,687 genes), while a considerable portion (17%) 481 

were pseudogenes. Many pseudogenes are annotated to give rise to NMD transcripts [28, 29]. 482 

Bioinformatic study of the human transcriptome revealed that 78% of NMD transcript–483 

producing genes were protein coding, followed by pseudogenes (nine percent), long intergenic 484 

noncoding RNAs (six percent), and antisense transcripts (four percent) [29].  485 

Despite the important regulatory function of lncRNAs and miRNAs, very low numbers of these 486 

elements have been annotated in the current bovine genome annotations (Table 7). In this 487 

study, a total of 10,789 lncRNA genes and 2,007 miRNA genes were expressed in the bovine 488 

transcriptome, which is similar to what has been reported for the human transcriptome (Table 489 

7). While, a total of 3,770 human miRNAs and 1,203 cattle miRNAs have been reported in 490 

miRbase [14].  491 

In this study, 1,038 pseudogene-derived lncRNAs were identified that were recurrently 492 

expressed across tissues and cell types. Ever-increasing evidence from different studies 493 

suggests pseudogene derived RNAs are key components of lncRNAs [30-32]. lncRNAs expressed 494 
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from pseudogenes have been shown to regulate genes with which they have sequence 495 

homology [30, 31] or to coordinate development and disease in metazoan systems [30]. 496 

Correct annotation of gene borders has an important role in defining promoter and regulatory 497 

regions. Our novel transcriptome analysis extended (5′-end extension, 3′-end extension, or 498 

both) more than 11,000 annotated Ensembl or NCBI gene borders. Extensions were longer on 499 

the 3′ side, which was relatively similar to that we observed in the pig transcriptome using 500 

PacBio Iso-Seq data [2]. 501 

A growing body of evidence indicates that a considerably large portion of lncRNAs encode 502 

microproteins that are less conserved than canonical open reading frames [33-37]. In this study, 503 

a vast majority (98%) of predicted lncRNAs had short ORFs (<44 amino acids) that were less 504 

conserved than canonical ORFs (Table 2). 505 

Alternative splicing is the key mechanism to increase the diversity of the mRNA expressed from 506 

the genome and is therefore essential for response to diverse environments. In this study, 507 

skipped exons and retained introns were the most prevalent AS events identified in the bovine 508 

transcriptome, similar to what has been observed in other vertebrates and invertebrates [38]. A 509 

higher rate of AS events was observed in fetal tissues compared to their adult tissue 510 

counterparts. The same result has been observed in a recently published study in humans [39]. 511 

We hypothesized that the integration of the gene/transcript data with previously published 512 

QTL/gene association data would allow for the identification of potential molecular 513 

mechanisms responsible for a) tissue-tissue communication as well as b) genetic correlations 514 

between traits. To test the first hypothesis, we developed a novel approach to study the 515 
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involvement of tissue-tissue interconnection in different traits based on the integration of the 516 

transcriptome with publicly available QTL data. In particular, the interconnection between 517 

testis and pituitary tissues with respect to the “percentage of normal sperm” trait was 518 

investigated in more detail. This resulted in the identification of the regulation of ubiquitin-519 

dependent protein catabolic process, the regulation of nuclear factor-κB (NF-κB) transcription 520 

factor activity, and Rab protein signal transduction as key components of this tissue-tissue 521 

interaction (Supplemental file 19 and 20). Interestingly, expressed genes that were closest to 522 

“percentage of normal sperm” QTLs, and also encoded protein with a signal peptide (short 523 

peptide present at the N-terminus of proteins that are destined toward the secretory 524 

pathway[40])  in both testis and pituitary tissues, were highly enriched for the BP GO term 525 

“regulation of ubiquitin-dependent protein catabolic process” (Supplemental file 18 and 19). 526 

The expression of these genes in testis tissue was significantly correlated with expression levels 527 

of pituitary expressed genes closest to “percentage of normal sperm” QTLs that were highly 528 

enriched for the “positive regulation of NF-kappaB transcription factor activity” BP GO term 529 

(Supplemental file 2: Fig. S32 and Supplemental file 19). Activation of NF-κB requires 530 

ubiquitination, and this modification is highly conserved across different species [41]. NF-κB 531 

induces secretion of adrenocorticotropic hormone from the pituitary [42], which directly 532 

stimulates testosterone production by the testis [43]. In addition, ubiquitinated proteins in 533 

testis cells are required for the progression of mature spermatozoa [44]. The expression levels 534 

of pituitary expressed genes closest to “percentage of normal sperm” QTLs that also encoded 535 

signal peptides were significantly correlated with expression levels of testis expressed genes 536 

closest to “percentage of normal sperm” QTLs (Supplemental file 2: Fig. S33). These testis genes 537 



 27 

were highly enriched for the “Rab protein signal transduction” BP GO term (Supplemental file 538 

20). Rab proteins have been reported to be involved in male germ cell development [45]. Thus, 539 

it appears that integration of gene data with QTL/association data can be used to identify 540 

putative molecular pathways underlying tissue-tissue communication mechanisms. 541 

To test the second hypothesis, we also developed a novel approach to study trait similarities 542 

based on the integration of the transcriptome with publicly available QTL data. Using this 543 

approach, we could identify significant similarity between 184 different bovine traits. For 544 

example, clinical mastitis showed significant similarity with 23 different cattle traits that were 545 

greatly supported by published studies, such as milk yield [46], milk composition traits [47], 546 

somatic cell score [48], foot traits [49], udder traits [50], daughter pregnancy rate [51], length 547 

of productive life [52] and net merit [53]. Similar results were observed for residual feed intake, 548 

which showed significant similarity with 14 different traits such as average daily feed intake 549 

[54], average daily gain [55], carcass weight [56], feed conversion ratio [57], metabolic body 550 

weight [58], subcutaneous fat [59], and dry matter intake [60]. 551 

Taken together, these results identify a list of candidate genes that might be controlled by 552 

genetic variation responsible for the genetic mechanisms underlying genetic correlations 553 

(Supplemental file 19 and 20). If this is the case, in the future, these novel methods should be 554 

able to predict the impact of a given set of genetic variants that are associated with a trait of 555 

interest on other traits that were not measured in a given study. This might then lead to the 556 

optimization of variants used (or not used) in genomic selection to minimize any non-beneficial 557 

effect of selection on selected traits. However, it is important to acknowledge that (1) the 558 

nearest neighbor gene to a genotype association may not necessarily be the causal gene, (2) 559 
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the breed/gender differences between this study and the data from Animal QTLdb may impact 560 

the results, and (3) due to experimental limitations, the genetic and phenotypic association 561 

data were not used in this study. None the less, these results are intriguing in that meaningful 562 

genetic correlation can be recapitulated. Furthermore, these results indicate the potential for 563 

gene mechanisms whereby traits that have genetic correlations to be identified. 564 

Conclusions 565 

In-depth analysis of multi-omics data from 50 different bovine tissues/cell types provided 566 

evidence to improve the annotation of thousands of protein-coding, lncRNA, and miRNA genes. 567 

These validated results increase the complexity of the bovine transcriptome (number of 568 

transcripts per gene, number of UTRs per gene, lncRNA transcripts, AS events, and miRNAs), 569 

comparable to that reported for the highly annotated human genome. The predicted un-570 

annotated transcripts extend existing annotated gene models, by verifying such extensions 571 

using independent WTTS-seq and RAMPAGE data. The integrated transcriptome data with 572 

publicly available QTL data revealed putative molecular pathways that may underlie tissue-573 

tissue communication mechanisms and candidate genes responsible for the genetic 574 

mechanisms that may underlie genetic correlations between traits. This integrative approach is 575 

particularly important in the selection of indicator traits for breeding purposes, study of 576 

artificial selection side effects in livestock species, and functional annotation of poorly 577 

annotated livestock genomes. 578 

 579 

Methods 580 
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Tissue sample collection and sequencing library preparation methods are summarized in 581 

Supplemental file 23. The overview of the bioinformatics analysis steps is presented in 582 

Supplemental file 2: Fig. S39. 583 

RNA-seq data analysis and transcriptome assembly 584 

Single-end Illumina RNA-Seq reads (75 bp) from each tissue sample were trimmed to remove 585 

the adaptor sequences and low-quality bases using Trim Galore (version 0.6.4)  [61] with --586 

quality 20 and --length 20 option settings. The resulting reads were aligned against ARS-UCD1.2 587 

bovine genome using STAR (version 020201) [62] with a cut-off of 95% identity and 90% 588 

coverage. FeatureCounts (version 2.0.2) [63] was used to quantify genes reported in the NCBI 589 

gene build (version 1.21) with -Q 255 -s 2 --ignoreDup --minOverlap 5 option settings. The 590 

resulting gene counts were adjusted for library size and converted to Counts Per Million (CPM) 591 

values using SVA R package (version 3.30.0) [64]. In each tissue, sample similarities were 592 

checked using hierarchical clustering and regression analysis of gene expression values (log2 593 

based CPM), and outlier samples were expressed and removed from downstream analysis. 594 

Samples from each tissue were combined to get the most comprehensive set of data in each 595 

tissue. To reduce the processing time due to huge sequencing depth, the trimmed reads were 596 

in silico normalized using insilico_read_normalization.pl from Trinity package (version 2.6.6) 597 

[65] with --JM 350G and --max_cov 50 option settings. Normalized RNA-seq reads were aligned 598 

against ARS-UCD1.2 bovine genome using STAR (version 020201) [62] with a cut-off of 95% 599 

identity and 90% coverage. The normalized reads were assembled using de novo Trinity 600 

software (version 2.6.6) [65] combined with massively parallelized computing using 601 

HPCgridRunner (v1.0.1) [66] and GNU parallel software [67]. The resulted transcript reads were 602 
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mapped against ARS-UCD1.2 bovine genome using GMAP [68] with a cut-off of 95% identity 603 

and 90% coverage. In the next step, transcript reads were collapsed and grouped into putative 604 

gene models (clustering transcripts that had at least a one-nucleotide overlap) by the 605 

pbtranscript-ToFU from SMRT Analysis software (v2.3.0) [69]  with min-identity = 95%, min-606 

coverage = 90% and max_fuzzy_junction = 15 nt, whereas the 5′-end and 3’-end difference were 607 

not considered when collapsing the reads. Base coverage of the resulting transcripts was 608 

calculated using mosdepth (version 0.2.5) [70]. Predicted transcripts were required to have a 609 

minimum of three times base coverage in their assembled tissues. The predicted acceptor and 610 

donor splice sites were required to be canonical and supported by Illumina-seq reads that 611 

spanned the splice junction with 5-nt overhang. Spliced transcripts with the exact same splice 612 

junctions as their reference transcripts but that contained retained introns were removed from 613 

analysis, as they were likely pre-RNA sequences. Unspliced transcripts with a stretch of at least 614 

20 A’s (allowing one mismatch) in a genomic window covering 30 bp downstream of their 615 

putative terminal site were removed from analysis, as they were likely genomic-DNA 616 

contaminations. To decrease the false positive rate, unspliced transcripts that were only 617 

expressed in a single tissue were removed from downstream analysis. In addition, single-exon 618 

genes without histone mark (H3K4me3, H3K4me1, H3K27ac) or ATAC-seq peaks mapped to 619 

their promoter (see Relating transcripts and genes to epigenetic data section) were removed 620 

from downstream analysis as they were likely transcriptional noise. The resulting transcripts 621 

from each tissue were re-grouped into gene models using an in-house Python script. 622 

Structurally similar transcripts from the different tissues (see Comparison of transcript 623 
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structures across datasets/tissues section) were collapsed using an in-house Python script to 624 

create the RNA-seq based bovine transcriptome. 625 

The resulting transcripts and genes were quantified using align_and_estimate_abundance.pl 626 

from the Trinity package (version 2.6.6) [65] with --aln_method bowtie --est_method RSEM --627 

SS_lib_type R option settings. The quantified counts were normalized for sequencing depth 628 

using RPKM method. 629 

“Isoform” and “transcript” terms are used interchangeably throughout the manuscript. 630 

PacBio Iso-Seq data analysis 631 

PacBio Iso-seq data has been processed as described for the pig transcriptome [2] with the 632 

following exceptions. Errors in the full-length, non-chimeric (FLNC) cDNA reads were corrected 633 

with the preprocessed RNA-Seq reads from the same tissue samples using the combination of 634 

proovread (v2.12) [71] and FMLRC (v1.0.0) [72] software packages. Error rates were computed 635 

as the sum of the numbers of bases of insertions, deletions, and substitutions in the aligned 636 

FLCN error-corrected reads divided by the length of aligned regions for each read (Table 8). 637 

The RNA-seq-based transcriptome was assembled as described in the previous section. 638 



 32 

Oxford Nanopore data analysis 639 

Assembled isoforms from a previously published Oxford Nanopore experiment were used in 640 

this study [12]. In brief, total 32 tissue (Supplemental file 24) from two male and two female 641 

Line 1 Hereford cattle, aged 14 months old were used in this experiment. Barcoded cDNAs 642 

extracted from frozen tissues (-80 °C) were pooled at the University of California Davis and 643 

sequenced using Oxford Nanopore Technologies SQK-DCS109 kit according to the 644 

manufacturer’s protocol [12]. 645 

Comparison of transcript structures across datasets/tissues 646 

The structure of transcripts predicted from RNA-seq data were compared across tissues, and 647 

independent datasets including a library of annotated isoforms (Ensembl release 2021-03, and 648 

NCBI Release 106), as well as isoforms identified through complete isoform sequencing with 649 

Pacific Biosciences, a de novo assembly produced from its matched RNA-seq reads, and 650 

isoforms identified from Oxford Nanopore platforms. Transcripts whose 5’ and 3’ borders were 651 

supported by RAMPAGE and/or WTTS data (see Transcript and gene border validation section) 652 

and whose splice junctions were identical (maximum fuzzy junction was set to 15 bp) were 653 

considered “structurally equivalent transcripts”.  The maximum of 100 nt fuzzy 5’ and 3’ 654 

transcript borders were applied when comparing transcripts were not supported by RAMPAGE 655 

and/or WTTS data. Other transcripts that did not met these criteria were considered 656 

“structurally different transcripts”. 657 

A pair of genes was considered as structurally equivalent across datasets if they transcribed at 658 

least single “structurally equivalent transcript”. 659 
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Prediction of transcript and gene biotypes 660 

Transcripts’ open reading frames (ORFs) were predicted using the stand-alone version of 661 

ORFfinder [73] with “ATG and alternative initiation codons” as ORF start codon. The longest 662 

three ORFs were matched to the Uniprot vertebrate database using Blastp [73] with E-value 663 

cutoff of 10− 6, min coverage 60%, and min identity 95%. The ORFs with the lowest E-value to a 664 

protein were used as the representative, or if no matches were found, the longest ORF was 665 

used. Putative transcripts that had representative ORFs longer than 44 amino acids were 666 

labelled as protein-coding transcripts. If the representative ORF had a stop codon that was 667 

more than 50 bp upstream of the final splice junction, it was labelled as a nonsense-mediated 668 

decay transcript [74]. Transcripts with start codon but no stop codon before their poly(A) site 669 

were labelled non-stop decay RNAs. Putative non-coding transcripts (ORFs shorter than 44 670 

amino acids and lack of coding potential predicted by CPC2 [75]) with lengths less than 200 bp 671 

that did not overlap with annotated or un-annotated miRNA precursors (see miRNA-seq data 672 

analysis section) were labelled as small non-coding RNAs [74]. Putative non-coding transcripts 673 

with lengths greater than 200 bp were labelled as long non-coding RNAs [74]. Long non-coding 674 

RNAs overlapping one or more coding loci on the opposite strand were labelled as antisense 675 

lncRNAs. Long non-coding RNAs located in introns of coding genes on the same strand were 676 

labelled as sense-intronic lncRNAs. Long non-coding RNAs that had an exon(s) that overlapped 677 

with a protein-coding gene were labeled as Intragenic lncRNAs. Long non-coding RNAs located 678 

in intergenic regions of the genome were labeled as Intergenic lncRNAs. 679 

Putative genes that transcribed at least a single protein-coding transcript were labelled as 680 

protein-coding genes. Putative genes with homology to existing vertebrate protein-coding 681 
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genes (Blastx [73], E-value cut-off 10-6, min coverage 90%, and min identity 95%) but containing 682 

a disrupted coding sequence, i.e., transcribe only nonsense-mediated decay or non-stop decay 683 

transcripts in all of their expressed tissues, were labelled as pseudogenes. The rest of the 684 

putative genes were labeled as non-coding. 685 

ncRNAs homology analysis 686 

Putative non-coding transcripts were matched to NCBI and Ensembl vertebrate ncRNA 687 

databases using Blastn [73] with E-value cutoff of 10− 6, min coverage 90%, and min identity 688 

95%. Transcripts with at least one hit were considered as homologous ncRNAs. 689 

Transcriptome termini site sequencing data analysis 690 

T-rich stretches located at the 5’ end of each WTTS-seq raw read were removed using an in-691 

house Perl script, as described previously [76]. T-trimmed reads were error-corrected using 692 

Coral (version 1.4.1) [77] with -v -Y -u -a 3 option settings. The resulting reads with length 693 

greater than 300 nt were quality trimmed using FASTX Toolkit (version 0.0.14) [78] with -q 20 694 

and -p 50 option settings. High-quality, error-corrected WTTS-seq reads were aligned against 695 

the ARS-UCD1.2 bovine genome using STAR (version 020201) [62] with a cut-of of 95% identity 696 

and 90% coverage. 697 

Chromatin immunoprecipitation sequencing (ChIP-seq) data analysis 698 

Regions of signal enrichment (“peaks”) from a previously published ChIP-seq experiment were 699 

used in this study [79]. In brief, total eight tissue (Supplemental file 24) from two male Line 1 700 

Hereford cattle, aged 14 months old were used in this experiment. ChIP-seq experiments were 701 
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performed on frozen tissue (-80 °C) using the iDeal ChIP-seq kit for Histones (Diagenode 702 

Cat.#C01010059, Denville, NJ) based on protocol described at [79]. The following antibodies 703 

used were from Diagenode: H3K4me3 (in kit), H3K27me3 (#C15410069), H3K27ac 704 

(#C15410174), H3K4me1 (#C15410037), and CTCF (#15410210). 705 

ATAC-seq data analysis 706 

The UC Davis FAANG Functional Annotation Pipeline was applied to process the ATAC-seq data, 707 

as previously described [79]. Briefly, the ARS-UCD1.2 genome assembly and Ensembl genome 708 

annotation (v100) were used as references for cattle. Sequencing reads were trimmed with 709 

Trim Galore! (Krueger et al. 2015) (v.0.6.5) and aligned BWA (Li et al. 2013) (v0.7.17) to the ARS-710 

UCD1.2 genome assembly with --fr option. Alignments with MAPQ scores <30 were filtered 711 

using Samtools (Li et la. 2009) (v.1.9). Duplicate reads were marked and removed using Picard 712 

(v.2.18.7). Regions of signal enrichment were called by MACS2 (Zhang et al. 2008) (v.2.1.1). 713 

Relating transcripts and genes to epigenetic data 714 

The promoter was defined as the genomic region that spans from 500 bp 5′ to 100 bp 3′ of the 715 

gene/transcript start site. Histone mark (H3K4me3, H3K4me1, H3K27ac), CTCF-DNA binding or 716 

ATAC-seq peaks mapped to the promoter of a given gene/transcript were related to that 717 

gene/transcript. 718 

Transcript and gene border validation 719 

RAMPAGE peaks from a previously published experiment [13] were used to validate 720 

gene/transcript start site (Supplemental file 24). Peaks within the genomic region that spans 721 

from 30 bp 5′ to 10 bp 3′ of a gene/transcript start site were assigned to that gene/transcript. 722 
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WTTS-seq reads (median length of 161 bp) within the genomic region that spans from 10 bp 5′ 723 

to 165 bp 3′ of a gene/transcript terminal site were assigned to that gene/transcript. 724 

Functional enrichment analysis 725 

The potential mechanism of action of a group of genes was deciphered using ClueGO [80]. The 726 

latest update (May 2021) of the Gene Ontology Annotation database (GOA)  [81] was used in 727 

the analysis. The list of genes with at least one transcript expressed in a given tissue was used 728 

as background for that tissue. The GO tree interval ranged from 3 to 20, with the minimum 729 

number of genes per cluster set to three. Term enrichment was tested with a right-sided hyper-730 

geometric test that was corrected for multiple testing using the Benjamini-Hochberg procedure 731 

[82]. The adjusted p-value threshold of 0.05 was used to filter enriched GO terms. Enriched GO 732 

terms were grouped based on kappa statistics [83]. 733 

Alternative splicing analysis 734 

Alternative splicing (AS) events (Supplemental file 2: Fig. S20A) are commonly distinguished in 735 

terms of whether RNA transcripts differ by inclusion or exclusion of an exon, in which case the 736 

exon involved is referred to as a “skipped exon” (SE) or “cassette exon”, “alternative first exon”, 737 

or “alternative last exon”. Alternatively, spliced transcripts may also differ in the usage of a 5' 738 

splice site or 3' splice site, giving rise to alternative 5' splice site exons (A5Es) or alternative 3' 739 

splice site exons (A3Es), respectively. A sixth type of alternative splicing is referred to as 740 

“mutually exclusive exons” (MXEs), in which one of two exons is retained in RNA but not both. 741 

However, these types are not necessarily mutually exclusive; for example, an exon can have 742 

both an alternative 5' splice site and an alternative 3' splice site, or have an alternative 5' splice 743 
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site or 3' splice site, but be skipped in other transcripts. A seventh type of alternative splicing is 744 

“intron retention”, in which two transcripts differ by the presence of an unspliced intron in one 745 

transcript that is absent in the other. An eighth type of alternative splicing is “unique splice site 746 

exons” (USEs), in which two exons overlap with no shared splice junction. Alternative splicing 747 

events, except Unique Splice Site Exons, were detected using generateEvents from SUPPA 748 

(version 2.3) [84] with default settings. Unique Splice Site Exons were detected using an in-749 

house Python script. 750 

miRNA-seq data analysis 751 

Single-end Qiagen miRNA-seq reads (50 bp) from each tissue sample were trimmed to remove 752 

the adaptor sequences and low-quality bases using Trim Galore (version 0.6.4) [61] with --753 

quality 20, --length 16, --max_length 30 -a AACTGTAGGCACCATCAAT option settings. miRNA 754 

reads were aligned against the ARS-UCD1.2 bovine genome using mapper.pl from mirDeep2 755 

(version 0.1.3) [85] with -e -h -q -j -l 16 -o 40 -r 1 -m -v -n option settings. miRNA mature 756 

sequences along with their hairpin sequences for Bos taurus species were downloaded from 757 

miRbase [14]. These sequences, along with the aligned miRNA reads, were used to quantify 758 

annotated miRNAs in each sample using miRDeep2.pl from mirDeep2 (version 0.1.3) [85] with -t 759 

bta -c -v 2 setting options. miRNA normalized Reads Per Million (RPM) were used to check 760 

sample similarities using hierarchical clustering and regression analysis of gene expression 761 

values (log2 based CPM), and outlier samples were detected and removed from downstream 762 

analysis. In order to predict the most comprehensive set of un-annotated miRNAs, samples 763 

from different tissues were concatenated into a single file that were aligned against the ARS-764 

UCD1.2 bovine genome using mapper.pl from mirDeep2 (version 0.1.3) [85] with the 765 
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aforementioned settings. Aligned reads from the previous step were used, along with 766 

annotated miRNAs’ mature sequences and their hairpins, to predict un-annotated miRNAs 767 

using miRDeep2.pl from mirDeep2 (version 0.1.3) [85] with the aforementioned settings. 768 

Samples from each tissue were combined to get the most comprehensive set of data for that 769 

tissue. Mature miRNA sequences and their hairpins for both annotated and predicted un-770 

annotated miRNAs’ sequences along with the aligned miRNA reads from each tissue were used 771 

to quantify annotated and un-annotated miRNAs in each tissue using mirDeep2 (version 0.1.3) 772 

[85] with the aforementioned settings.   773 

Tissue-specificity index 774 

Tissue Specificity Index (TSI) calculations were utilized to present more comprehensive 775 

information on transcript/gene/miRNA expression patterns across tissues. This index has a 776 

range of zero to one with a score of zero corresponding to ubiquitously expressed 777 

transcripts/genes/miRNAs (i.e., “housekeepers”) and a score of one for 778 

transcripts/genes/miRNAs that are expressed in a single tissue (i.e., “tissue-specific”) [86]. The 779 

TSI for a transcript/gene/miRNA j was calculated as [86]: 780 

 781 

𝑇𝑆𝐼𝑗 =
∑ (1 − 𝑥𝑗,𝑖)𝑁

𝑖=1

𝑁 − 1
 782 

 783 
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where 𝑁 corresponds to the total number of tissues measured, and 𝑥𝑗,𝑖  is the expression 784 

intensity of tissue 𝑖 normalized by the maximal expression of any tissue for 785 

transcript/gene/miRNA 𝑗. 786 

QTL enrichment analysis 787 

Publicly available bovine QTLs were retrieved from Animal QTLdb [87]. Closest expressed gene 788 

to a given trait’s QTLs were denoted as QTL-associated genes for that trait. The median distance 789 

of QTLs located outside gene borders to the closest expressed gene was 51.9 kilobases and the 790 

maximum distance was 2.6 million bases. QTL enrichment was tested with a right-sided Fisher 791 

Exact test using an in-house Python script. The resulting p-values were corrected for multiple 792 

testing by the Benjamini-Hochberg procedure [82]. The adjusted p-value threshold of 0.05 was 793 

used to filter QTLs. 794 

Trait similarity network 795 

For a given pair of traits, trait A was denoted as “similar” to trait B if a significant portion of trait 796 

A’s QTL-associated genes were also the closest expressed genes to trait B QTLs based on 1000 797 

permutation tests. The resulting p-values were corrected for multiple testing using the 798 

Benjamini-Hochberg procedure [82]. The same procedure was used to test trait B’s similarity to 799 

trait A. The adjusted p-value threshold of 0.05 was used to filter significant trait similarities. A 800 

graphical presentation of the method used to construct the tissue similarity network is 801 

presented in Supplemental file 2: Fig. S40. The resulting network was visualized using 802 

Cystoscape software [88]. 803 

 804 



 40 

Testis-pituitary axis correlation significance test 805 

The presence of signal peptides on representative ORFs of protein-coding transcripts was 806 

predicted using SignalP-5.0 [89]. Spearman correlation coefficients were used to study 807 

expression similarity between testis genes encoding signal peptides that were closest to the 808 

“percentage of normal sperm” QTLs (62 genes) and pituitary expressed genes closest to the 809 

“percentage of normal sperm” QTLs (246 genes). To test the statistical difference between 810 

these correlation coefficients (reference correlations) and random chance, 1000 random sets of 811 

246 pituitary genes were selected, and their correlation coefficients with 62 previously 812 

described testis genes were calculated (random correlations). The reference correlations were 813 

compared with 1000 sets of random correlations using a right-sided t-test. The resulting p-814 

values were corrected for multiple testing by the Benjamini-Hochberg procedure [82]. The 815 

distribution-adjusted p-values were used to determine the significance level of expression 816 

similarities for genes involved in the testis-pituitary axis related to “percentage of normal 817 

sperm”. The same analysis was conducted to determine the significance of pituitary-testis axis 818 

involvement in this trait. 819 

Tissue dendrogram comparison across different transcript and gene biotypes 820 

Tissues were clustered based on the percentage of their transcripts/genes that were shared 821 

between tissue pairs using the hclust function in R. Cophenetic distances for tissue 822 

dendrograms were calculated using the cophenetic R function. The degree of similarity 823 

between dendrograms constructed based on different gene/transcript biotypes was obtained 824 

using the Spearman correlation coefficient between the dendrograms’ Cophenetic distances. 825 
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Figure legends 826 

Figure 1. Distribution of the number of expressed transcripts (A) and genes (B) across tissues. 827 

Figure 2. Classification of the predicted transcripts into different biotypes. 828 

Figure 3. Support of predicted transcripts using data from different technologies and datasets. 829 

Figure 4. Classification of the predicted genes into different biotypes. 830 

Figure 5. Distribution of the number of 5’ UTRs and 3’ UTRs per gene in genes with multiple 831 

UTRs. 832 

Figure 6. (A) Classification of protein-coding genes based on their novelty and types of encoded 833 

transcripts. (B) Number of expressed tissues for bifunctional genes. Dots have been color coded 834 

based on their density. (C) Location of different transcript biotypes on bifunctional genes. (D) 835 

Functional enrichment analysis of genes that remained bifunctional in all of their expressed 836 

tissues. 837 

Figure 7. Support of predicted genes using data from different technologies and datasets 838 

Figure 8. Functional enrichment analysis of non-coding genes in fetal tissues that were switched 839 

to protein coding with only coding transcripts in their matched adult tissue. 840 

Figure 9- (A) Correlation between testis genes encoded protein with a signal peptide that were 841 

close to the “percentage of normal sperm” QTL and pituitary expressed genes closest to this 842 

trait (reference correlations). (B) Distribution of p-values resulting from a right-sided t-test 843 
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between reference correlation coefficients and correlation coefficients derived from random 844 

chance (see methods for details). 845 

Figure 10- (A) Distribution of the number of expressed annotated and un-annotated miRNAs 846 

across tissues. (B) Expression of annotated and un-annotated miRNAs across their expressed 847 

tissues. (C) Number of expressed tissues for annotated and un-annotated miRNAs. 848 

Figure 11- Support of annotated (A) and un-annotated (B) miRNAs using different histone marks 849 

and CTCF-DNA binding data. 850 

  851 
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Tables 852 

Table 1. Summary of expressed transcripts/genes 

 

Feature 

Annotation1 

Current project Ensembl 

(Release 2021-03) 

NCBI 

(Release 106) 

Number of genes 35,150 (21,193) 27,607 (21,880) 35,143 (21,355) 

Number of transcripts 171,985 (85,658) 43,984 (37,538) 83,195 (47,280) 

Number of spliced transcripts 130,531 37,299 73,423 

Number of transcripts per gene 4.9 1.5 2.3 

Median number of 5’ UTRs per gene 2 1 1 

Median number of 3’ UTRs per gene 1 1 1 

1Numbers in parentheses indicate the number of protein-coding genes/transcripts. 

 853 

 854 
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Table 2. Protein/peptide homology of transcripts with coding potential 

Transcript biotype Number of transcripts Transcripts with 

protein/peptide homology to 

other species1 

Protein-coding transcripts 85,658 73,268 (86%) 

sncRNAs and lncRNAs that 

encode short peptides2 

48,425 4,054 (8%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

2Open reading frame of 9 to 43 amino acids 

 856 

 857 
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Table 3. Sequence homology of non-coding transcripts  

Transcript biotype Number of transcripts Transcripts with sequence 

homology to ncRNAs in other 

species1 

Long non-coding RNAs 48,661 23,707 (49%) 

Small non-coding RNAs 526 194 (37%) 

Non-stop decay RNAs 4,359 1,551 (35%) 

Nonsense-mediated decay 

RNAs 

32,781 18,195 (55%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

 859 
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Table 4. Sequence homology of different types of lncRNAs  

lncRNA biotype Number of transcripts Transcripts with sequence 

homology to ncRNAs in other 

species1 

antisense lncRNAs 29,987 13,793 (46%) 

sense-intronic lncRNAs 1,694 1,029 (60%) 

intragenic lncRNAs 5,569 2,314 (41%) 

intergenic lncRNAs 11,841 5,820 (49%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

 862 

 863 

  864 



 47 

Table 5. Gene border extensions in current ARS-UCD1.2 genome annotations by de novo 

assembled transcriptome from short-read RNA-seq data 

Annotation Type of gene extension Number of genes Median extension 

(nucleotides) 

Ensembl 

(Release 2021-03) 

5’ extension only 1,848 128 

3’ extension only 5,701 422 

Both ends extended 4,874 122, 5’ 

439, 3’ 

NCBI 

(Release 106) 

5’ extension only 2,214 80 

3’ extension only 5,496 126 

Both ends extended 3,613 66, 5’ 

210, 3’ 

    

 865 

 866 
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Table 6. Median number of reads mapped to the extended region of annotated genes1 

Annotation 5’ end extension 3’ end extension Both ends extension 

Ensembl (release 2021-03) 92 (1.10) 220 (1.24) 1,766 (8.90) 

NCBI (release 106) 72 (1.05) 95 (1.10) 2,009 (9.05) 

1Numbers in parentheses indicate the median fold change in expression level resulting from gene 

extensions. 

 870 

 871 

  872 



 49 

Table 7. Comparison of different gene builds based on gene biotypes 

Species Gene build Protein-

coding 

genes 

lncRNA 

genes 

miRNA 

genes 

Other types 

of small non-

coding 

genes1 

Pseudo-

genes 

Bovine  

(ARS-UCD1.2) 

 

Ensembl 

(Release 

2021-03) 

21,880 1,480 951 2,209 492 

NCBI 

(Release 106) 

21,039 5,179 797 3,249 4,569 

Current 

project2 

 

21,193 

(18,096) 

10,789 

(2,847) 

2,007 

(973) 

139 

(0) 

3,029 

(1,509) 

Human 

(GRCh38.104) 

Ensembl 

(release 2021-

03) 

20,442 16,876 1,877 2,930 15,266 

1Small nucleolar RNAs, small non-coding RNAs, small Cajal body specific RNAs, small conditional RNAs, 

and tRNAs 

2Numbers in parentheses indicate the number of un-annotated RNAs in each biotype. 
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Table 8. Summary of error-corrected, FLNC Iso-Seq reads and their matched RNA-seq 

reads 

Tissue Error-corrected FLNC 

Iso-Seq reads1 

Median error rate in 

error-corrected FLNC 

Iso-Seq reads 

Normalized RNA-seq 

reads used for error 

correction2 

Thalamus 664,900 (90%) 0.21% 32,452,612 

Testes 711,821 (86%) 1.43% 31,939,024 

Liver 1,064,146 (84%) 1.84% 13,657,156 

Medulla 380,531 (86%) 0.43% 48,256,918 

Subcutaneous fat 215,759 (93%) 0.45% 42,043,313 

Cerebral cortex 440,797 (87%) 1.01% 21,285,864 

Jejunum 604,436 (90%) 2.331% 34,457,447 

1 Number in parentheses indicates mapping rate (90% coverage and 95% identity). 

2 In silico normalized using insilico_read_normalization.pl from Trinity (version 2.6.6) with the 

following settings: --max_cov 50 --max_pct_stdev 100 --single 
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Supplemental files 877 

Supplemental file 1: List of different datasets generated in the experiment. 878 

Supplemental file 2: Fig. S1 Distribution of the number of RNA-seq reads across tissues. Fig. S2 879 

(A) Comparison of tissues based on number of transcript biotypes and (B) percentage of 880 

transcript biotypes. (C) Comparison of transcript biotypes based on their number of expressed 881 

tissues and (D) their expression level across expressed tissues. Fig. S3 (A) Relation between the 882 

number of input reads and the number of transcript biotypes (B) Comparison of expression 883 

level between different transcript biotypes. Fig. S4 Tissue similarities (A) and clustering (B) 884 

based on the percentage of protein-coding transcripts shared between pairs of tissues. Fig. S5 885 

Tissue similarities (A) and clustering (B) based on the percentage of non-coding transcripts 886 

shared between pairs of tissues. Fig. S6 Comparison of annotated and un-annotated transcripts 887 

based on their expression (A) and number of expressed tissues (B). Fig. S7 Comparison of 888 

annotated and un-annotated protein-coding transcripts based on the length (A) and GC content 889 

(B) of their 5’ UTR, CDS, and 3’ UTR. Fig. S8 (A) Comparison of tissues based on number of gene 890 

biotypes and (B) percentage of gene biotypes. Fig. S9 Relation between the number of input 891 

reads and the number of gene biotypes. Fig. S10 Comparison of annotated and un-annotated 892 

genes based on their expression (A) and number of expressed tissues (B). Fig. S11 Functional 893 

enrichment analysis of the top five percent of genes with the highest number of UTRs. Fig. S12 894 

Similarity of tissues based on the number of non-coding genes in their fetal samples that 895 

switched to protein-coding genes with only coding transcripts in their adult samples. Fig. S13 896 

(A) Distribution of genes that transcribed PATs, based on their number of expressed tissues, 897 



 52 

percentage of genes’ transcripts that are PATs and percentage of genes’ expressed tissues in 898 

which PATs were transcribed. (B) Comparison of genes that transcribed PATs with other gene 899 

biotypes. Fig. S14 (A) Homology analysis of protein-coding genes. (B) Homology analysis of non-900 

coding genes. (C) Detection of orphan genes based on homology classification of cattle-specific 901 

protein-coding genes and non-coding genes. Fig. S15 Comparison of the expression level of 902 

homologous and orphan genes across (A) and within (B) their expressed tissues. (C)  903 

Comparison of homologous and orphan genes based on the number of expressed tissues. Fig. 904 

S16 Comparison of different gene biotypes based on the expression (A) and the number of 905 

expressed tissues (B). Fig. S17 Comparison of different pseudogene-derived lncRNAs and non-906 

pseudogene derived lncRNAs based on the expression level (A) and the number of expressed 907 

tissues (B). Fig. S18 Tissue similarities (A) and clustering (B) based on the percentage of protein-908 

coding genes shared between pairs of tissues. Fig. S19 Tissue similarities (A) and clustering (B) 909 

based on the percentage of non-coding genes shared between pairs of tissues. Fig. S20 (A) 910 

Different types of alternative splicing events. (B) Comparison of bovine genome builds based on 911 

the number of transcripts that showed any type of alternative splicing (AS) events. Fig. S21 912 

Comparison of tissues based on the number (A) and the percentage (B) of transcripts that 913 

showed different types of alternative splicing events. Comparison of tissues based on the 914 

number (C) and the percentage (D) of alternative splicing events. Fig. S22 (A) Comparison of 915 

tissues based on the percentage of transcripts that showed any type of alternative splicing 916 

events, spliced transcripts from single-transcript genes, and unspliced transcripts and (B) the 917 

relation between the number of input reads and the number of these transcripts across tissues. 918 

Fig. S23 Comparison of transcripts that showed different types of alternative splicing events 919 
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based on (A) the expression level in the expressed tissues and (B) the number of expressed 920 

tissues. Fig. S24 Transcript biotype switching due to alternative splicing events. Fig. S25 921 

Comparison of tissues based on the number of alternative splicing events per alternatively 922 

spliced gene. Fig. S26 (A) Distribution of the number of alternative splicing events per 923 

alternatively spliced gene. The 5% quantile is shown using a dashed red line. (B) Functional 924 

enrichment analysis of the top five percent of genes with the highest number of alternative 925 

splicing events. Fig. S27 Comparison of the alternative splicing rate between adult and fetal 926 

tissues. Fig. S28 (A) Distribution of gene’s number of expressed tissues. Tissue-specific gene 927 

biotypes are shown in the pie chart. (B) Distribution of transcript’s number of expressed tissues. 928 

Tissue-specific transcript biotypes are shown in the pie chart. (C) Comparison of tissues based 929 

on the number of tissue-specific genes and transcripts. (D) Comparison of the expression level 930 

of tissue-specific genes and transcripts versus their non-tissue-specific counterparts. Fig. S29 931 

Relationship between tissue specificity and alternative splicing events. Fig. S30 Relationship 932 

between tissue specificity index and the number of multi-tissue expressed genes (A) and 933 

transcripts (B). Distribution of tissue specificity indexes in multi-tissue expressed genes (C) and 934 

transcripts (D). The 5% quantile is shown using dashed red lines. (E) Functional enrichment 935 

analysis of the top five percent of multi-tissue expressed genes with the highest tissue 936 

specificity indexes. Fig. S31 Distribution of QTLs located outside gene borders in relation to the 937 

closest expressed gene. Fig. S32 (A) Distribution of correlation coefficients between SPACA5 938 

gene expression and pituitary expressed genes closest to “percentage of normal sperm” QTLs. 939 

Dashed lines show the minimum significant positive and negative correlation (p-value <0.05). 940 

(B) Expression atlas of SPACA5 gene in human tissues from The Human Protein Atlas [90]. Fig. 941 



 54 

S33 (A) Correlation between pituitary genes with signal peptides that were close to the 942 

“percentage of normal sperm” QTL and testis expressed genes closest to this trait’s QTL 943 

(reference correlations). (B) Distribution of p-values resulting from right-sided t-test between 944 

reference correlation coefficients and correlation coefficients derived from random chance (see 945 

methods for details). Fig. S34 Tissue similarities (A) and clustering (B) based on the percentage 946 

of miRNAs shared between pairs of tissues. Fig. S35 Clustering of tissues based on protein-947 

coding genes (A), protein-coding transcripts (B), non-coding genes (C), non-coding transcripts 948 

(D), and miRNAs (E). (F) Comparison of tissue dendrograms based on the correlation between 949 

their Cophenetic distances. Fig. S36 (A) Distribution of the number of expressed tissues for 950 

annotated and un-annotated miRNAs. Classification of miRNAs as annotated, or un-annotated 951 

is presented in the pie chart. (B) Comparison of tissues based on their number of tissue-specific 952 

miRNAs. (C) Expression of annotated and un-annotated miRNAs in their expressed tissues. (D) 953 

Distribution of multi-tissue expressed miRNAs’ tissue specificity indexes. (E) Relationship 954 

between tissue specificity index and number of expressed tissues in multi-tissue expressed 955 

miRNAs. Dots have been color coded based on their density. Fig. S37 Distribution of the 956 

number of expressed genes (A), transcripts (B), and miRNAs (C) across tissues. Fig. S38 957 

Distribution of the number of annotated and un-annotated genes (A), transcripts (B), and 958 

miRNAs (C) across tissues. Fig. S39 Overview of the bioinformatics steps used in this study. Fig. 959 

S40 Graphical representation of the method used to construct the tissue similarity network. 960 

Supplemental file 3: Summary of RNA-seq and miRNA-seq reads. 961 

Supplemental file 4: Detailed description of the number of transcripts, genes, and miRNAs 962 

expressed in each tissue.  963 
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Supplemental file 5: List of transcripts and genes expressed in each tissue and their expression 964 

values (RPKM). Individual tissue files are labeled as: Supplemental_file5_<TISSUE 965 

NAME>_<Genes/Transcripts>.tsv 966 

Supplemental file 6: Transcript biotype enrichment analysis in adult and fetal tissues. 967 

Supplemental file 7: Functional enrichment analysis of the top five percent of genes with the 968 

highest number of UTRs. 969 

Additional file 8: Functional enrichment analysis of genes that remained bifunctional in all their 970 

expressed tissues. 971 

Additional file 9: Functional enrichment analysis of non-coding genes in fetal tissues that were 972 

switched to protein coding with only coding transcripts in their matched adult tissue. 973 

Additional file 10: Functional enrichment analysis of protein-coding genes that transcribed 974 

PATs as their main transcripts (PATs comprised >50% of their transcripts) in all their expressed 975 

tissues. 976 

Supplemental file 11: Gene biotype enrichment analysis in adult and fetal tissues. 977 

Supplemental file 12: Functional enrichment analysis of the top five percent of genes with the 978 

highest number of alternative splicing events. 979 

Supplemental file 13: List of tissue-specific genes and transcripts. 980 

Supplemental file 14: Genes and transcripts tissue specificity indexes. Individual tissue files are 981 

labeled as: Supplemental_file14_<Genes/Transcripts>.tsv 982 
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Supplemental file 15: Functional enrichment analysis of the top five percent of multi-tissue 983 

expressed genes with the highest tissue specificity indexes. 984 

Supplemental file 16: List of QTL’s closest expressed genes in each tissue. Individual tissue files 985 

are labeled as: Supplemental_file16_<TISSUE NAME>.tsv 986 

Supplemental file 17: Trait enrichment analysis of testis-specific genes. 987 

Supplemental file 18: Pituitary expressed genes closest to “percentage of normal sperm” QTLs 988 

that showed positive significant correlation with SPACA5 gene in testis. 989 

Supplemental file 19: List of expressed genes closest to “percentage of normal sperm” QTLs 990 

that were involved in testis-pituitary tissue axis and their functional enrichment analysis results. 991 

Supplemental file 20: List of genes expressed closest to “percentage of normal sperm” QTLs 992 

that were involved in pituitary-testis tissue axis and their functional enrichment analysis results. 993 

Supplemental file 21: Similarity of traits based on the integration of the assembled bovine 994 

transcriptome with publicly available QTLs. 995 

Supplemental file 22: List of miRNAs expressed in each tissue and their expression values. 996 

Individual tissue files are labeled as: Supplemental_file22_<TISSUE NAME>.tsv 997 

Supplemental file 23: Tissue sample collection and sequencing library preparation methods 998 

Supplemental file 24: List of independent omics datasets used in the experiment. 999 

Abbreviations 1000 
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A3Es: Alternative 3' splice site Exons; A5Es: Alternative 5' splice site Exons; AFEs: Alternative 1001 

First Exon; ALEs: Alternative Last Exon; AS: Alternative Splicing; ATAC-seq: Assay for 1002 

Transposase-Accessible Chromatin using sequencing; bp: base pair; BP: Biological Process; CDS: 1003 

coding sequence; ChIP-seq: Chromatin Immunoprecipitation Sequencing; CPM: Counts Per 1004 

Million; CTCF: CCCTC-binding factor; DMEM: Dulbecco’s Modified Eagle Medium; FLNC: Full-1005 

Length, Non-Chimeric; GO:  Gene Ontology; GOA: Gene Ontology Annotation database; GWAS: 1006 

Genome-Wide Association Studies; H3K27ac: N-terminal acetylation of lysine 27 on histone H3; 1007 

H3K4me1: tri-methylation of lysine 4 on histone H1; H3K4me3: tri-methylation of lysine 4 on 1008 

histone H3; IACUC: Institutional Animal Care and Use Committee; LD:  Longissimus Dorsi; 1009 

lncRNAs: long non-coding RNAs; miRNA: microRNAs; MXEs: Mutually Exclusive Exons; NCBI: 1010 

National Center for Biotechnology Information; ncRNAs: non-coding RNAs; NMD: Nonsense-1011 

Mediated Decay; NSD: Non-Stop Decay; ONT-seq: Oxford Nanopore Technologies sequencing; 1012 

ORFs:  Open Reading Frames; PacBio Iso-Seq: Pacific Biosciences single-molecule long-read 1013 

isoform sequencing; PAT: Potentially Aberrant Transcript; poly(A): Polyadenylation; PTBP1: 1014 

polypyrimidine tract binding protein 1; QTL: Quantitative Trait Loci; RAMPAGE: RNA Annotation 1015 

and Mapping of Promoters for the Analysis of Gene Expression; Ribo-seq: Ribosome 1016 

footprinting followed by Sequencing; RIEs: Retained Intron Exons; RNA-seq: Illumina high-1017 

throughput RNA sequencing; RPKM: Reads Per Kilobase of Transcript per Million reads mapped; 1018 

RPM: Reads Per Million; SEs: Skipped Exons; sncRNAs: small non-coding RNAs; SNP: Single 1019 

Nucleotide Polymorphism; tpg: transcripts per annotated gene; TSI: Tissue Specificity Index; 1020 

TSS: Transcript Start Sites; TTS: Transcript Terminal Sites; UCD: University of California, Davis; 1021 
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USEs: Unique Splice Site Exons; UTR: untranslated region; WTTS-seq: Whole Transcriptome 1022 

Termini Site Sequencing. 1023 

Data availability 1024 
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transcriptome and related sequences are publicly available in the Open Science Framework 1030 
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Dear Editor 
 
Manuscript number: GIGA-D-23-00037 
 
We are thankful to the reviewers for their thorough review. We have revised the present 
research manuscript in the light of their useful suggestions and comments. We hope this 
revision has improved the manuscript to a level of their satisfaction. Point by point answers to 
their specific comments are as follows. Please notice that that the line numbers were changed 
after revision. However, any changes were highlighted with red color in the revised version. 
With the exception of text that was deleted. 
 
 
 

Reviewer#1 
 
Comment 1: Maybe a flow chart including samples (their number), methods, etc. will be helpful 
for authors to understand of the outline of this study when it supplied so much information. 
Besides, subheadings for the Results part needs to be detailed to supply a clear aim or result, 
for example, "Transcript level analyses".  
 
Response: Lines 582 to 583 the overview of the bioinformatics steps used in this study has been 
provided. Lines 103 and 187, the “Transcript level analysis” and “Gene level analysis” have been 
changed to “Transcript-based analysis” and “Gene-based analysis” to provide more clear title for 
the subsections.  
 
Comment 2: Predicted un-annotated genes and transcripts were highly supported by 
independent Pacific Biosciences single molecule long-read isoform sequencing (PacBio Iso-Seq), 
Oxford Nanopore Technologies sequencing (ONT-seq), Illumina high-throughput RNA 
sequencing (RNA-seq), Whole Transcriptome Termini Site Sequencing (WTTS-seq), RNA 
Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE), 
chromatin immunoprecipitation sequencing (ChIP-seq), and Assay for Transposase-Accessible 
Chromatin using sequencing ATAC-seq) data. 
How did this validation applied using those different datasets? Which one was treated as 
standard, or were they validated mutually by overlapping? Detail information is needed to 
supply to help others to refer this study when they compare with their own datasets. Standard 
workflow will help the cattle study to go faster, and this will be a very important contribution. 
 
Response: Lines 646 to 657, the detailed description of the comparison of transcript structures 
across dataset has been provided. 
 
Comment 3: Testis showed the highest number of expressed genes with observed transcripts 
compared to other tissues. Fetal brain and fetal muscle tissues showed the highest number and 
percentage of non-coding genes compared to that observed in other tissues. 

Response to reviewer comments Click here to access/download;Personal Cover;Response to
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When evaluated the gene/transcript number for different tissues, were the numbers corrected 
by the sequencing depth/the sample number of different tissues? How to define the testis 
including the highest number of expressed genes? Is there any potential interesting biological 
mechanism for this phenomenon? 
 
Response: Lines 111-115, and 628-629, the quantified gene, transcript counts were normalized 
for the sequencing depth using reads per kilobase of transcript per Million reads mapped 
(RPKM) method.  
 
Testis showed the highest number of expressed genes compared to other tissues (Supplemental 
file 2: Fig. S8). In addition, the testis stands out, compared to other tissues, for the high number 
of tissue-specific genes and transcripts (Supplemental file 2: Fig. S28C, Supplemental file 13). 
The same results have been observed in human [1-4]. Although the reason behind these 
phenomena is largely remained unknown, it can be referred to the complex anatomical and 
functional features of testis [4].  
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Reviewer#2 
 
Comment 1: My main concern is regarding the way that the results are presented and 
discussed. Despite the authors presenting very interesting results, the manuscript is very 
difficult to follow. In addition to a very long manuscript, which could be understandable due to 
the amount of analysis and results, the text seems to be extremely repetitive and basically 
descriptive. The results section, which has almost 20 pages, is composed of a series of sub-
sections that are mainly descriptive statistics of the data. This kind of information could be 
summarized in Tables/Figures and the main results presented in the text. I suggest the authors 
perform a deep review in the Results section in order to provide a reduced version with the 
most relevant results, which will be further discussed. Additionally, the same information is 



presented in several parts of the manuscript. For example, the tissue-specific genes and 
transcripts are mentioned in multiple parts of the results section. In my opinion, the main 
objective of the authors "to facilitate the functional genomics of cattle" relies much more on 
other results rather than on the description of a number of transcripts, expressed genes, etc. 
For example, a deeper analysis of the alternative splicing across tissues would result in much 
more interesting results from the functional point-of-view. Additionally, the authors could focus 
on the functionality of the transcript with specific expression signatures (in a cluster of tissues, 
for example). The extensive description of summary statistics reduces substantially the impact 
and novelty of the results. 
 
Response: The redundant summary statistics and unnecessary results were removed 
throughout the manuscript. The detailed description of different alternative splicing events was 
moved to the method section, to make the manuscript shorter (lines 734-750). The redundant 
tissue-specific transcript result was removed as it caused confusion (lines 103-105).  Tissue 
sample collection and sequencing library preparation methods were moved to the 
Supplemental file 23, to make the manuscript shorter (lines 581-582) 
 
The functionality of transcripts/genes were discussed thought the manuscript (lines 222-224, 
235-238, 244-248, 260-262, 345-347, 371-374, 396-400, and 519-533). we provided an initial 
publication from which additional publications will arise. We fully acknowledge that there are 
additional analyses that can be performed based on this data, however it is beyond the scope of 
this publication. 
 
Comment 2: The material and methods section should be improved. I understand that due to 
the length of the manuscript, the authors decided to not show some details regarding the 
analysis and only cite the original manuscript where the analyses were performed. However, the 
authors should present the most relevant points, arguments, and decisions from each 
methodology. A reduction in other parts of the manuscript will allow the authors to improve 
this section as well. 
 
Response: Lines 641-645, and 700-705, a brief description of the independent Oxford Nanopore 
and ChIP seq experiments that their resulted data were used in this study, has been added to 
the manuscript to improve the section.    
 
Comment 3: The Discussion section is pretty much an overview of the results section. I believe 
that because the authors choose to focus mainly on the description of the number of 
transcripts, isoforms, genes, etc. providing discussion based on functionality became a difficult 
task. Here, the authors should discuss how the results help to improve the functional 
annotation in the cattle genome. In general, the discussion is generic and don't cover specific 
results obtained in the analysis. For example, which is the functional profile of the genes with 
specific alternative splicing in a given tissue or group of tissues? This is interesting from the 
functional perspective. The results of the QTL-transcriptome associations should be discussed 
more in detail, providing more information regarding these associations and the specific 
patterns of association regarding the tissues and isoforms. However, it is very important to 



highlight the limitation of this approach, such as the limitations related to the database, the 
original association studies, breed-specific associations, etc. 
 
Response: In the discussion section, we explained how our effort improved the current 
annotation of cattle genome both in quantity, i.e., number of novel genes/transcripts/miRNAs 
(lines 437-448), and quality, i.e., UTRs and regulatory elements (lines 449-457), bifunctional 
genes (lines 458-473), known gene border extensions (lines 497-501), through comparison our 
assembled transcriptome with current genome annotations or greatly annotated human 
genome. We latter discussed our finding on (1) pseudogene-derived lncRNAs and their role in 
gene regulation (lines 492-496), (2) similarity of alternative splicing events in cattle and other 
vertebrates (lines 506-509), (2) change of the alternative splicing between fetal and adult 
tissues and how this finding supported by other experiments in human genome (lines 509-511), 
(3) integration of our assembled transcriptome with previously published QTL/gene association 
data and how this novel approach can be used to identify tissue-tissue communication 
mechanisms (lines 512-541), and study trait similarity network (lines 542-551). The limitation of 
this approach was presented in lines 558-562. 
 
The functional enrichment analysis of the top five percent of genes with the highest number of 
alternative-splicing events was presented in lines 344-347 It should be noted that due to the 
genome-wide scope of this experiment, and the number of studied tissues, there are so many 
contests that could be performed, and addressing all of them would make the manuscript 
extremely long, which constricts the reviewer's first comment. While we fully understand the 
review comment, we will not be able to provide all possible evidence. 
 
Comment 4: Finally, I would suggest the authors remove multi-omics from the title. The study 
focuses on a multi-platform and multi-technique approach to evaluate transcriptomics. The 
closest analysis from other omics was the integration of ATAC-Seq and Chip-Seq data. However, 
the main results are focused on a single omics, transcriptomics. 
 
Response: The manuscript title was changed to “Utilization of functional genomics data to 
identify relationships between phenotypic traits in cattle”. 
 
Comment 5: The abstract should be substantially improved. There are few explanations about 
the scientific question and hypothesis of the study. Additionally, the authors don't provide basic 
information regarding the dataset used in the study. Which were tissues analyzed? How many 
animals? The conclusions are vague and don't provide a perspective of the results. 
 
Response: The nature of this experiment is different than a traditional treatment by treatment 
experiment in combination of limitation of the length of the abstract is not possible to state all 
of the hypothesis that been tested. 
 
Comment 6: Lines 51-53: This sentence is not connected with the previous one. Please, inform 
us how functional elements may help to fill the mentioned gap. 
 



Response: Lines 61-63, a new sentence was added to the paragraph to fill the gap. 
 
Comment 7: Line 56: Reference 2, Does this reference really reach this conclusion? 
 
Response: Lines 66-68, the citation was changed as it caused confusion. 
 
Comment 8: Line 58: Reference 3, The reference regarding this topic is quite old. Please, provide 
an updated one since the topic of the sentence passed through an intense development and 
increase in the number of publications in the last decade. 
 
Response: Line 70, the citation was updated. 
 
Comment 9: The last paragraph of the introduction presents a summary of the results obtained. 
The authors could use this part of the introduction to clearly state the objectives of the study. 
 
Response: Lines 83-89, the paragraph was rewritten to reflect the study objectives. 
 
 
Comment 10: Line 85: The word "diversity" is repeated in the sentence. 
 
Response: Lines 91, the redundant word was removed. 
 
Comment 11: Line 91: Where is the description of all tissues? 
 
Response: Line 91-93, the list of tissues was provided in Supplemental file 1. 
 
Comment 12: Line 103-105: How? It is not clear how these 20,010 transcripts were actually 
expressed in multiple tissues. 
 
Response: Lines 109-115, reliance solely on assembled transcripts in a given tissue to predict a 
tissue transcript atlas may overestimate tissue specificity due to a high false-negative rate for 
transcript detection. To solve this problem of over-prediction of tissue specificity, we marked a 
transcript as “expressed” in a given tissue only if (1) it had been assembled from RNA-seq data 
in that tissue; or (2) its expression and all of its splice junctions has been quantified using RNA-
seq reads in the tissue of interest with an expression level more than 1 reads per kilobase of 
transcript per Million reads mapped (RPKM) 
 
Comment 13: Line 156: "Significantly higher than that was", please, review this sentence. 
 
Response: Line 116-146, the sentence was corrected as it caused confusion. 
 
Comment 14: Line 159-163: This sentence is confusing. 
 
Response: Line 148-151, the sentence was corrected as it caused confusion. 



 
Comment 15: Line 226-227: Please, replace "This supported an intersection analysis" with "This 
supports an intersection analysis". 
 
Response: Line 201-203, the sentence was corrected as it caused confusion. 
 
Comment 16: Line 247-250: This is a very broad BP term. How this could be interpreted? 
 
Response: The details of all over-represented GO terms were provided in the supplemental file 
7, and only the most enriched term was reported in the manuscript body.  High level of 
similarity between enriched GO terms (based on the similarity of their associated genes), makes 
it fair to use “response to protozoan” as the representative biological function for genes with 
the highest number of UTRs (Supplemental file 2: Fig. 11) 
 
Comment 17: Line 266-267: How does a protein-coding gene transcribe only non-coding 
transcripts? Please, provide more details to the readers. 
 
Response: Line 239-241, the sentence was re-written as it caused confusion. In addition, 
bifunctional genes were discussed in more detail in the discussion section (lines 458-473). 
 
Comment 18: Line 409-410: It seems that this information is repeated. 
 
Response: Lines 115-117, the redundant sentence was removed 
 
Comment 19: Line 611: It is missing a parenthesis. 
 
Response: Line 554, the missed parenthesis was fixed. 
 
Comment 20: The conclusions are generic and don't cover the main results obtained in the 
studies from a perspective of how those results fill the current gap observed in the literature. 
How the specific results obtained. 
 
Response: Lines 566-578, the conclusion section was modified to cover the study objectives 
provided in lines 83-89 
 
 

Reviewer#3 
 
Comment 1: In the Methods section, sub heading RNA-seq library construction it says, "Tissue 
samples (Supplemental file 22) were collected from storage at -80 °C". A section prior to that 
describes adult tissue collection methods stating that 2 male and 2 female cattle were used. 
Neither section nor Sup file 22 include the animal identifier or any means to determine which 
tissue samples were used from which donor animal. Maybe sup file 22 could be expanded to 
include columns for each of the 4 animals with y/n datum to identify which tissues were 



sequenced from each animal? Or perhaps instead of y/n you could include the BioSample 
accession number of the deposited data for those used. 
 
Response: The number of sampled animals were corrected in the Supplemental file 23 (lines 18, 
and 24). In addition, the detail of datasets generated in the experiment was provided in 
Supplemental file 1 (line 81). 
 
Comment 2: The RNA-seq library construction section also mentioned that RNA quantity and 
quality was measured. While not required, we would encourage you to share those results in 
GigaDB. 
 
Response: Given the Information is not required for the manuscript; we would prefer not to 
provide those Information. 
 
Comment 3: Mammary gland tissue collection and RNA-seq library construction section; 
previous discussion on this topic resulted in you changing the text to: 
"Mammary gland tissue collection. The 14 animals used in this study were Holstein-Friesian 
heifers from a single herd managed at the AgResearch Research Station in Ruakura, NZ. All 
experimental protocols were approved by the AgResearch, NZ, ethics committee and carried out 
according to their guidelines. Samples were collected from animals at 4-time points: virgin state 
before pregnancy between 13 and 15 months of age (virgin), mid-pregnant at day 100 of 
pregnancy, late pregnant ~2 weeks pre-calving, and early lactation ~2 weeks post-calving. Tissue 
samples were obtained by mammary biopsy using the Farr method [2]. Lactating cows were 
milked before biopsy and sampled within 5 hours of milking. Biopsy sites were clipped and given 
aseptic skin preparation (povidone-iodine base scrub and iodine tincture) and subcutaneous 
local anesthetic (4 ml per biopsy site). Core biopsies were taken using a powered sampling 
cannula (4.5 mm internal diameter) inserted into a 2 cm incision. The 
resulting samples of mammary gland parenchyma measured 70 mm in length with a 4 mm 
diameter. 
Due to the limited amount of tissue samples collected from an individual animal. RNA for RNA-
seq analysis was isolated from 4 animals, RNA for miRNA-seq was isolated from 6 animals, RNA 
for WTTS-seg was isolated from 4 animals, and DNA for ATAC-seq analysis from 7 animals 
(SUPPLEMENT FILE NO)." 
Based on the revised text it is still not possible to determine which individuals have been used 
for which assays. Could a similar table to the one suggested for the tissue samples above (1) be 
created here? 
 
Response: Lines 91-93, and Supplemental file 23 (line 43) the detail of datasets generated in the 
experiment was provided in Supplemental file 1. 
 
Comment 4: The Illumina RNA-Seq technologies section includes the text "Only samples with 
RIN values >8 were used for cDNA synthesis" (note- RIN needs to be added to the list of 
abbreviations in the document), it is not possible to determine from this which samples were 
actually used in this experiment and which were not. Perhaps it would be appropriate to share 



the RNA integrity analysis results here? GigaDB can host electrophoresis gel images if that is 
how it was performed. 
 
Response: Given the Information is not required for the manuscript; we would prefer not to 
provide those Information. 
 
Comment 5: The supplemental files provided in the user115 area. These all include the tissue 
name in their file-names, some have spelling mistakes, but even taking those into account I find 
51 different tissues in those names, but the manuscript states 47 were investigated. Its probably 
just a classification and/or different subsets of things, but for transparency using a consistent 
nomenclature and providing accession numbers will be useful. Please ensure the files are 
named correctly with the appropriate tissue names. 
 
Response: Lines 91-93, The diversity of RNA and miRNA transcript among 50 different bovine 
tissues and cell types was assessed using polyadenylation (poly(A)) selected RNA-seq (47 
tissues) and miRNA-seq (46 tissues) and data (Supplemental file 1). The misspelled tissue names 
were corrected in figures and supplemental files. 
 
Comment 6: miRNAs. The set of "supplemental file 21" files provided in user115 area all list the 
miRNAs by some sort of identifier and state whether they are known or novel. Do those 
identifiers relate directly to miRbase? And have they all been deposited and released already? I 
tried to search for one of the novel ones "bta-miR-X44036" in miRbase but it did not find 
anything. 
 
Response: The second column in supplemental file 22 identifies the novelty of predicted 
miRNAs. All miRNA with “bta-miR-X…” ID structure, were identified as “novel” in supplemental 
file 22. 
 
Comment 7: Gene expression analysis. I believe from the methods section that you pooled all 
transcripts from all similar/same tissues and determined the tissue the expression levels based 
on those. From my limited understanding of statistics, I would assume it better to do a per 
sample analysis of the expression levels first to enable one to determine confidence levels by 
biological replicates. 
The methods also state that "…outlier samples were expressed and removed from downstream 
analysis. Samples from each tissue were combined to…". For transparency and reproducibility, 
please provide a list of the removed samples and a list of those samples data that were 
combined (ideally that will include both the tissue names and the relevant SRA sequence run 
accession numbers).  
 
Response: Sample-wise analysis were used to detect outlier samples (lines 592-594, and 
Supplemental file 2: Fig. S39), and tissue-tissue interconnection analysis (lines 390-391, 
Supplemental file 2: Fig. S39). The outlier samples were removed from the downstream analysis 
and were not submitted to SRA. Samples from each tissue were combined to get the most 
comprehensive set of data in each tissue for transcriptome assembly process (lines 595-596, 



Supplemental file 2: Fig. S39). The detail of datasets generated in the experiment was provided 
in Supplemental file 1 (lines 91-93).  
 
Comment 8: "The resulting transcripts from each tissue were re-grouped into gene models 
using an in-house Python script. Structurally similar transcripts from the different tissues (see 
Comparison of transcript structures across datasets/tissues section) were collapsed using an in-
house Python script to create the RNA-seq based bovine transcriptome." 
Please confirm that those two in-house scripts are included in the GitHub repository cited in the 
data availability section? If not, please add them there. 
 
Response: Lines 1032-1033, custom codes used in the experiment are available at 
https://github.com/hamidbeiki/Cattle-Genome. 
 
Comment 9: ONT data analysis. You have cited the manuscript describing the data you have 
reused (Halstead et al 2021) which is great, thank you. However, having had a quick look at that 
manuscript it is not clear exactly what data you have reused, the only accession they quote in 
that manuscript is to a massive series of data hosted in GEO (GSE160028) which includes Pig, 
Cow and Chicken data. For the convenience of your readers would you also be able to point to a 
more useful accession of the data you actually utilized here e.g. the assembled isoform 
sequences? 
 
Response: Lines 641-645, the detail of ONT samples used in the study was provided in 
Supplemental file 24 
 
Comment 10: The correlation between the various methods sections and the data being made 
available is very difficult to determine with any certainty. Perhaps it would be beneficial to 
expand the sample table provided to include all the unique identifiers for every sample and 
correlate those to the methodologies listed in the manuscript. It maybe appropriate to 
incorporate a column to denote the samples removed from certain analysis, with an explanation 
as to why? 
Including the ENA sample and/or BioSample accessions in the sample table (the ENA sample 
accessions start with ERS, BioSample accessions start with SAMEA) will greatly enhance the 
transparency of the data utilised in this study. In addition it will allow you to double check the 
metadata you have provided on each sample. 
For example; I picked one at random to look into more closely. It is listed in the Samples_meta-
daat.tsv spreadsheet you provided as having the accession "ERR10162191" (which is a run 
accession not a sample accession). I have compared this to the data submitted to Array Express 
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12052/sdrf?full=true) to find 
that run accession number and look up the relevant BioSample and ENA Sample accessions 
(ERS13425945, SAMEA111328380). In doing so I noticed that the "individual" value given in 
your spreadsheet says "M08" yet in Array Express it says "M22"? Clearly, one of those cannot be 
correct. As it was honestly the first and only sample, I looked at in such depth, it worries me 
that there maybe other inconsistencies that you will need to check and correct. 

https://github.com/hamidbeiki/Cattle-Genome


May I suggest you have someone in your team take a very careful look at the Samples submitted 
to Array Express, including the various different accessions that they assign (ENA sample 
accessions and BioSample accessions) and ensure that all sample have been submitted and have 
accurate and complete metadata, the geolocation information should be included with all 
samples. (NB the more metadata you can provide to the archives the more discoverable and 
reusable your data becomes). Then prepare the Samples spreadsheet from that information and 
relate it directly to the experiments described in the manuscript at the sample level. 
 
Response: The detail of datasets generated in this experiment and independent datasets used 
in the experiment was provided in Supplemental file 1 (lines 91-93) and Supplemental file 24 
(lines 641-645), respectively. The “ENA Accession” was corrected to “ENA Run Accession” in 
Supplemental file 1 as it caused confusion. The misunderstanding was raised from “Description” 
column provided by ArrayExpress database. This column reflecting the old animal id that we 
used in this study. The animal related to the "ERR10162191" sample is M08 in both 
Supplemental file 1 and ArrayExpress database. To check this sample metadata on the 
ArrayExpress database we followed the following steps: (1) find the related experiment id (E-
MTAB-12052) from the Supplemental file 1 in the database 
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12052?query=E-MTAB-12052); 
(2) download the experiment metadata file (E-MTAB-12052.sdrf.txt); (3) look for ERR10162191 
sample at “Comment[ENA_RUN]” column and related it’s animal id at 
“Characteristics[individual]” column. Samples metadata were checked to ensure the accuracy of 
information. We are in the progress of working with the ArrayExpress database to fix the 
metadata issues.  
 
 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-12052?query=E-MTAB-12052

