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Abstract: Background 

The accurate identification of the functional elements in the bovine genome is a
fundamental requirement for high quality analysis of data informing both genome
biology and genomic selection. Functional annotation of the bovine genome was
performed to identify a more complete catalogue of transcript isoforms across bovine
tissues. 

Results 

A total number of 160,820 unique transcripts (50% protein-coding) representing 34,882
unique genes (60% protein-coding) were identified across tissues. Among them,
118,563 transcripts (73% of the total) were structurally validated by independent
datasets (PacBio Iso-seq data, ONT-seq data, de novo assembled transcripts from
RNA-seq data) and comparison with Ensembl and NCBI gene sets. In addition, all
transcripts were supported by extensive data from different technologies such as
WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large proportion of identified
transcripts (69%) were un-annotated, of which 86% were produced by annotated
genes and 14% by un-annotated genes. A median of two 5’ untranslated regions were
expressed per gene. Around 50% of protein-coding genes in each tissue were
bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we
identified 3,744 genes that functioned as non-coding genes in fetal tissues, but as
protein coding genes in adult tissues. Our new bovine genome annotation extended
more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations.
The resulting bovine transcriptome was integrated with publicly available QTL data to
study tissue-tissue interconnection involved in different traits and construct the first
bovine trait similarity network. 

Conclusions 

These validated results show significant improvement over current bovine genome
annotations.
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Abstract 31 

Background 32 

The accurate identification of the functional elements in the bovine genome is a fundamental 33 

requirement for high quality analysis of data informing both genome biology and genomic 34 

selection. Functional annotation of the bovine genome was performed to identify a more 35 

complete catalogue of transcript isoforms across bovine tissues. 36 

Results 37 

A total number of 160,820 unique transcripts (50% protein-coding) representing 34,882 unique 38 

genes (60% protein-coding) were identified across tissues. Among them, 118,563 transcripts 39 

(73% of the total) were structurally validated by independent datasets (PacBio Iso-seq data, 40 

ONT-seq data, de novo assembled transcripts from RNA-seq data) and comparison with 41 

Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from 42 

different technologies such as WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large 43 

proportion of identified transcripts (69%) were un-annotated, of which 86% were produced by 44 

annotated genes and 14% by un-annotated genes. A median of two 5’ untranslated regions 45 

were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional 46 

and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes 47 

that functioned as non-coding genes in fetal tissues, but as protein coding genes in adult 48 

tissues. Our new bovine genome annotation extended more than 11,000 annotated gene 49 

borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was 50 
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integrated with publicly available QTL data to study tissue-tissue interconnection involved in 51 

different traits and construct the first bovine trait similarity network. 52 

Conclusions 53 

These validated results show significant improvement over current bovine genome 54 

annotations. 55 

Introduction 56 

Domestic bovine (Bos taurus) provide a valuable source of nutrition and an important disease 57 

model for humans [1]. Furthermore, cattle have the greatest number of genotype associations 58 

and genetic correlations of the domesticated livestock species, which means they provide an 59 

excellent model to close the genotype-to-phenotype gap. Furthermore, the functional elements 60 

of genome provide a means whereby complex biological pathways responsible for variation in a 61 

particular phenotype can be identified. Therefore, the accurate identification of these elements 62 

in the bovine genome is a fundamental requirement for high quality analysis of data from which 63 

both genome biology and genomic selection can be better understood. 64 

Current annotations of farm animal genomes largely focus on the protein-coding regions [2] 65 

and fall short of explaining the biology of many important traits that are controlled at the 66 

transcriptional level [3-5]. In humans, 93% of trait-associated single nucleotide polymorphisms 67 

(SNP) identified by genome-wide association studies (GWAS) are found in non-coding regions 68 

[6]. Therefore, elucidating non-coding functional elements of the genome is essential for 69 

understanding the mechanisms that control complex biological processes. 70 
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Untranslated regions play critical roles in the regulation of mRNA stability, translation, and 71 

localization [7], but these regions have been poorly annotated in farm animals [2, 8]. A recent 72 

study of the pig transcriptome using single-molecule long-read isoform sequencing technology 73 

resulted in the extension of more than 6000 annotated gene borders compared to Ensembl or 74 

National Center for Biotechnology Information (NCBI) annotations [2]. 75 

Small non-coding RNAs, such as microRNAs (miRNA), are known to be involved in gene 76 

regulation through post-transcriptional regulation of expression via silencing, degradation, or 77 

sequestering to inhibit translation [9-11]. The number of annotated miRNAs in the current 78 

bovine genome annotation (Ensembl release 2018-11; 951 miRNAs) is much lower than the 79 

number reported in the highly annotated human genome (Ensembl release 2021-03; 1,877 80 

miRNAs). 81 

This study used a comprehensive set of transcriptome and chromatin state data from 50 cattle 82 

tissues and cell types to (1) increase the complexity of the bovine transcriptome, comparable to 83 

that reported for the highly annotated human genome, (2) improve the annotation of protein-84 

coding, non-coding, and miRNA genes, (3) integration of transcriptome data with publicly 85 

available Quantitative Trait Loci (QTL) and gene association data to study tissue-tissue 86 

interconnection involved in different traits, and 4) construction the first bovine trait similarity 87 

network that recapitulates published genetic correlations. 88 

Results 89 

The diversity of RNA and miRNA transcript among 50 different bovine tissues, developmental 90 

stages, and cell types was assessed using polyadenylation (poly(A)) selected Illumina high-91 
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throughput RNA sequencing (RNA-seq) data (47) and/or miRNA-seq (46) and data 92 

(Supplemental file 1). Most of the tissues studied were from Hereford cattle closely related to 93 

L1 Dominette 01449, the individual from which the bovine reference genome (ARS-UCD1.2) was 94 

sequenced. The 50 tissues and cell samples included follicular cells, myoblasts, 14 mammary 95 

gland samples from various stages of mammary gland development and lactation, eight fetal 96 

tissues (78-days of gestation), eight tissues from adult digestive tract, and 16 other adult organs 97 

(Supplemental file 1). A total of approximately 4.1 trillion RNA-seq reads and 1.2 billion miRNA-98 

seq reads were collected, with a minimum of 27.5 million RNA-seq and 9.3 million miRNA-seq 99 

reads from each tissue/cell type (average 87.8 ± 49.7 million and 27.6 ± 12.9 million, 100 

respectively) (Supplemental file 2: Fig. S1 and Supplemental file 3). 101 

Transcript-based analyses 102 

The summary of predicted transcript/genes is presented in Table 1. All of the predicted splice 103 

junctions across tissues were supported by RNA-seq reads that spanned the splice junction, 104 

substantiating the accuracy of the transcript definition from RNA-seq reads. 105 

A total of 31,476 transcripts appeared tissue-specific by virtue of being assembled from RNA-106 

seq reads in just a single tissue, but 20,100 of those transcripts (64%) were actually expressed in 107 

multiple tissues. Thus, reliance solely on assembled transcripts in a given tissue to predict a 108 

tissue transcript atlas may overestimate tissue specificity due to a high false-negative rate for 109 

transcript detection. To solve this problem of over-prediction of tissue specificity, we marked a 110 

transcript as “expressed” in a given tissue only if (1) it had been assembled from RNA-seq data 111 

in that tissue; or (2) its expression and all of its splice junctions has been quantified using RNA-112 
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seq reads in the tissue of interest with an expression level more than 1 reads per kilobase of 113 

transcript per Million reads mapped (RPKM) (see Methods section). This resulted in 145,258 114 

transcripts (90%) expressed in more than one tissue (Fig. 1), among which 9,024 transcripts 115 

(5%) were found in all 47 tissues examined.   116 

The unique transcripts identified were equally distributed between protein-coding transcripts 117 

and non-coding transcripts (ncRNAs) (Fig. 2). Non-coding transcripts were further classified as 118 

long non-coding RNAs (lncRNAs), nonsense-mediated decay (NMD) transcripts, non-stop decay 119 

(NSD) transcripts, and small non-coding RNAs (sncRNAs). While the majority of expressed 120 

transcripts in each tissue were protein coding (median of 62% of tissue transcripts), NMD 121 

transcripts and antisense lncRNAs each made up more than 10% of the transcripts 122 

(Supplemental file 2: Fig. S2A and B, Supplemental file 4 and 5). Fetal muscle and fetal gonad 123 

tissues showed the highest proportion of antisense lncRNAs compared to that observed in 124 

other tissues, and around 60% of antisense lncRNAs were expressed from these two tissues 125 

(Supplemental file 2: Fig. S2B). Compared to non-coding transcripts, protein-coding transcripts 126 

were more likely to have spliced exons (p-value < 2.2e-16) and were expressed in a higher 127 

number of tissues (p-value < 2.2e-16; Additional file1: Fig. S2C).  128 

There were no significant correlations between the number of RNA-seq reads for a given tissue 129 

and the number of transcripts identified, except for a modest correlation for the antisense 130 

lncRNA class (Supplemental file 2: Fig. S3A). There was a significant positive correlation (p-value 131 

1.3e-04) between the number of NMD transcripts in a tissue and the number of protein-coding 132 

transcripts, and the NMD transcript class showed the lowest median expression level across 133 

tissues compared to other transcript biotypes (Supplemental file 2: Fig. S2D and Fig. S3B).  134 
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Transcript similarity to other species 135 

Protein/peptide homology analysis of transcripts with an open reading frame (protein-coding 136 

transcripts, lncRNAs, and sncRNAs) revealed a higher conservation of protein-coding transcripts 137 

compared to lncRNA and sncRNA transcripts (p-value < 2.2e-16) (Table 2). Bovine non-coding 138 

transcripts had significantly (p-value < 2.2e-16) less similarity to other species than protein-139 

coding transcripts (Table 2 and Table 3). Within non-coding transcripts, sense intronic lncRNAs 140 

showed the highest conservation rate (Table 4). 141 

Transcript expression diversity across tissues 142 

A median of 70% of protein-coding transcripts were shared between pairs of tissues 143 

(Supplemental file 2: Fig. S4A), was significantly higher than that was observed for non-coding 144 

transcripts (53%; p-value < 2.2e-16; Supplemental file 2: Fig. S5). Clustering of tissues based on 145 

protein-coding transcripts was different than that observed based on non-coding transcripts 146 

(Supplemental file 2: Fig. S4B and Fig. S5B, Fig. S35F). The fetal tissues clustered together and 147 

were generally more similar to one another than to the corresponding adult tissue in both 148 

dendrograms. In addition, fetal tissues had significantly higher proportions of non-coding 149 

transcripts compared to protein-coding transcripts (p-value < 2.2e-16; Supplemental file 6). 150 

Transcript validation 151 

Prediction of transcripts and isoforms from RNA-seq data may produce erroneous predicted 152 

isoforms. The validity of transcripts was therefore examined by comparison to a library of 153 

isoforms taken from Ensembl (release 2021-03) and NCBI gene sets (Release 106), as well as 154 

isoforms identified through complete isoform sequencing with Pacific Biosciences, a de novo 155 
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assembly produced from its matched RNA-seq reads, and isoforms identified from Oxford 156 

Nanopore platforms (see Methods section). A total of 118,563 transcripts (73% of predicted 157 

transcripts) were structurally validated by independent datasets (Biosciences single-molecule 158 

long-read isoform sequencing (PacBio Iso-Seq), Oxford Nanopore Technologies sequencing 159 

ONT-seq) data, de novo assembled transcripts from RNA-seq data) and comparison with 160 

Ensembl and NCBI gene sets. A total of 145,258 transcripts were expressed in multiple tissues 161 

(90% of predicted transcripts), providing further support for their validity (Fig. 3). All transcripts 162 

were also extensively supported by data from different technologies such as Whole 163 

Transcriptome Termini Site Sequencing (WTTS-seq), RNA Annotation and Mapping of 164 

Promoters for the Analysis of Gene Expression (RAMPAGE), histone modification (H3K4me3, 165 

H3K4me1, H3K27ac), CTCF-DNA binding, and Assay for Transposase-Accessible Chromatin using 166 

sequencing (ATAC-seq) (Fig. 3). 167 

Comparison of predicted transcript structures with annotated transcripts in the current bovine 168 

genome annotations (Ensembl release 2021-03 and NCBI Release 106) resulted in a total of 169 

48,906 annotated transcripts that exactly matched previously annotated transcripts (30% of all 170 

transcripts), including 44,097 annotated NCBI transcripts, 29,179 annotated Ensembl 171 

transcripts, and 24,370 transcripts that were common to both annotated gene sets (Fig. 3). The 172 

median expression level of annotated transcripts in their expressed tissues was similar to that 173 

observed for un-annotated transcripts (Supplemental file 2: Fig. S6). Annotated transcripts were 174 

expressed in higher number of tissues than that observed for un-annotated transcripts (p-value 175 

7.4e-03; Supplemental file 2: Fig. S6). In addition, compared to un-annotated transcripts, 176 
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annotated transcripts were enriched with protein-coding (p-value 1.37e-02) and spliced 177 

transcripts (p-value 3.76e-02). 178 

The median length of coding sequence (CDS) of annotated transcripts was significantly longer 179 

than that observed in un-annotated transcripts (p-value 0.0) (Additional file1: Fig. S7A). In 180 

addition, un-annotated transcripts had longer 5’ untranslated regions (UTR) compared to 181 

annotated transcripts (p-value 2.631E-06; Additional file1: Fig. S7A). Annotated protein-coding 182 

transcripts showed a higher GC content in their 5’ UTRs than un-annotated transcripts (p-value 183 

5.562E-18), but both classes of transcripts showed similar GC content within their CDS 184 

(Supplemental file 2: Fig. S7B). 185 

Gene-based analyses 186 

The transcripts correspond to a total of 34,882 genes, which were classified into protein coding, 187 

non-coding, and pseudogenes (Supplemental file 4 and 5, and Fig. 4). Genes transcribed at least 188 

a single “expressed” transcript (see Transcript level analysis section) in a given tissue, were 189 

marked as “expressed gene” in that tissue. Most genes expressed in each tissue were protein 190 

coding, followed by non-coding, and pseudogenes (Supplemental file 2: Fig. S8). Testis showed 191 

the highest number of expressed genes compared to other tissues (Supplemental file 2: Fig. S8). 192 

In addition, the proportion and number of transcribed pseudogenes was higher in testis than in 193 

other tissues (Supplemental file 2: Fig. S8). Fetal brain and fetal muscle tissues showed the 194 

highest number and percentage of non-coding genes compared to that observed in other 195 

tissues (Supplemental file 2: Fig. S8). There was no significant correlation between the number 196 

of input reads and the number of expressed genes across tissues, but the numbers of genes 197 



 11 

from different coding potential classes were significantly correlated across tissues 198 

(Supplemental file 2: Fig. S9). 199 

Transcripts corresponding to the predicted genes that had at least one exon overlapping an 200 

Ensembl- or NCBI-annotated gene were considered to belong to an annotated gene. This 201 

supports an intersection analysis of predicted and previously annotated genes that indicated 202 

22,452 (64%) of our predicted genes correspond to previously annotated genes. Approximately 203 

86% of un-annotated transcripts (96,412) were associated with this set of annotated genes. The 204 

remaining 12,430 genes (36% of predicted genes) represent un-annotated genes, i.e., genes not 205 

found on Ensembl (release 2021-03) or NCBI (release 106), with which 14% of un-annotated 206 

transcripts (15,502 transcripts) were associated. The median number of unique transcripts per 207 

annotated gene (tpg) was four, which was higher than that observed in either the Ensembl (1.5 208 

tpg) or NCBI (2.3 tpg) annotated gene sets, while the median number of transcripts per un-209 

annotated gene was one, with an average of 1.31 and standard deviation of 1.36. Most of the 210 

transcripts identified were transcribed from annotated genes, including 95% of protein-coding 211 

transcripts (76,492), 79% of lncRNA transcripts (37,683), 80% of sncRNA transcripts (281), and 212 

more than 95% of NMD transcripts (27,511). Annotated genes were enriched with protein-213 

coding genes (p-value < 2.2e-16). The median transcript abundance from annotated genes in 214 

their expressed tissues was significantly higher than that observed for un-annotated genes (p-215 

value < 2.2e-16; Supplemental file 2: Fig. S10A). The median number of tissues in which 216 

annotated genes were expressed was also significantly higher than that observed for un-217 

annotated genes (p-value < 2.2e-16; Supplemental file 2: Fig. S10B). 218 
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More than a third (37%) of genes with at least one predicted protein-coding transcript 219 

displayed either multiple 5’ UTRs or multiple 3’ UTRs among associated transcript isoforms (Fig. 220 

5). The 496 genes with the highest number of UTRs (the top 5% in this metric) were highly 221 

enriched (q-value 1.7E-7) for the “response to protozoan” Biological Process (BP) Gene 222 

Ontology (GO) term (Supplemental file 2: Fig. S11 and Supplemental file 7). 223 

A median of 51% of the expressed protein-coding genes in each tissue transcribed both protein-224 

coding and non-coding transcripts and were denoted as bifunctional genes. These genes were 225 

mostly previously annotated (95%) and had both coding and non-coding transcripts in a median 226 

of 21 tissues, representing 57% of their expressed tissues (Fig. 6A and B). Protein-coding 227 

transcripts and NMD transcripts covered more than 90% of the exonic length in bifunctional 228 

genes (Fig. 6C). This percentage was significantly lower for other types of non-coding transcripts 229 

transcribed from bifunctional genes (Fig. 6C). Although transcript terminal sites (TTS) of 230 

transcripts encoded by bifunctional genes were centralized around these genes’ 3’ ends, 231 

transcript start sites (TSS) varied greatly among transcript biotypes (Fig. 6C). The TTSs of NSD 232 

transcripts, sncRNAs, and intragenic lncRNAs were shifted from their protein-coding genes’ 233 

start sites (Fig. 6C). Genes that transcribed both protein-coding and non-coding transcripts in all 234 

of their expressed tissues were highly enriched for “mRNA processing” (q-value 6.08E-16) and 235 

“RNA splicing” (q-value 1.35E-14) BP GO terms that were mostly (65%) related to different 236 

aspects of transcription and translation (Fig. 6D and Supplemental file 8).  237 

A total of 3,744 genes were acting as noncoding in a median of two tissues (equivalent to 15% 238 

of their expressed tissues) and were switched to protein-coding in the remaining expressed 239 

tissues. Detailed investigation of these bifunctional genes in tissues from both adult and fetal 240 
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samples (brain, kidney, muscle, and spleen) revealed the total of 106 non-coding genes (90% 241 

annotated) in fetal tissues that were switched to protein-coding genes with only protein-coding 242 

transcripts in their matched adult tissues (Supplemental file 2: Fig. S12). Functional enrichment 243 

analysis of these genes resulted in the identification of enriched BP GO terms related to 244 

“humoral immune response”, “sphingolipid biosynthetic process”, “negative regulation of 245 

wound healing”, “cellular senescence”, “symporter activity”, “regulation of lipid biosynthetic 246 

process”, and “filopodium assembly” (Supplemental file 2: Fig. S12, Supplemental file 9). 247 

A median of 32% of protein-coding genes in each tissue expressed at least a single potentially 248 

aberrant transcript (PAT), i.e., NMDs and NSDs. In this group of genes, the number of PATs was 249 

strongly correlated with the total number of transcripts (median correlation of 0.61 across all 250 

tissues). The median expression level of these genes in their expressed tissues (11.52 RPKM) 251 

was significantly higher (p-value < 2.2e-16) than for protein-coding genes with no PATs (4.48 252 

RPKM). In each tissue, protein-coding genes with PATs showed a significantly higher number of 253 

introns (p-value < 2.2e-16; median of 65 introns per gene) than that observed in the remainder 254 

of protein-coding genes (median of 15 introns per gene). In addition, genes from this group 255 

were expressed in a median of 47 tissues, significantly higher (p-value < 2.2e-16) than that 256 

observed for the other group of genes (Supplemental file 2: Fig. S13A and B). These genes 257 

transcribed a median of two PATs in half of their expressed tissues, equivalent to a median of 258 

22% of all their transcripts in each tissue. Protein-coding genes that transcribed PATs as their 259 

main transcripts (PATs comprised >50% of their transcripts) in all of their expressed tissues 260 

were highly enriched with RNA splicing–related BP GO terms (Supplemental file 10). 261 



 14 

Gene similarity to other species 262 

Eighty-five percent of protein-coding genes (18,087) encoded either homologous proteins or 263 

homologous ncRNAs (Supplemental file 2: Fig. S14A). Nineteen percent of protein-coding genes 264 

(4,043) encoded cattle-specific proteins (Supplemental file 2: Fig. S14A). Most of these genes 265 

(68%) were either annotated genes or genes with homology to another cattle gene(s) that has 266 

established homology to genes in other species (Supplemental file 2: Fig. S14C). The remaining 267 

32% of cattle-specific, protein-coding genes (1,293) were denoted as protein-coding orphan 268 

genes (Supplemental file 2: Fig. S14C). A median of 70 protein-coding orphan genes were 269 

expressed in each tissue. The expression level of these genes was significantly lower than other 270 

types of protein-coding genes (Additional file 2: Fig. S15A and B). The median number of 271 

expressed tissues for protein-coding orphan genes was lower than for other types of protein-272 

coding genes (Supplemental file 2: Fig. S15C). In addition, protein-coding orphan genes only 273 

transcribed protein-coding transcripts in their expressed tissue(s). 274 

Fifty percent of non-coding genes (5,559) encoded either homologous short peptides (9-43 275 

amino acids) or homologous ncRNAs (Supplemental file 2: Fig. S14B). There were 5,546 non-276 

coding genes (51% of non-coding genes) that encoded cattle-specific ncRNAs (Supplemental file 277 

2: Fig. S14B). Ninety-nine percent of these genes were either annotated genes or genes with 278 

homology to another cattle gene(s) that has established homology to genes in other species 279 

(Supplemental file 2: Fig. S14C). The remaining 1% (nine non-coding genes) were denoted as 280 

non-coding orphan genes (Supplemental file 2: Fig. S14C). The median number of expressed 281 

tissues for non-coding orphan genes was was higher (p-value < 2.2e-16) than for homologous 282 

non-coding genes and protein-coding orphan genes (Supplemental file 2: Fig. S15C).   283 
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A total of 2,990 pseudogenes were expressed. The median expression level of these genes in 284 

their expressed tissues was lower than that observed for protein-coding genes and similar to 285 

that observed for non-coding genes (Supplemental file 2: Fig. S16A). Pseudogenes were 286 

expressed in a median of four tissues (Supplemental file 2: Fig. S16B). In addition, a total of 287 

1,002 pseudogene-derived lncRNAs were expressed. The median expression of pseudogene-288 

derived lncRNAs was similar to that observed for other lncRNAs (Supplemental file 2: Fig. S17A). 289 

In addition, pseudogene-derived lncRNAs were expressed in fewer tissues than observed for 290 

other lncRNAs (Supplemental file 2: Fig. S17B). 291 

Testis had the highest number of expressed pseudogene-derived lncRNAs compared to other 292 

tissues (Supplemental file 2: Fig. S8A and B). The correlation between the number of input 293 

reads and the number of pseudogene-derived lncRNAs was not significant (0.25, p-value 0.09). 294 

Gene expression diversity across tissues 295 

Tissue similarities increased dramatically from transcript level to gene level (Supplemental file 296 

2: Fig. S4A, Fig. S5A, Fig. S18A, Fig. S19A). The median percentage of shared genes between 297 

pairs of tissues was significantly higher in protein-coding genes compared to non-coding genes 298 

(p-value < 2.2e-16; Supplemental file 2: Fig. S18A, Fig. S19A). Clustering of tissues based on 299 

protein-coding genes was similar to that observed based on protein-coding transcripts 300 

(Supplemental file 2: Fig. S18B, Fig. S19B). The same result was observed in non-coding genes 301 

and transcripts. In addition, clustering of tissues based on protein-coding genes was different 302 

than that of non-coding genes (Supplemental file 2: Fig. S4B, Fig. S5B, Fig. S18B, Fig. S19B, Fig. 303 

S35F). 304 
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Tissues with both fetal and adult samples (brain, kidney, muscle, and spleen) were used to 305 

investigate gene biotype differences between these developmental stages. Similar to what was 306 

observed at transcript level, fetal tissues were significantly enriched for non-coding genes and 307 

pseudogenes and were depleted for protein-coding genes (p-value < 2.2e-16; Supplemental file 308 

10). These results were consistent across all tissues with both adult and fetal samples 309 

(Supplemental file 11). 310 

Gene validation 311 

A total of 32,460 genes (93% of predicted genes) were structurally validated by independent 312 

datasets (PacBio Iso-seq data, ONT-seq data, de novo assembled transcripts from RNA-seq data) 313 

and comparison with Ensembl and NCBI gene sets (see Method section). In addition, a total of 314 

31,635 genes (90% of predicted genes) were expressed in multiple tissues (31,635 genes or 315 

90%) (Fig. 7). All genes were extensively supported by data from different technologies such as 316 

WTTS-seq, RAMPAGE, histone modification (H3K4me3, H3K4me1, H3K27ac) and CTCF-DNA 317 

binding, and ATAC-seq data generated from the samples (Fig. 7). 318 

Identification and validation of annotated gene border extensions 319 

This new bovine gene set annotation extended (5′ end extension, 3′ end extension, or both) 320 

more than 11,000 annotated Ensembl or NCBI gene borders. Extensions were longer on the 3′ 321 

side, but the median increase was 104 nt for the 5’ end (Table 5). To validate gene border 322 

extensions, independent WTTS-seq and RAMPAGE datasets were utilized. More than 80% of 323 

annotated gene border extensions were validated by independent data (Fig. 8). The extension 324 

of annotated gene borders on both ends resulted in an approximate nine-fold expression 325 
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increase of these genes in the new bovine gene set annotation compared to their matched 326 

Ensembl and NCBI genes (Table 6).  327 

Alternative splicing events 328 

A total of 102,502 transcripts (85% of spliced transcripts) were involved in different types of 329 

Alternative Splicing (AS) events (see Methods section and Supplemental file 1: Fig. S20A), a 330 

large increase over Ensembl (63% of spliced transcripts) and NCBI (75% of spliced transcripts) 331 

annotations (Additional file1: FigureS20B). Skipped exons were observed in a greater number of 332 

transcripts compared to other types of AS events (Supplemental file 2: Fig. S21).  333 

A median of 60% of tissue transcripts showed at least one type of AS event (Supplemental file 334 

1: Fig. S22A). There was no significant correlation between the number of input reads and the 335 

number of AS event transcripts across tissues (Supplemental file 2: Fig. S22B).  336 

The median expression level of AS transcripts (111,366) was similar to that observed for other 337 

types of transcripts (Supplemental file 2: Fig. S23A). In addition, AS transcripts were expressed 338 

in a higher number of tissues compared to the other transcript types (Supplemental file 2: Fig. 339 

S23B). Alternatively spliced transcripts were enriched with protein-coding transcripts (p-value < 340 

2.2e-16). A switch from protein-coding to ncRNAs was the main biotype change resulting from 341 

AS events (Supplemental file 2: Fig. S24).   342 

A median of four AS events were expressed in alternatively spliced genes (14,260 genes) 343 

(Supplemental file 2: Fig. S25). The top five percent of genes with the highest number of AS 344 

events were highly enriched for several BP GO terms related to different aspects of RNA splicing 345 

(Supplemental file 2: Fig. S26B, Supplemental file 12). 346 
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Comparison of tissues with both fetal and adult samples (brain, kidney, Longissimus Dorsi (LD) 347 

muscle, and spleen) revealed a significantly higher rate of AS events in fetal tissues (only genes 348 

expressed in both fetal and adult samples were included in this analysis) (Supplemental file 2: 349 

Fig. S27). 350 

Tissue specificity 351 

Nine percent of all genes and transcripts were only expressed in a single tissue and were 352 

denoted as tissue-specific (Supplemental file 2: Fig. S28A). Most tissue-specific genes (75%) and 353 

transcripts (84%) were un-annotated. Forty-nine percent of tissue-specific transcripts (11,748) 354 

were produced by annotated genes. Most tissue-specific genes and transcripts were protein-355 

coding (Supplemental file 2: Fig. S28A and B). In addition, more than 70% of tissue-specific 356 

transcripts (11,222) were transcribed from non-tissue-specific genes. Compared to other 357 

tissues, testis and thymus had the highest number of tissue-specific genes and transcripts 358 

(Supplemental file 2: Fig. S28C, Supplemental file 12). The expression level of tissue-specific 359 

genes and transcripts was significantly lower than that of their non-tissue-specific counterparts 360 

(p-value < 2.2e-16; Supplemental file 2: Fig. S28D). A median of 71% of tissue-specific 361 

transcripts showed any type of AS event in their expressed tissues (Supplemental file 2: Fig. 362 

S29). This was only 3.9% for tissue-specific genes (Supplemental file 2: Fig. S29). Testis, 363 

myoblasts, mammary gland, and thymus had the highest proportion of tissue-specific genes 364 

displaying any type of AS event (Supplemental file 2: Fig. S29). 365 

A total of 6,744 multi-tissue expressed genes (21% of all multi-tissue expressed genes) and 366 

71,662 multi-tissue expressed transcripts (49% of all multi-tissue expressed transcripts) showed 367 
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Tissue Specificity Index (TSI) scores greater than 0.9 and were expressed in a tissue-specific 368 

manner (Supplemental file 14). These genes and transcripts were expressed in a median of six 369 

tissues and four tissues, respectively (Supplemental file 2: Fig. S30A and B). Functional 370 

enrichment analysis of the top five percent of genes with the highest TSI score resulted in the 371 

identification of “sexual reproduction” (p-value 3.06e-24) and “fertilization” (p-value 1.04e-8) 372 

as their top enriched BP GO terms (Supplemental file 2: Fig. S30C-E, Supplemental file 15). 373 

Tying genes to phenotypes 374 

There was a median of 7,263 predicted genes identified as the closest expressed gene to an 375 

existing QTL (QTL-associated genes) per tissue (Supplemental file 16). These genes had either 376 

QTLs located inside (median of 4,563 genes) or outside (median of 4,678 genes) their genomic 377 

borders (either from their 5’ end or 3’ end) with a median distance of 51.9 kilobases (KB) and a 378 

maximum distance of 2.6 million bases (MB) (Supplemental file 2: Fig. S31). Most QTL-379 

associated genes were annotated genes (8,130 genes or 83%). In addition, the median number 380 

of AS events in these genes (eight) was significantly higher than that observed in other genes 381 

(median of seven AS events; p-value 5.69e-09).  382 

Potential testis-pituitary axis 383 

Testis tissue was not clustered with any other tissues and had the highest number of tissue-384 

specific genes compared to the rest of the tissues (Supplemental file 2: Fig. S4, Fig. S5, Fig. S18, 385 

and Fig. S19). Testis-specific genes were highly enriched with different traits related to fertility 386 

(e.g., percentage of normal sperm and scrotal circumference), body weight (e.g., body weight 387 

gain and carcass weight), and feed efficiency (e.g., residual feed intake) (Supplemental file 17). 388 
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The extent of testis-pituitary axis involvement in the “percentage of normal sperm” was 389 

investigated using animals with both testis and pituitary samples (three samples per tissue). 390 

The SPACA5 gene was the only testis-specific gene encoded protein with a signal peptide (SP) 391 

that was close to the “percentage of normal sperm” QTLs. The expression of this gene in testis 392 

samples showed significant positive correlation with 70 pituitary expressed genes that were 393 

closest to the “percentage of normal sperm” QTLs (Supplemental file 2: Fig. S32, Supplemental 394 

file 18). These pituitary genes were enriched with the “signal transduction in response to DNA 395 

damage” BP GO term (Supplemental file 2: Fig. S32). In addition, the expression of testis genes 396 

that encoded protein with a signal peptide that were close to the “percentage of normal 397 

sperm” QTLs was significantly correlated with expression of pituitary genes close to this trait 398 

(Fig. 9, Supplemental file 19). The same result was observed for the pituitary-testis tissue axis 399 

(Supplemental file 2: Fig. S33, Supplemental file 20). 400 

Trait similarity network 401 

The extent of genetic similarity between different bovine traits was investigated using their 402 

associated QTLs. A total of 1,857 significantly similar trait pairs (184 different traits) were 403 

identified and used to create a bovine trait similarity network (Supplemental file 21). 404 

miRNAs 405 

A total of 2,007 miRNAs (at least ten mapped reads in each tissue) comprised of 973 annotated 406 

and 1,034 un-annotated miRNAs were expressed (Supplemental file 22). In each tissue, a 407 

median of 704 annotated miRNAs and 549 un-annotated miRNAs were expressed (Fig. 10A). 408 

The median expression of un-annotated miRNAs was significantly lower than that observed for 409 
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annotated miRNAs (p-value 3.25e-25; Fig. 10B). In addition, un-annotated miRNAs were 410 

expressed in significantly lower number of tissues than for annotated miRNAs (p-value 1.00e-411 

45; Fig. 10C). A median of 84.53% of miRNAs were shared between pairs of tissues 412 

(Supplemental file 2: Fig. S34). Clustering of tissues based on miRNAs was similar to what was 413 

observed based on non-coding genes (Supplemental file 2: Fig. S35). 414 

A total of 113 miRNAs (5.6%) were expressed in a single tissue and were denoted as tissue-415 

specific (Supplemental file 2: Fig. S36A). The proportion of tissue-specific miRNAs was higher for 416 

un-annotated miRNAs, such that 75% of the tissue-specific miRNAs were un-annotated. The 417 

number of un-annotated miRNAs was higher in pre-adipocytes compared to other tissues, 418 

followed by fetal gonad and testis (Supplemental file 2: Fig. S36B). Un-annotated miRNAs 419 

showed a significantly lower expression level compared to annotated miRNAs (p-value 1.4e-19; 420 

Supplemental file 2: FigureS36 C). In addition, a total of 1,047 multi-tissue expressed miRNAs 421 

were expressed in a tissue-specific manner (Supplemental file 2: Fig. S36D). These miRNAs were 422 

expressed in a median of 19 tissues (Supplemental file 2: Fig. S36E). 423 

Chromatin features across 500-base pair (bp) windows surrounding upstream of miRNA 424 

precursors’ start sites or downstream of miRNA precursors’ terminal sites from independent 425 

cattle experiments were used to investigate the relationship between miRNAs and chromatin 426 

accessibility. More than 99% of un-annotated miRNAs and 94% of annotated miRNAs were 427 

supported by at least one of the H3K4me3, H3K4me1, H3K27ac, CTCF-DNA binding, or ATAC-428 

seq peaks (Fig. 11). 429 



 22 

Summary of expressed transcripts, genes, and miRNAs 430 

The numbers of expressed transcripts, genes, and miRNAs in different tissues are summarized 431 

in Supplemental file 2: Fig. S37. In addition, the number of annotated and un-annotated genes, 432 

transcripts, and miRNAs in different tissues are summarized in Supplemental file 2: Fig. S38. 433 

Discussion  434 

Despite many improvements in the current bovine genome annotation ARS-UCD1.2 assembly 435 

(Ensembl release 2021-03 and NCBI release 106) compared to the previous genome assembly 436 

(UMD3.1), these annotations are still far from complete [12, 13]. In this study, using RNA-seq 437 

and miRNA-seq data from 50 different bovine tissues, developmental stages, and cell types, 438 

12,444 un-annotated genes and 1,034 un-annotated miRNAs were identified that have not 439 

been reported in current bovine genome annotations (Ensembl release 2021-03, NCBI release 440 

106 and miRbase [14]). In addition, we identified protein-coding transcripts with a median ORF 441 

length of 270 nt for 822 annotated bovine genes that have been annotated as non-coding in 442 

current bovine genome annotations (Supplemental file 2: Fig. S14C). The high frequency of 443 

validation of these un-annotated genes and un-annotated miRNAs using multiple independent 444 

datasets from different technologies verifies the improvement in terms of the number of genes 445 

and miRNAs using our methods. 446 

Five prime and 3‘untranslated region length plays a critical role in regulation of mRNA stability, 447 

translation, and localization [7]. However, only a single 5’ UTR and 3’ UTR per gene is annotated 448 

in current bovine genome annotations (Ensembl release 2021-03 and NCBI release 106), and 449 

variations in UTR length are not available. In this study, 7,909 genes (22% of predicted genes) 450 
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with multiple UTRs were identified. Genes with multiple 5′ UTRs are common, primarily due to 451 

the presence of multiple promoters [15] or alternative splicing mechanisms within 5’ UTRs [15]. 452 

Fifty-four percent of human genes have multiple transcription start sites [15]. In addition, the 453 

length of 3′ UTRs often varies within a given gene, due to the use of different poly(A) sites [7, 454 

16].  455 

In this study, around 50% of expressed protein-coding genes in each tissue transcribed both 456 

coding and non-coding transcript isoforms. Several studies have shown evidence of the 457 

existence of bifunctional genes with coding and non-coding potential using RNA-seq and 458 

ribosome footprinting followed by sequencing (Ribo-seq) [17-19]. For example, steroid receptor 459 

RNA activator (SRA), a known bifunctional gene, acting as a lncRNA while also encoding a 460 

conserved protein SRAP, both of which contribute to the development and progression of 461 

prostate and breast cancers [20]. More than 20% of human protein-coding genes have been 462 

reported to transcribe non-coding isoforms, often generated by alternative splicing [21] and 463 

recurrently expressed across tissues and cell lines [19]. A considerable number of non-coding 464 

isoform variants of protein-coding genes appear to be sufficiently stable to have functional 465 

roles in cells [22]. It has been shown that the proportion of non-coding isoforms from protein-466 

coding genes dramatically increases during myogenic differentiation of primary human satellite 467 

cells and decreases in myotonic dystrophy muscles [23]. In this study, 106 non-coding genes 468 

were identified in fetal tissues that switched to protein-coding genes in their matched adult 469 

tissues. Taken together this supports the notion that protein-coding/non-coding transcript 470 

switching plays an important role in tissue development in cattle as well. 471 
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Nonsense-mediated RNA decay is an evolutionarily conserved process involved in RNA quality 472 

control and gene regulatory mechanisms [24]. For instance, the RNA-binding protein 473 

polypyrimidine tract binding protein 1 (PTBP1) can promote the transcription of NMD 474 

transcripts via alternative splicing, which negatively regulates its own expression [25]. In this 475 

study, NMD transcripts comprised 18% of bovine transcripts that were transcribed from 30% of 476 

bovine genes (10,380). In humans, NMD-mediated degradation can affect up to 25% of 477 

transcripts [26] and 53% of genes [27]. As expected, in this study, most genes that transcribed 478 

NMD transcripts were protein coding (83% or 8,610 genes), while a considerable portion (17%) 479 

were pseudogenes. Many pseudogenes are annotated to give rise to NMD transcripts [28, 29]. 480 

Bioinformatic study of the human transcriptome revealed that 78% of NMD transcript–481 

producing genes were protein coding, followed by pseudogenes (nine percent), long intergenic 482 

noncoding RNAs (six percent), and antisense transcripts (four percent) [29].  483 

Despite the important regulatory function of lncRNAs and miRNAs, very low numbers of these 484 

elements have been annotated in the current bovine genome annotations (Table 7). In this 485 

study, a total of 10,689 lncRNA genes and 2,007 miRNA genes were expressed in the bovine 486 

transcriptome, which is similar to what has been reported for the human transcriptome (Table 487 

7). While, a total of 3,770 human miRNAs and 1,203 cattle miRNAs have been reported in 488 

miRbase [14].  489 

In this study, 1,002 pseudogene-derived lncRNAs were identified that were recurrently 490 

expressed across tissues and cell types. Ever-increasing evidence from different studies 491 

suggests pseudogene derived RNAs are key components of lncRNAs [30-32]. lncRNAs expressed 492 
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from pseudogenes have been shown to regulate genes with which they have sequence 493 

homology [30, 31] or to coordinate development and disease in metazoan systems [30]. 494 

Correct annotation of gene borders has an important role in defining promoter and regulatory 495 

regions. Our novel transcriptome analysis extended (5′-end extension, 3′-end extension, or 496 

both) more than 11,000 annotated Ensembl or NCBI gene borders. Extensions were longer on 497 

the 3′ side, which was relatively similar to that we observed in the pig transcriptome using 498 

PacBio Iso-Seq data [2]. 499 

A growing body of evidence indicates that a considerably large portion of lncRNAs encode 500 

microproteins that are less conserved than canonical open reading frames [33-37]. In this study, 501 

a vast majority (98%) of predicted lncRNAs had short ORFs (<44 amino acids) that were less 502 

conserved than canonical ORFs (Table 2). 503 

Alternative splicing is the key mechanism to increase the diversity of the mRNA expressed from 504 

the genome and is therefore essential for response to diverse environments. In this study, 505 

skipped exons and retained introns were the most prevalent AS events identified in the bovine 506 

transcriptome, similar to what has been observed in other vertebrates and invertebrates [38]. A 507 

higher rate of AS events was observed in fetal tissues compared to their adult tissue 508 

counterparts. The same result has been observed in a recently published study in humans [39]. 509 

We hypothesized that the integration of the gene/transcript data with previously published 510 

QTL/gene association data would allow for the identification of potential molecular 511 

mechanisms responsible for a) tissue-tissue communication as well as b) genetic correlations 512 

between traits. To test the first hypothesis, we developed a novel approach to study the 513 
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involvement of tissue-tissue interconnection in different traits based on the integration of the 514 

transcriptome with publicly available QTL data. In particular, the interconnection between 515 

testis and pituitary tissues with respect to the “percentage of normal sperm” trait was 516 

investigated in more detail. This resulted in the identification of the regulation of ubiquitin-517 

dependent protein catabolic process, the regulation of nuclear factor-κB (NF-κB) transcription 518 

factor activity, and Rab protein signal transduction as key components of this tissue-tissue 519 

interaction (Supplemental file 19 and 20). Interestingly, expressed genes that were closest to 520 

“percentage of normal sperm” QTLs, and also encoded protein with a signal peptide (short 521 

peptide present at the N-terminus of proteins that are destined toward the secretory 522 

pathway[40])  in both testis and pituitary tissues, were highly enriched for the BP GO term 523 

“regulation of ubiquitin-dependent protein catabolic process” (Supplemental file 18 and 19). 524 

The expression of these genes in testis tissue was significantly correlated with expression levels 525 

of pituitary expressed genes closest to “percentage of normal sperm” QTLs that were highly 526 

enriched for the “positive regulation of NF-kappaB transcription factor activity” BP GO term 527 

(Supplemental file 2: Fig. S32 and Supplemental file 19). Activation of NF-κB requires 528 

ubiquitination, and this modification is highly conserved across different species [41]. NF-κB 529 

induces secretion of adrenocorticotropic hormone from the pituitary [42], which directly 530 

stimulates testosterone production by the testis [43]. In addition, ubiquitinated proteins in 531 

testis cells are required for the progression of mature spermatozoa [44]. The expression levels 532 

of pituitary expressed genes closest to “percentage of normal sperm” QTLs that also encoded 533 

signal peptides were significantly correlated with expression levels of testis expressed genes 534 

closest to “percentage of normal sperm” QTLs (Supplemental file 2: Fig. S33). These testis genes 535 
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were highly enriched for the “Rab protein signal transduction” BP GO term (Supplemental file 536 

20). Rab proteins have been reported to be involved in male germ cell development [45]. Thus, 537 

it appears that integration of gene data with QTL/association data can be used to identify 538 

putative molecular pathways underlying tissue-tissue communication mechanisms. 539 

To test the second hypothesis, we also developed a novel approach to study trait similarities 540 

based on the integration of the transcriptome with publicly available QTL data. Using this 541 

approach, we could identify significant similarity between 184 different bovine traits. For 542 

example, clinical mastitis showed significant similarity with 23 different cattle traits that were 543 

greatly supported by published studies, such as milk yield [46], milk composition traits [47], 544 

somatic cell score [48], foot traits [49], udder traits [50], daughter pregnancy rate [51], length 545 

of productive life [52] and net merit [53]. Similar results were observed for residual feed intake, 546 

which showed significant similarity with 14 different traits such as average daily feed intake 547 

[54], average daily gain [55], carcass weight [56], feed conversion ratio [57], metabolic body 548 

weight [58], subcutaneous fat [59], and dry matter intake [60]. 549 

Taken together, these results identify a list of candidate genes that might be controlled by 550 

genetic variation responsible for the genetic mechanisms underlying genetic correlations 551 

(Supplemental file 19 and 20). If this is the case, in the future, these novel methods should be 552 

able to predict the impact of a given set of genetic variants that are associated with a trait of 553 

interest on other traits that were not measured in a given study. This might then lead to the 554 

optimization of variants used (or not used) in genomic selection to minimize any non-beneficial 555 

effect of selection on selected traits. However, it is important to acknowledge that (1) the 556 

nearest neighbor gene to a genotype association may not necessarily be the causal gene, (2) 557 
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the breed/gender differences between this study and the data from Animal QTLdb may impact 558 

the results, and (3) due to experimental limitations, the genetic and phenotypic association 559 

data were not used in this study. None the less, these results are intriguing in that meaningful 560 

genetic correlation can be recapitulated. Furthermore, these results indicate the potential for 561 

gene mechanisms whereby traits that have genetic correlations to be identified. 562 

Conclusions 563 

In-depth analysis of multi-omics data from 50 different bovine tissues, developmental stages, 564 

and cell types provided evidence to improve the annotation of thousands of protein-coding, 565 

lncRNA, and miRNA genes. These validated results increase the complexity of the bovine 566 

transcriptome (number of transcripts per gene, number of UTRs per gene, lncRNA transcripts, 567 

AS events, and miRNAs), comparable to that reported for the highly annotated human genome. 568 

The predicted un-annotated transcripts extend existing annotated gene models, by verifying 569 

such extensions using independent WTTS-seq and RAMPAGE data. The integrated 570 

transcriptome data with publicly available QTL data revealed putative molecular pathways that 571 

may underlie tissue-tissue communication mechanisms and candidate genes responsible for the 572 

genetic mechanisms that may underlie genetic correlations between traits. This integrative 573 

approach is particularly important in the selection of indicator traits for breeding purposes, 574 

study of artificial selection side effects in livestock species, and functional annotation of poorly 575 

annotated livestock genomes. 576 

 577 

Methods 578 
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Tissue sample collection and sequencing library preparation methods are summarized in 579 

Supplemental file 23. The overview of the bioinformatics analysis steps is presented in 580 

Supplemental file 2: Fig. S39. 581 

RNA-seq data analysis and transcriptome assembly 582 

Single-end Illumina RNA-Seq reads (75 bp) from each tissue sample were trimmed to remove 583 

the adaptor sequences and low-quality bases using Trim Galore (RRID:SCR_011847) (version 584 

0.6.4)  [61] with --quality 20 and --length 20 option settings. The resulting reads were aligned 585 

against ARS-UCD1.2 bovine genome using STAR (RRID:SCR_004463) (version 020201) [62] with 586 

a cut-off of 95% identity and 90% coverage. FeatureCounts (RRID:SCR_012919) (version 2.0.2) 587 

[63] was used to quantify genes reported in the NCBI gene build (version 1.21) with -Q 255 -s 2 -588 

-ignoreDup --minOverlap 5 option settings. The resulting gene counts were adjusted for library 589 

size and converted to Counts Per Million (CPM) values using SVA R package (version 3.30.0) 590 

[64]. In each tissue, sample similarities were checked using hierarchical clustering and 591 

regression analysis of gene expression values (log2 based CPM), and outlier samples were 592 

expressed and removed from downstream analysis. Samples from each tissue were combined 593 

to get the most comprehensive set of data in each tissue. To reduce the processing time due to 594 

huge sequencing depth, the trimmed reads were in silico normalized using 595 

insilico_read_normalization.pl from Trinity package (RRID:SCR_013048) (version 2.6.6) [65] with 596 

--JM 350G and --max_cov 50 option settings. Normalized RNA-seq reads were aligned against 597 

ARS-UCD1.2 bovine genome using STAR (version 020201) [62] with a cut-off of 95% identity and 598 

90% coverage. The normalized reads were assembled using de novo Trinity software (version 599 

2.6.6) [65] combined with massively parallelized computing using HPCgridRunner (v1.0.1) [66] 600 
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and GNU parallel software [67]. The resulted transcript reads were mapped against ARS-UCD1.2 601 

bovine genome using GMAP (RRID:SCR_008992) [68] with a cut-off of 95% identity and 90% 602 

coverage. In the next step, transcript reads were collapsed and grouped into putative gene 603 

models (clustering transcripts that had at least a one-nucleotide overlap) by the pbtranscript-604 

ToFU from SMRT Analysis software (v2.3.0) [69]  with min-identity = 95%, min-coverage = 90% 605 

and max_fuzzy_junction = 15 nt, whereas the 5′-end and 3’-end difference were not considered 606 

when collapsing the reads. Base coverage of the resulting transcripts was calculated using 607 

mosdepth (RRID:SCR_018929) (version 0.2.5) [70]. Predicted transcripts were required to have 608 

a minimum of three times base coverage in their assembled tissues. The predicted acceptor and 609 

donor splice sites were required to be canonical and supported by Illumina-seq reads that 610 

spanned the splice junction with 5-nt overhang. Spliced transcripts with the exact same splice 611 

junctions as their reference transcripts but that contained retained introns were removed from 612 

analysis, as they were likely pre-RNA sequences. Unspliced transcripts with a stretch of at least 613 

20 A’s (allowing one mismatch) in a genomic window covering 30 bp downstream of their 614 

putative terminal site were removed from analysis, as they were likely genomic-DNA 615 

contaminations. To decrease the false positive rate, unspliced transcripts that were only 616 

expressed in a single tissue were removed from downstream analysis. In addition, single-exon 617 

genes without histone mark (H3K4me3, H3K4me1, H3K27ac) or ATAC-seq peaks mapped to 618 

their promoter (see Relating transcripts and genes to epigenetic data section) were removed 619 

from downstream analysis as they were likely transcriptional noise. The resulting transcripts 620 

from each tissue were re-grouped into gene models using an in-house Python script. 621 

Structurally similar transcripts from the different tissues (see Comparison of transcript 622 



 31 

structures across datasets/tissues section) were collapsed using an in-house Python script to 623 

create the RNA-seq based bovine transcriptome. 624 

The resulting transcripts and genes were quantified using align_and_estimate_abundance.pl 625 

from the Trinity package (version 2.6.6) [65] with --aln_method bowtie --est_method RSEM --626 

SS_lib_type R option settings. The quantified counts were normalized for sequencing depth 627 

using RPKM method. 628 

“Isoform” and “transcript” terms are used interchangeably throughout the manuscript. 629 

PacBio Iso-Seq data analysis 630 

Publicly available PacBio Iso-seq reads and matched RNA-seq reads (PRJNA386670) were used 631 

in this study. In brief, a total of six tissue from L1 Dominette 01449 (aged 11 years old), and 632 

testis from SuperBull 99375 (aged 9 years old) were used in this experiment (Supplemental file 633 

24). RNA was extracted using TRIzol reagent as directed by the manufacturer (Invitrogen) with 634 

integrity examined using a BioAnalyzer (Agilent). Libraries for RNA-seq short-read sequencing 635 

were prepared using the TruSeq RNA Kit following the “TruSeq RNA Sample Preparation v2 636 

Guide” as recommended by the manufacturer (Illumina). RNA-seq libraries were sequenced on 637 

a NextSeq500 instrument. IsoSeq libraries for long-read sequencing were prepared using the 638 

SMRTbell Template Prep Kit 1.0. cDNA was converted to SMRTbell template library following 639 

the “Iso-Seq using Clontech cDNA Synthesis and BluePippin Size Selection” protocol as directed 640 

by the manufacturer (Pacific Biosciences). The sequences were processed into HQ isoforms 641 

using SMRT Analysis v6.0 for each tissue independently but with all size fractions within tissue 642 

included in the analysis. 643 
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PacBio Iso-seq data has been processed as described for the pig transcriptome [2] with the 644 

following exceptions. Errors in the full-length, non-chimeric (FLNC) cDNA reads were corrected 645 

with the preprocessed RNA-Seq reads from the same tissue samples using the combination of 646 

proovread (RRID:SCR_017331) (v2.12) [71] and FMLRC (v1.0.0) [72] software packages. Error 647 

rates were computed as the sum of the numbers of bases of insertions, deletions, and 648 

substitutions in the aligned FLCN error-corrected reads divided by the length of aligned regions 649 

for each read (Table 8). 650 

The RNA-seq-based transcriptome was assembled as described in the previous section. 651 

Oxford Nanopore data analysis 652 

Assembled isoforms from a previously published Oxford Nanopore experiment were used in 653 

this study [12]. In brief, a total of 32 tissues (Supplemental file 24) from two male and two 654 

female Line 1 Hereford cattle, aged 14 months old were used in this experiment. Barcoded 655 

cDNAs extracted from frozen tissues (-80 °C) were pooled at the University of California Davis 656 

and sequenced using Oxford Nanopore Technologies SQK-DCS109 kit according to the 657 

manufacturer’s protocol [12]. 658 

Comparison of transcript structures across datasets/tissues 659 

The structure of transcripts predicted from RNA-seq data were compared across tissues, and 660 

independent datasets including a library of annotated isoforms (Ensembl release 2021-03, and 661 

NCBI Release 106), as well as isoforms identified through complete isoform sequencing with 662 

Pacific Biosciences, a de novo assembly produced from its matched RNA-seq reads, and 663 

isoforms identified from Oxford Nanopore platforms. Transcripts whose 5’ and 3’ borders were 664 
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supported by RAMPAGE and/or WTTS data (see Transcript and gene border validation section) 665 

and whose splice junctions were identical (maximum fuzzy junction was set to 15 bp) were 666 

considered “structurally equivalent transcripts”.  The maximum of 100 nt fuzzy 5’ and 3’ 667 

transcript borders were applied when comparing transcripts were not supported by RAMPAGE 668 

and/or WTTS data. Other transcripts that did not met these criteria were considered 669 

“structurally different transcripts”. 670 

A pair of genes was considered as structurally equivalent across datasets if they transcribed at 671 

least single “structurally equivalent transcript”. 672 

Prediction of transcript and gene biotypes 673 

Transcripts’ open reading frames (ORFs) were predicted using the stand-alone version of 674 

ORFfinder [73] with “ATG and alternative initiation codons” as ORF start codon. The longest 675 

three ORFs were matched to the Uniprot (RRID:SCR_002380) vertebrate database using Blastp 676 

(RRID:SCR_001010) [73] with E-value cutoff of 10− 6, min coverage 60%, and min identity 95%. 677 

The ORFs with the lowest E-value to a protein were used as the representative, or if no matches 678 

were found, the longest ORF was used. Putative transcripts that had representative ORFs longer 679 

than 44 amino acids were labelled as protein-coding transcripts. If the representative ORF had a 680 

stop codon that was more than 50 bp upstream of the final splice junction, it was labelled as a 681 

nonsense-mediated decay transcript [74]. Transcripts with start codon but no stop codon 682 

before their poly(A) site were labelled non-stop decay RNAs. Putative non-coding transcripts 683 

(ORFs shorter than 44 amino acids and lack of coding potential predicted by CPC2 [75]) with 684 

lengths less than 200 bp that did not overlap with annotated or un-annotated miRNA 685 
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precursors (see miRNA-seq data analysis section) were labelled as small non-coding RNAs [74]. 686 

Putative non-coding transcripts with lengths greater than 200 bp were labelled as long non-687 

coding RNAs [74]. Long non-coding RNAs overlapping one or more coding loci on the opposite 688 

strand were labelled as antisense lncRNAs. Long non-coding RNAs located in introns of coding 689 

genes on the same strand were labelled as sense-intronic lncRNAs. Long non-coding RNAs that 690 

had an exon(s) that overlapped with a protein-coding gene were labeled as Intragenic lncRNAs. 691 

Long non-coding RNAs located in intergenic regions of the genome were labeled as Intergenic 692 

lncRNAs. 693 

Putative genes that transcribed at least a single protein-coding transcript were labelled as 694 

protein-coding genes. Putative genes with homology to existing vertebrate protein-coding 695 

genes (Blastx [73], E-value cut-off 10-6, min coverage 90%, and min identity 95%) but containing 696 

a disrupted coding sequence, i.e., transcribe only nonsense-mediated decay or non-stop decay 697 

transcripts in all of their expressed tissues, were labelled as pseudogenes. The rest of the 698 

putative genes were labeled as non-coding. 699 

ncRNAs homology analysis 700 

Putative non-coding transcripts were matched to NCBI and Ensembl vertebrate ncRNA 701 

databases using Blastn (RRID:SCR_001598) [73] with E-value cutoff of 10− 6, min coverage 90%, 702 

and min identity 95%. Transcripts with at least one hit were considered as homologous ncRNAs. 703 

Transcriptome termini site sequencing data analysis 704 

T-rich stretches located at the 5’ end of each WTTS-seq raw read were removed using an in-705 

house Perl script, as described previously [76]. T-trimmed reads were error-corrected using 706 
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Coral (version 1.4.1) [77] with -v -Y -u -a 3 option settings. The resulting reads with length 707 

greater than 300 nt were quality trimmed using FASTX Toolkit (RRID:SCR_005534) (version 708 

0.0.14) [78] with -q 20 and -p 50 option settings. High-quality, error-corrected WTTS-seq reads 709 

were aligned against the ARS-UCD1.2 bovine genome using STAR (version 020201) [62] with a 710 

cut-of of 95% identity and 90% coverage. 711 

Chromatin immunoprecipitation sequencing (ChIP-seq) data analysis 712 

Regions of signal enrichment (“peaks”) from a previously published ChIP-seq experiment were 713 

used in this study [79]. In brief, total eight tissue (Supplemental file 24) from two male Line 1 714 

Hereford cattle, aged 14 months old were used in this experiment. ChIP-seq experiments were 715 

performed on frozen tissue (-80 °C) using the iDeal ChIP-seq kit for Histones (Diagenode 716 

Cat.#C01010059, Denville, NJ) based on protocol described at [79]. The following antibodies 717 

used were from Diagenode: H3K4me3 (in kit), H3K27me3 (#C15410069), H3K27ac 718 

(#C15410174), H3K4me1 (#C15410037), and CTCF (#15410210). 719 

ATAC-seq data analysis 720 

The UC Davis FAANG Functional Annotation Pipeline was applied to process the ATAC-seq data, 721 

as previously described [79]. Briefly, the ARS-UCD1.2 genome assembly and Ensembl genome 722 

annotation (v100) were used as references for cattle. Sequencing reads were trimmed with 723 

Trim Galore! (Krueger et al. 2015) (v.0.6.5) and aligned BWA (Li et al. 2013) (v0.7.17) to the ARS-724 

UCD1.2 genome assembly with --fr option. Alignments with MAPQ scores <30 were filtered 725 

using Samtools (RRID:SCR_005227) (v.1.9). Duplicate reads were marked and removed using 726 

Picard (RRID:SCR_006525) (v.2.18.7). Regions of signal enrichment were called by MACS2 727 



 36 

(RRID:SCR_013291) (v.2.1.1). 728 

Relating transcripts and genes to epigenetic data 729 

The promoter was defined as the genomic region that spans from 500 bp 5′ to 100 bp 3′ of the 730 

gene/transcript start site. Histone mark (H3K4me3, H3K4me1, H3K27ac), CTCF-DNA binding or 731 

ATAC-seq peaks mapped to the promoter of a given gene/transcript were related to that 732 

gene/transcript. 733 

Transcript and gene border validation 734 

RAMPAGE peaks from a previously published experiment [13] were used to validate 735 

gene/transcript start site (Supplemental file 24). Peaks within the genomic region that spans 736 

from 30 bp 5′ to 10 bp 3′ of a gene/transcript start site were assigned to that gene/transcript. 737 

WTTS-seq reads (median length of 161 bp) within the genomic region that spans from 10 bp 5′ 738 

to 165 bp 3′ of a gene/transcript terminal site were assigned to that gene/transcript. 739 

Functional enrichment analysis 740 

The potential mechanism of action of a group of genes was deciphered using ClueGO 741 

(RRID:SCR_005748) [80]. The latest update (May 2021) of the Gene Ontology Annotation 742 

database (GOA)  [81] was used in the analysis. The list of genes with at least one transcript 743 

expressed in a given tissue was used as background for that tissue. The GO tree interval ranged 744 

from 3 to 20, with the minimum number of genes per cluster set to three. Term enrichment 745 

was tested with a right-sided hyper-geometric test that was corrected for multiple testing using 746 

the Benjamini-Hochberg procedure [82]. The adjusted p-value threshold of 0.05 was used to 747 

filter enriched GO terms. Enriched GO terms were grouped based on kappa statistics [83]. 748 
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Alternative splicing analysis 749 

Alternative splicing (AS) events (Supplemental file 2: Fig. S20A) are commonly distinguished in 750 

terms of whether RNA transcripts differ by inclusion or exclusion of an exon, in which case the 751 

exon involved is referred to as a “skipped exon” (SE) or “cassette exon”, “alternative first exon”, 752 

or “alternative last exon”. Alternatively, spliced transcripts may also differ in the usage of a 5' 753 

splice site or 3' splice site, giving rise to alternative 5' splice site exons (A5Es) or alternative 3' 754 

splice site exons (A3Es), respectively. A sixth type of alternative splicing is referred to as 755 

“mutually exclusive exons” (MXEs), in which one of two exons is retained in RNA but not both. 756 

However, these types are not necessarily mutually exclusive; for example, an exon can have 757 

both an alternative 5' splice site and an alternative 3' splice site, or have an alternative 5' splice 758 

site or 3' splice site, but be skipped in other transcripts. A seventh type of alternative splicing is 759 

“intron retention”, in which two transcripts differ by the presence of an unspliced intron in one 760 

transcript that is absent in the other. An eighth type of alternative splicing is “unique splice site 761 

exons” (USEs), in which two exons overlap with no shared splice junction. Alternative splicing 762 

events, except Unique Splice Site Exons, were detected using generateEvents from SUPPA 763 

(version 2.3) [84] with default settings. Unique Splice Site Exons were detected using an in-764 

house Python script. 765 

miRNA-seq data analysis 766 

Single-end Qiagen miRNA-seq reads (50 bp) from each tissue sample were trimmed to remove 767 

the adaptor sequences and low-quality bases using Trim Galore (version 0.6.4) [61] with --768 

quality 20, --length 16, --max_length 30 -a AACTGTAGGCACCATCAAT option settings. miRNA 769 
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reads were aligned against the ARS-UCD1.2 bovine genome using mapper.pl from mirDeep2 770 

(RRID:SCR_010829) (version 0.1.3) [85] with -e -h -q -j -l 16 -o 40 -r 1 -m -v -n option settings. 771 

miRNA mature sequences along with their hairpin sequences for Bos taurus species were 772 

downloaded from miRbase [14]. These sequences, along with the aligned miRNA reads, were 773 

used to quantify annotated miRNAs in each sample using miRDeep2.pl from mirDeep2 (version 774 

0.1.3) [85] with -t bta -c -v 2 setting options. miRNA normalized Reads Per Million (RPM) were 775 

used to check sample similarities using hierarchical clustering and regression analysis of gene 776 

expression values (log2 based CPM). Outlier samples, which did not cluster together indicating 777 

the potential for tissue miss-labelling, were detected, and removed from downstream analysis. 778 

In order to predict the most comprehensive set of un-annotated miRNAs, samples from 779 

different tissues were concatenated into a single file that were aligned against the ARS-UCD1.2 780 

bovine genome using mapper.pl from mirDeep2 (version 0.1.3) [85] with the aforementioned 781 

settings. Aligned reads from the previous step were used, along with annotated miRNAs’ 782 

mature sequences and their hairpins, to predict un-annotated miRNAs using miRDeep2.pl from 783 

mirDeep2 (version 0.1.3) [85] with the aforementioned settings. Samples from each tissue were 784 

combined to get the most comprehensive set of data for that tissue. Mature miRNA sequences 785 

and their hairpins for both annotated and predicted un-annotated miRNAs’ sequences along 786 

with the aligned miRNA reads from each tissue were used to quantify annotated and un-787 

annotated miRNAs in each tissue using mirDeep2 (version 0.1.3) [85] with the aforementioned 788 

settings.   789 
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Tissue-specificity index 790 

Tissue Specificity Index (TSI) calculations were utilized to present more comprehensive 791 

information on transcript/gene/miRNA expression patterns across tissues. This index has a 792 

range of zero to one with a score of zero corresponding to ubiquitously expressed 793 

transcripts/genes/miRNAs (i.e., “housekeepers”) and a score of one for 794 

transcripts/genes/miRNAs that are expressed in a single tissue (i.e., “tissue-specific”) [86]. The 795 

TSI for a transcript/gene/miRNA j was calculated as [86]: 796 

 797 

𝑇𝑆𝐼𝑗 =
∑ (1 − 𝑥𝑗,𝑖)𝑁

𝑖=1

𝑁 − 1
 798 

 799 

where 𝑁 corresponds to the total number of tissues measured, and 𝑥𝑗,𝑖  is the expression 800 

intensity of tissue 𝑖 normalized by the maximal expression of any tissue for 801 

transcript/gene/miRNA 𝑗. 802 

QTL enrichment analysis 803 

Publicly available bovine QTLs were retrieved from Animal QTLdb (RRID:SCR_001748) [87]. 804 

Closest expressed gene to a given trait’s QTLs were denoted as QTL-associated genes for that 805 

trait. The median distance of QTLs located outside gene borders to the closest expressed gene 806 

was 51.9 kilobases and the maximum distance was 2.6 million bases. QTL enrichment was 807 

tested with a right-sided Fisher Exact test using an in-house Python script. The resulting p-808 



 40 

values were corrected for multiple testing by the Benjamini-Hochberg procedure [82]. The 809 

adjusted p-value threshold of 0.05 was used to filter QTLs. 810 

Trait similarity network 811 

For a given pair of traits, trait A was denoted as “similar” to trait B if a significant portion of trait 812 

A’s QTL-associated genes were also the closest expressed genes to trait B QTLs based on 1000 813 

permutation tests. The resulting p-values were corrected for multiple testing using the 814 

Benjamini-Hochberg procedure [82]. The same procedure was used to test trait B’s similarity to 815 

trait A. The adjusted p-value threshold of 0.05 was used to filter significant trait similarities. A 816 

graphical presentation of the method used to construct the tissue similarity network is 817 

presented in Supplemental file 2: Fig. S40. The resulting network was visualized using 818 

Cystoscape software [88]. 819 

 820 

Testis-pituitary axis correlation significance test 821 

The presence of signal peptides on representative ORFs of protein-coding transcripts was 822 

predicted using SignalP-5.0 [89]. Spearman correlation coefficients were used to study 823 

expression similarity between testis genes encoding signal peptides that were closest to the 824 

“percentage of normal sperm” QTLs (62 genes) and pituitary expressed genes closest to the 825 

“percentage of normal sperm” QTLs (246 genes). To test the statistical difference between 826 

these correlation coefficients (reference correlations) and random chance, 1000 random sets of 827 

246 pituitary genes were selected, and their correlation coefficients with 62 previously 828 

described testis genes were calculated (random correlations). The reference correlations were 829 
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compared with 1000 sets of random correlations using a right-sided t-test. The resulting p-830 

values were corrected for multiple testing by the Benjamini-Hochberg procedure [82]. The 831 

distribution-adjusted p-values were used to determine the significance level of expression 832 

similarities for genes involved in the testis-pituitary axis related to “percentage of normal 833 

sperm”. The same analysis was conducted to determine the significance of pituitary-testis axis 834 

involvement in this trait. 835 

Tissue dendrogram comparison across different transcript and gene biotypes 836 

Tissues were clustered based on the percentage of their transcripts/genes that were shared 837 

between tissue pairs using the hclust function in R. Cophenetic distances for tissue 838 

dendrograms were calculated using the cophenetic R function. The degree of similarity 839 

between dendrograms constructed based on different gene/transcript biotypes was obtained 840 

using the Spearman correlation coefficient between the dendrograms’ Cophenetic distances. 841 

Figure legends 842 

Figure 1. Distribution of the number of expressed transcripts (A) and genes (B) across tissues. 843 

Figure 2. Classification of the predicted transcripts into different biotypes. 844 

Figure 3. Support of predicted transcripts using data from different technologies and datasets. 845 

Figure 4. Classification of the predicted genes into different biotypes. 846 

Figure 5. Distribution of the number of 5’ UTRs and 3’ UTRs per gene in genes with multiple 847 

UTRs. 848 
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Figure 6. (A) Classification of protein-coding genes based on their novelty and types of encoded 849 

transcripts. (B) Number of expressed tissues for bifunctional genes. Dots have been color coded 850 

based on their density. (C) Location of different transcript biotypes on bifunctional genes. (D) 851 

Functional enrichment analysis of genes that remained bifunctional in all of their expressed 852 

tissues. 853 

Figure 7. Support of predicted genes using data from different technologies and datasets 854 

Figure 8. Functional enrichment analysis of non-coding genes in fetal tissues that were switched 855 

to protein coding with only coding transcripts in their matched adult tissue. 856 

Figure 9- (A) Correlation between testis genes encoded protein with a signal peptide that were 857 

close to the “percentage of normal sperm” QTL and pituitary expressed genes closest to this 858 

trait (reference correlations). (B) Distribution of p-values resulting from a right-sided t-test 859 

between reference correlation coefficients and correlation coefficients derived from random 860 

chance (see methods for details). 861 

Figure 10- (A) Distribution of the number of expressed annotated and un-annotated miRNAs 862 

across tissues. (B) Expression of annotated and un-annotated miRNAs across their expressed 863 

tissues. (C) Number of expressed tissues for annotated and un-annotated miRNAs. 864 

Figure 11- Support of annotated (A) and un-annotated (B) miRNAs using different histone marks 865 

and CTCF-DNA binding data. 866 

  867 
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Tables 868 

Table 1. Summary of expressed transcripts/genes 

 

Feature 

Annotation1 

Current project Ensembl 

(Release 2021-03) 

NCBI 

(Release 106) 

Number of genes 34,882 (21,116) 27,607 (21,880) 35,143 (21,355) 

Number of transcripts 160,820 (79,957) 43,984 (37,538) 83,195 (47,280) 

Number of spliced transcripts 130,531 37,299 73,423 

Number of transcripts per gene 4.9 1.5 2.3 

Median number of 5’ UTRs per gene 2 1 1 

Median number of 3’ UTRs per gene 1 1 1 

1Numbers in parentheses indicate the number of protein-coding genes/transcripts. 

 869 

 870 

  871 
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Table 2. Protein/peptide homology of transcripts with coding potential 

Transcript biotype Number of transcripts Transcripts with 

protein/peptide homology to 

other species1 

Protein-coding transcripts 85,658 73,268 (86%) 

sncRNAs and lncRNAs that 

encode short peptides2 

48,425 4,054 (8%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

2Open reading frame of 9 to 43 amino acids 

 872 

 873 

  874 
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Table 3. Sequence homology of non-coding transcripts  

Transcript biotype Number of transcripts Transcripts with sequence 

homology to ncRNAs in other 

species1 

Long non-coding RNAs 48,661 23,707 (49%) 

Small non-coding RNAs 526 194 (37%) 

Non-stop decay RNAs 4,359 1,551 (35%) 

Nonsense-mediated decay 

RNAs 

32,781 18,195 (55%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

 875 

 876 

  877 
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Table 4. Sequence homology of different types of lncRNAs  

lncRNA biotype Number of transcripts Transcripts with sequence 

homology to ncRNAs in other 

species1 

antisense lncRNAs 29,987 13,793 (46%) 

sense-intronic lncRNAs 1,694 1,029 (60%) 

intragenic lncRNAs 5,569 2,314 (41%) 

intergenic lncRNAs 11,841 5,820 (49%) 

1Number in parentheses indicates the percentage of each transcript biotype. 

 878 

 879 

  880 
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Table 5. Gene border extensions in current ARS-UCD1.2 genome annotations by de novo 

assembled transcriptome from short-read RNA-seq data 

Annotation Type of gene extension Number of genes Median extension 

(nucleotides) 

Ensembl 

(Release 2021-03) 

5’ extension only 1,848 128 

3’ extension only 5,701 422 

Both ends extended 4,874 122, 5’ 

439, 3’ 

NCBI 

(Release 106) 

5’ extension only 2,214 80 

3’ extension only 5,496 126 

Both ends extended 3,613 66, 5’ 

210, 3’ 

    

 881 

 882 

 883 

 884 

 885 
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Table 6. Median number of reads mapped to the extended region of annotated genes1 

Annotation 5’ end extension 3’ end extension Both ends extension 

Ensembl (release 2021-03) 92 (1.10) 220 (1.24) 1,766 (8.90) 

NCBI (release 106) 72 (1.05) 95 (1.10) 2,009 (9.05) 

1Numbers in parentheses indicate the median fold change in expression level resulting from gene 

extensions. 

 886 

 887 

  888 
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Table 7. Comparison of different gene builds based on gene biotypes 

Species Gene build Protein-

coding 

genes 

lncRNA 

genes 

miRNA 

genes 

Other types 

of small non-

coding 

genes1 

Pseudo-

genes 

Bovine  

(ARS-UCD1.2) 

 

Ensembl 

(Release 

2021-03) 

21,880 1,480 951 2,209 492 

NCBI 

(Release 106) 

21,039 5,179 797 3,249 4,569 

Current 

project 

 

21,116 10,689 2,007 87 3,029 

Human 

(GRCh38.104) 

Ensembl 

(release 2021-

03) 

20,442 16,876 1,877 2,930 15,266 

1Small nucleolar RNAs, small non-coding RNAs, small Cajal body specific RNAs, small conditional RNAs, 

and tRNAs 

 889 

 890 
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Table 8. Summary of error-corrected, FLNC Iso-Seq reads and their matched RNA-seq 

reads 

Tissue Error-corrected FLNC 

Iso-Seq reads1 

Median error rate in 

error-corrected FLNC 

Iso-Seq reads 

Normalized RNA-seq 

reads used for error 

correction2 

Thalamus 664,900 (90%) 0.21% 32,452,612 

Testes 711,821 (86%) 1.43% 31,939,024 

Liver 1,064,146 (84%) 1.84% 13,657,156 

Medulla 380,531 (86%) 0.43% 48,256,918 

Subcutaneous fat 215,759 (93%) 0.45% 42,043,313 

Cerebral cortex 440,797 (87%) 1.01% 21,285,864 

Jejunum 604,436 (90%) 2.331% 34,457,447 

1 Number in parentheses indicates mapping rate (90% coverage and 95% identity). 

2 In silico normalized using insilico_read_normalization.pl from Trinity (version 2.6.6) with the 

following settings: --max_cov 50 --max_pct_stdev 100 --single 

 891 

 892 

Supplemental files 893 

Supplemental file 1: List of different datasets generated in the experiment. 894 
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Supplemental file 2: Fig. S1 Distribution of the number of RNA-seq reads across tissues. Fig. S2 895 

(A) Comparison of tissues based on number of transcript biotypes and (B) percentage of 896 

transcript biotypes. (C) Comparison of transcript biotypes based on their number of expressed 897 

tissues and (D) their expression level across expressed tissues. Fig. S3 (A) Relation between the 898 

number of input reads and the number of transcript biotypes (B) Comparison of expression 899 

level between different transcript biotypes. Fig. S4 Tissue similarities (A) and clustering (B) 900 

based on the percentage of protein-coding transcripts shared between pairs of tissues. Fig. S5 901 

Tissue similarities (A) and clustering (B) based on the percentage of non-coding transcripts 902 

shared between pairs of tissues. Fig. S6 Comparison of annotated and un-annotated transcripts 903 

based on their expression (A) and number of expressed tissues (B). Fig. S7 Comparison of 904 

annotated and un-annotated protein-coding transcripts based on the length (A) and GC content 905 

(B) of their 5’ UTR, CDS, and 3’ UTR. Fig. S8 (A) Comparison of tissues based on number of gene 906 

biotypes and (B) percentage of gene biotypes. Fig. S9 Relation between the number of input 907 

reads and the number of gene biotypes. Fig. S10 Comparison of annotated and un-annotated 908 

genes based on their expression (A) and number of expressed tissues (B). Fig. S11 Functional 909 

enrichment analysis of the top five percent of genes with the highest number of UTRs. Fig. S12 910 

Similarity of tissues based on the number of non-coding genes in their fetal samples that 911 

switched to protein-coding genes with only coding transcripts in their adult samples. Fig. S13 912 

(A) Distribution of genes that transcribed PATs, based on their number of expressed tissues, 913 

percentage of genes’ transcripts that are PATs and percentage of genes’ expressed tissues in 914 

which PATs were transcribed. (B) Comparison of genes that transcribed PATs with other gene 915 

biotypes. Fig. S14 (A) Homology analysis of protein-coding genes. (B) Homology analysis of non-916 
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coding genes. (C) Detection of orphan genes based on homology classification of cattle-specific 917 

protein-coding genes and non-coding genes. Fig. S15 Comparison of the expression level of 918 

homologous and orphan genes across (A) and within (B) their expressed tissues. (C)  919 

Comparison of homologous and orphan genes based on the number of expressed tissues. Fig. 920 

S16 Comparison of different gene biotypes based on the expression (A) and the number of 921 

expressed tissues (B). Fig. S17 Comparison of different pseudogene-derived lncRNAs and non-922 

pseudogene derived lncRNAs based on the expression level (A) and the number of expressed 923 

tissues (B). Fig. S18 Tissue similarities (A) and clustering (B) based on the percentage of protein-924 

coding genes shared between pairs of tissues. Fig. S19 Tissue similarities (A) and clustering (B) 925 

based on the percentage of non-coding genes shared between pairs of tissues. Fig. S20 (A) 926 

Different types of alternative splicing events. (B) Comparison of bovine genome builds based on 927 

the number of transcripts that showed any type of alternative splicing (AS) events. Fig. S21 928 

Comparison of tissues based on the number (A) and the percentage (B) of transcripts that 929 

showed different types of alternative splicing events. Comparison of tissues based on the 930 

number (C) and the percentage (D) of alternative splicing events. Fig. S22 (A) Comparison of 931 

tissues based on the percentage of transcripts that showed any type of alternative splicing 932 

events, spliced transcripts from single-transcript genes, and unspliced transcripts and (B) the 933 

relation between the number of input reads and the number of these transcripts across tissues. 934 

Fig. S23 Comparison of transcripts that showed different types of alternative splicing events 935 

based on (A) the expression level in the expressed tissues and (B) the number of expressed 936 

tissues. Fig. S24 Transcript biotype switching due to alternative splicing events. Fig. S25 937 

Comparison of tissues based on the number of alternative splicing events per alternatively 938 
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spliced gene. Fig. S26 (A) Distribution of the number of alternative splicing events per 939 

alternatively spliced gene. The 5% quantile is shown using a dashed red line. (B) Functional 940 

enrichment analysis of the top five percent of genes with the highest number of alternative 941 

splicing events. Fig. S27 Comparison of the alternative splicing rate between adult and fetal 942 

tissues. Fig. S28 (A) Distribution of gene’s number of expressed tissues. Tissue-specific gene 943 

biotypes are shown in the pie chart. (B) Distribution of transcript’s number of expressed tissues. 944 

Tissue-specific transcript biotypes are shown in the pie chart. (C) Comparison of tissues based 945 

on the number of tissue-specific genes and transcripts. (D) Comparison of the expression level 946 

of tissue-specific genes and transcripts versus their non-tissue-specific counterparts. Fig. S29 947 

Relationship between tissue specificity and alternative splicing events. Fig. S30 Relationship 948 

between tissue specificity index and the number of multi-tissue expressed genes (A) and 949 

transcripts (B). Distribution of tissue specificity indexes in multi-tissue expressed genes (C) and 950 

transcripts (D). The 5% quantile is shown using dashed red lines. (E) Functional enrichment 951 

analysis of the top five percent of multi-tissue expressed genes with the highest tissue 952 

specificity indexes. Fig. S31 Distribution of QTLs located outside gene borders in relation to the 953 

closest expressed gene. Fig. S32 (A) Distribution of correlation coefficients between SPACA5 954 

gene expression and pituitary expressed genes closest to “percentage of normal sperm” QTLs. 955 

Dashed lines show the minimum significant positive and negative correlation (p-value <0.05). 956 

(B) Expression atlas of SPACA5 gene in human tissues from The Human Protein Atlas [90]. Fig. 957 

S33 (A) Correlation between pituitary genes with signal peptides that were close to the 958 

“percentage of normal sperm” QTL and testis expressed genes closest to this trait’s QTL 959 

(reference correlations). (B) Distribution of p-values resulting from right-sided t-test between 960 
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reference correlation coefficients and correlation coefficients derived from random chance (see 961 

methods for details). Fig. S34 Tissue similarities (A) and clustering (B) based on the percentage 962 

of miRNAs shared between pairs of tissues. Fig. S35 Clustering of tissues based on protein-963 

coding genes (A), protein-coding transcripts (B), non-coding genes (C), non-coding transcripts 964 

(D), and miRNAs (E). (F) Comparison of tissue dendrograms based on the correlation between 965 

their Cophenetic distances. Fig. S36 (A) Distribution of the number of expressed tissues for 966 

annotated and un-annotated miRNAs. Classification of miRNAs as annotated, or un-annotated 967 

is presented in the pie chart. (B) Comparison of tissues based on their number of tissue-specific 968 

miRNAs. (C) Expression of annotated and un-annotated miRNAs in their expressed tissues. (D) 969 

Distribution of multi-tissue expressed miRNAs’ tissue specificity indexes. (E) Relationship 970 

between tissue specificity index and number of expressed tissues in multi-tissue expressed 971 

miRNAs. Dots have been color coded based on their density. Fig. S37 Distribution of the 972 

number of expressed genes (A), transcripts (B), and miRNAs (C) across tissues. Fig. S38 973 

Distribution of the number of annotated and un-annotated genes (A), transcripts (B), and 974 

miRNAs (C) across tissues. Fig. S39 Overview of the bioinformatics steps used in this study. Fig. 975 

S40 Graphical representation of the method used to construct the tissue similarity network. 976 

Supplemental file 3: Summary of RNA-seq and miRNA-seq reads. 977 

Supplemental file 4: Detailed description of the number of transcripts, genes, and miRNAs 978 

expressed in each tissue.  979 
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Supplemental file 5: List of transcripts and genes expressed in each tissue and their expression 980 

values (RPKM). Individual tissue files are labeled as: Supplemental_file5_<TISSUE 981 

NAME>_<Genes/Transcripts>.tsv 982 

Supplemental file 6: Transcript biotype enrichment analysis in adult and fetal tissues. 983 

Supplemental file 7: Functional enrichment analysis of the top five percent of genes with the 984 

highest number of UTRs. 985 

Additional file 8: Functional enrichment analysis of genes that remained bifunctional in all their 986 

expressed tissues. 987 

Additional file 9: Functional enrichment analysis of non-coding genes in fetal tissues that were 988 

switched to protein coding with only coding transcripts in their matched adult tissue. 989 

Additional file 10: Functional enrichment analysis of protein-coding genes that transcribed 990 

PATs as their main transcripts (PATs comprised >50% of their transcripts) in all their expressed 991 

tissues. 992 

Supplemental file 11: Gene biotype enrichment analysis in adult and fetal tissues. 993 

Supplemental file 12: Functional enrichment analysis of the top five percent of genes with the 994 

highest number of alternative splicing events. 995 

Supplemental file 13: List of tissue-specific genes and transcripts. 996 

Supplemental file 14: Genes and transcripts tissue specificity indexes. Individual tissue files are 997 

labeled as: Supplemental_file14_<Genes/Transcripts>.tsv 998 
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Supplemental file 15: Functional enrichment analysis of the top five percent of multi-tissue 999 

expressed genes with the highest tissue specificity indexes. 1000 

Supplemental file 16: List of QTL’s closest expressed genes in each tissue. Individual tissue files 1001 

are labeled as: Supplemental_file16_<TISSUE NAME>.tsv 1002 

Supplemental file 17: Trait enrichment analysis of testis-specific genes. 1003 

Supplemental file 18: Pituitary expressed genes closest to “percentage of normal sperm” QTLs 1004 

that showed positive significant correlation with SPACA5 gene in testis. 1005 
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A3Es: Alternative 3' splice site Exons; A5Es: Alternative 5' splice site Exons; AFEs: Alternative 1017 

First Exon; ALEs: Alternative Last Exon; AS: Alternative Splicing; ATAC-seq: Assay for 1018 

Transposase-Accessible Chromatin using sequencing; bp: base pair; BP: Biological Process; CDS: 1019 

coding sequence; ChIP-seq: Chromatin Immunoprecipitation Sequencing; CPM: Counts Per 1020 
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Length, Non-Chimeric; GO:  Gene Ontology; GOA: Gene Ontology Annotation database; GWAS: 1022 

Genome-Wide Association Studies; H3K27ac: N-terminal acetylation of lysine 27 on histone H3; 1023 

H3K4me1: tri-methylation of lysine 4 on histone H1; H3K4me3: tri-methylation of lysine 4 on 1024 

histone H3; IACUC: Institutional Animal Care and Use Committee; LD:  Longissimus Dorsi; 1025 

lncRNAs: long non-coding RNAs; miRNA: microRNAs; MXEs: Mutually Exclusive Exons; NCBI: 1026 

National Center for Biotechnology Information; ncRNAs: non-coding RNAs; NMD: Nonsense-1027 
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Dear Editor 
 
Manuscript number: GIGA-D-23-00037 
 
We are thankful to the reviewers for their thorough review. We have revised the present 
research manuscript in the light of their useful suggestions and comments. We hope this 
revision has improved the manuscript to a level of their satisfaction. Point by point answers to 
their specific comments are as follows.  
 
 
 

Reviewer#1 
 
Comment 1: The authors updated the manuscript title to "Improved annotation of the bovine 
genome identifies relationships between phenotypic traits". The study just searches for 
overlapping between the transcripts and publicly available QTL information. This approach helps 
to better understand the putative function of this transcript. However, it was not tested real 
associations between these transcripts and the traits. I would suggest the authors review the 
title of the manuscript. In my opinion, the study is much more focused on the improved 
annotation of the bovine genome and a screening of transcript isoforms than on the 
relationship between traits. 
 
Response: The manuscript title was revised to “Enhancing Bovine Genome Annotation 
Throughout Integration of Transcriptomics and Epi-Transcriptomics Datasets Facilitates Genomic 
Biology”  
 
Comment 2: The changes in the discussion section were not tracked, which resulted in difficulty 
in following the edits. 
 
Response: We are sorry for the confusion that this created. 
 
Comment 3: In the conclusion, the authors mentioned that: "The integrated transcriptome data 
with publicly available QTL data revealed putative molecular pathways that may underlie tissue-
tissue communication mechanisms and candidate genes responsible for the genetic 
mechanisms that may underlie genetic correlations between traits". It is not clear how the 
authors found this relationship between the QTLs and molecular pathways. The authors 
mentioned in the discussion section the analysis of the interconnection between testis and 
pituitary tissues with respect to the "percentage of normal sperm" and a potential association 
with a specific GO term. First, not necessarily a GO term represents a molecular pathway. 
Additionally, the authors mention only this example in the discussion section. The authors 
should provide a more comprehensive discussion about this approach and how the other 
results support potential associations between traits, mainly in the light of the next paragraph, 
where the results of the trait similarity results are discussed. 
 

Response to Reviewers Click here to access/download;Personal Cover;Response to
reviewer comments (1).docx
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Response: 
 
We hypothesized that the integration of the gene/transcript data with previously published 
QTL/gene association data would allow for the identification of potential molecular mechanisms 
responsible for a) tissue-tissue communication as well as b) genetic correlations between traits 
(lines 511-514). To test the first hypothesis, we developed a novel approach to study the 
involvement of tissue-tissue interconnection in different traits based on the integration of the 
transcriptome with publicly available QTL data (lines 514-516). In particular, the interconnection 
between testis and pituitary tissues with respect to the “percentage of normal sperm” trait was 
investigated in more detail based on three reasons: (1) testis tissue showed the highest number 
of tissue-specific genes compared to the rest of the tissues (Supplemental file 2: Fig. S4, Fig. S5, 
Fig. S18, and Fig. S19), and these genes were highly enriched with fertility related traits such as 
percentage of normal sperm (Supplemental file 17) (lines 386-388)., (2) the SPACA5 , a testis-
specific gene, encoded protein with a signal peptide (SP) that was close to the “percentage of 
normal sperm” QTLs (lines 391-392). The expression of this gene in testis samples showed 
significant positive correlation with 70 pituitary expressed genes that were closest to the 
“percentage of normal sperm” QTLs (Supplemental file 2: Fig. S32, Supplemental file 18) (lines 
392-395)., (3) there is a well-established hormonal interrelation between pituitary gland and 
testis. Our analysis resulted in the identification of the regulation of ubiquitin-dependent 
protein catabolic process, the regulation of nuclear factor-κB (NF-κB) transcription factor 
activity, and Rab protein signal transduction as key components of this tissue-tissue interaction 
(Supplemental file 19 and 20) (lines 518-521).  Activation of NF-κB requires ubiquitination, and 
this modification is highly conserved across different species (lines 529-530).  NF-κB induces 
secretion of adrenocorticotropic hormone from the pituitary, which directly stimulates 
testosterone production by the testis (lines 530-532).  In addition, ubiquitinated proteins in 
testis cells are required for the progression of mature spermatozoa (lines 532-533).  The 
expression levels of pituitary expressed genes closest to “percentage of normal sperm” QTLs 
that also encoded signal peptides were significantly correlated with expression levels of testis 
expressed genes closest to “percentage of normal sperm” QTLs (Supplemental file 2: Fig. S33) 
(lines 533-536).  These testis genes were highly enriched for the “Rab protein signal 
transduction” BP GO term (Supplemental file 20). Rab proteins have been reported to be 
involved in male germ cell development (lines 536-538). These results clearly show that our new 
approach is supported by the biology of traits and Gene Ontology (GO) terms. Thus, it appears 
that integration of gene data with QTL/association data can be used to identify putative 
molecular pathways underlying tissue-tissue communication mechanisms (lines 538-540).  The 
limitations of this approach have been discussed in lines 557-561.  
 
 
 
 

 
 
 
 



Reviewer#3 
 
Comment 1: Please ensure the data provided in the private dropbox area of GigaDB (user115) is 
correct with regards to the revised manuscript. 
 
Response: All data provided to the GigaDB are accurate and reflect the most recent version of 
the manuscript. We have however not received confirmation from GigaDB that the revised files 
have been received. 
 
Comment 2: In the abstract it is stated "A total number of 171,985 unique transcripts (50% 
protein-coding) representing 35,150 unique genes (64% protein-coding)". 
The supplemental_file14 contains lists of all genes and transcripts, however it only includes 
34882 and 160820 unique genes and transcripts respectively not the same as stated in the 
abstract, please clarify which is correct? And ensure other mentions of those numbers in the 
manuscript are also correct. 
 
Response: The number of transcript/genes were corrected through the manuscript to reflect 
the supplemental data (total of 160,82 transcripts and 34,882 genes) (lines, 38-40, 45, 114-
115,161-162, 187, 204-213, 284, 288, 366-367,477-480, 487, 491, Table 1, Table 7, Figure 2, and 
Figure 4) 
 
Comment 3: "The diversity of RNA and miRNA transcript among 50 different bovine tissues and 
cell types was assessed…" I am still unclear how the number 50 has been reached? 
Supplemental_file1 includes 51 different names of tissues, however, 5 of those names are 
actually mammary gland at different time points, so its debatable if they constitute different 
tissue or cell type? 
 
From a data archiving perspective, the Tissue values should all use valid ontology terms as the 
tissue field is not meant for distinguishing different time points of sampling, there are other 
metadata fields for that information. 
The use of valid ontology terms will enable others to discover and re-use these data 
appropriately and is considered good-practice. 
 
Response: lines, 90-91, 439, and 565-566, were revised as they caused ambiguity. In addition, 
there are 50 tissue, developmental stages, and cell types listed for RNA and miRNA datasets 
(combined) in the most recent version of submitted Supplemental_file1.tsv file. 
 
 
Comment 4: The section on trait similarity is perplexing me (and this maybe my lack of 
experience in this area). Many of the traits mentioned in the network are related to phenotypic 
measurements, e.g. sperm volume. So, does that mean you have captured many phenotypic 
values for all the sampled animals? If so, where are those data? 
 



The most recent version of submitted Supplemental_file1.tsv file listed 50 different tissue, 
developmental stage, and cell lines for RNA and miRNA datasets (combined). 
 
Response: Line 801, Publicly available bovine QTLs were retrieved from Animal QTLdb. In 
addition, the limitation of this approach has been discussed on lines 557-561. 
 
Comment 5: Where the bioinformatics analysis steps are mentioned; "The overview of the 
bioinformatics analysis steps is presented in Supplemental file 2: Fig. S39." The authors should 
include reference to the annotated script file provided to GigaDB. 
 
Response: The GitHub directory included the bioinformatics work-follow and custom scripts, 
was added to Supplemental file 2: Fig. S39 legend. 
 
Comment 6: The statement "…outlier samples were expressed and removed from downstream 
analysis." requires evidence. All sequence data generated must be submitted to the archives 
and cited by accession number, especially where you have removed it from further analysis as 
an outlier. If you do not provide those data, you are open to accusations of cherry-picking your 
data. 
 
Response: Unfortunately, we do not have access to these data samples anymore. 
 
 
Comment 7: The description of the supplemental file 5 in the manuscript differs from the 
content, please check all supplemental files contain the expected data and are correctly 
described in the manuscript. 
 
Response: We are not sure what file you were referring to because everything in our 
perspective looks correct and the most recent version of “Supplemental file 5” (submitted to 
GigaDB on Jul 18, 2023) includes gene/transcript quantification. 
 
Comment 8: The addition of supplemental_file23.docx has helped clarify some aspects, but it 
has also drawn attention to some (possibly) missing data; 
-       The section sub headed "Cell sample collections" describes how some cells were grown, 
however the main manuscript does not describe these results clearly and I am unable to 
determine what analysis was actually done with those cells? Were they sequenced? If so, which 
BioSample accessions do they relate to? 
For better clarity, would it be possible to list the unique Animal IDs within each section, e.g. 
Adult tissue collection change "Eleven cattle (6 males and 5 females) were slaughtered…" to 
"Eleven cattle (6 males- M08, M09, M10, M11, M130, M22, M23, and 5 females- F05, F06, F07, 
F12) were slaughtered…" 
As you can see above, by looking at the "Samples_meta-data.tsv" provided and filtering for age 
420days* it appears there are actually 7 males and 4 females not 6 and 5 as stated in the MS, 
please clarify which is correct. 
*- why use 420 days in the archive but 4 months in the paper? Try to be consistent. 



 
Response: As indicated in 'supplemental_file23.docx,' the cell types used in this study include 
adipocytes, pre-adipocytes, and myocytes. They were all sequenced, and their respective ENA 
Run Accessions were listed in 'Supplemental_file1.tsv' file (adipocytes: ERR9846745, 
ERR9846746, ERR9846747; pre-adipocytes: ERR9707987, ERR9707989, ERR9708039, 
ERR9708041, ERR9708042, ERR9846824, ERR9846825, ERR9846826; myocytes: ERR9708029, 
ERR9708030, ERR9708033, ERR9708034, ERR9708038, ERR9846810, ERR9846811). A revised 
version of 'Samples_meta-data.tsv,' matching 'Supplemental_file1.tsv' was submitted to GigaDB. 
The age of Herefords breed animals was corrected to '420 days' throughout the manuscript 
(Supplemental file 23, line 20). In addition, animal IDs were added to Supplemental File 23 for 
better clarity (lines 18-19, and 25-26). 
 
Comment 9: "Mammary gland tissue collection. The 14 animals used in this study… Samples 
were collected from animals at 4 time points: virgin state before pregnancy between 13 and 15 
months of age (virgin), mid-pregnant at day 100 of pregnancy, late pregnant ~2 weeks pre-
calving, and early lactation ~2 weeks post-calving." 
In the supplemental_file1 table, when I filter for tissue= mammary gland (virgin), mammary 
gland (late pregnant), mammary gland (early lactating), or mammary gland (mid pregnant); I 
can only find 10 different Animal IDs; mam-01, mam-02, mam-03, mam-09, mam-10, mam-11, 
mam-13, mam-14, mam-15, mam-16. Where are the data for the other 4 animals? It appears 
maybe there is a 5th mammary tissue "mammary gland (adult)" that may account for the other 
4 samples, which means the manuscript statement of 4 time points is incorrect. 
 
Response: The number of collected time points for mammary-gland samples was corrected to 5 
(Supplemental file 23: lines 32-35). In addition, the age of animals related to the “mammary 
gland (adult)” were corrected in the revised 'Samples_meta-data.tsv', and 
‘Supplemental_file1.tsv' files. We also updated these samples metadata at ArrayExpress 
database (E-MTAB-11699) to reflect this revision. 
 
Comment 10: "RNA-seq library construction. Tissue samples (Supplemental file 1) were 
collected from live" - supplemental_file1 does not contain a list of tissues, it is a table of all 
different sequence run experiments. 
 
Response: The ‘Tissue’ column in the 'Supplemental_file1.tsv’ contains the list of tissues for 
each dataset used in the study.   
 
Comment 11: The section titled "Sequencing the transcriptomes of seven bovine tissues by 
using the PacBio Iso-Seq and Illumina RNA-Seq technologies" it is unclear to me why it starts by 
stating previously published data were used and then goes on to describe how you extracted 
RNA. Is that a description of how those previously published data were created? Or is it 
describing additional sequencing carried out by yourselves for this study? If the later, please 
clarify which NCBI accessions relate to those data. 
 



Response: The section titled "Sequencing the transcriptomes of seven bovine tissues by using 
the PacBio Iso-Seq and Illumina RNA-Seq technologies" was removed from 
Supplemental_file23.docx. For clarity, a brief description of the experiment was added to the 
“PacBio Iso-Seq data analysis” section (lines 631-643). 
 
 
 
 
 


