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Experimental

Materials. A granular alumina bonded H-ZSM-5 catalyst (H-ZSM-5/Al2O3, 60/40 wt.%, ɸ 

1.2 - 1.8 mm, SiO2/Al2O3 molar ratio of 28) was produced at Yangzhou Baisheng Catalyst Co., 

Ltd., PR China. The as-received H-ZSM-5/Al2O3 catalyst was calcined at 600 °C 8 h and the 

calcined catalyst was stored in a vacuum desiccator. Glycerol (> 99.5% purity) was supplied 

by Boom BV, The Netherlands. Toluene, ethanol, tetrahydrofuran (THF), and n-nonane were 

of analytical grade and supplied by Sigma-Aldrich. The liquid and gaseous N2 were supplied by 

Linde.

Catalytic (co-)pyrolysis experiemnts. The experiments were performed on a well-

engineered bench-scale fixed bed reactor setup. The fresh H-ZSM-5/Al2O3 catalyst (10 g) was 

loaded to the isothermal zone of a stainless steel tubular reactor, of which the rest was filled 

with quartz wool. The reactor was heated to 550 °C under an N2 flow of 50 ml min-1. The (co-

)feed was pumped (10 g h-1) into a preheater (maintained at 350 °C) by using the syringe 

pump(s) and the gastight syringe(s). The vapor mixed with N2 gas was first passed to the vent 

to purge the system for ca. 2 h and then introduced to the catalyst reactor. The reactions 

were continuously performed for a TOS of 12 h. Liquid samples (collected in a 20-ml glass vial) 

and gas-phase samples (collected in a 5-L FlexFoil Plus sample bag) were taken every 30 min. 

Product analysis. The liquid products collected in the 20-ml glass vials were diluted 

approximately 7 times with a stock solution (ca. 20,000 ppm of n-nonane in a mixed solvent 

containing THF and ethanol with a volume ratio of ca. 1 to 10) to prepare homogeneous 

samples for various off-line analyses. The mixtures were analyzed by GC-MS (6890/5973, 

Hewlett-Packard) and GC-FID (5890, Hewlett-Packard) equipped with a Rtx-1701 column (30 

m × 0.25 mm × 0.25 μm, Restek). The relative response factors of the individual aromatics to 

the internal standard, viz., n-nonane, were applied for the quantification of aromatics. The 

carbon, hydrogen, and oxygen contents in the samples were analyzed using a EuroEA3000 

elemental analyzer (Eurovector). The gaseous products collected in the 5-L gas bags were 

analyzed by GC-TCD (5890, Hewlett-Packard) equipped with a CP-PoraBOND Q column (50 m 

× 0.53 mm × 10 μm, Varian) and an HP-Molsieve column (30m x 0.53 mm x 50 μm, Agilent). 

Before and after the analyses, the GC-TCD was pre- and post-calibrated with a standard 

reference gas mixture containing C1-C3, CO, CO2, and N2. The carbon yields of products, the 
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selectivity of individual BTX components, and BTX productivity on the catalyst during the first 

run were calculated using Equations 1-3. 

(1)Yield (%,  on carbon basis) =  
mol of carbon in the individual product

mol of carbon in the  feed  ×  100

 (2)BTX selectivity (%) =  
mol of individual BTX component produced

mol of total BTX product  ×  100

 (3)BTX productivity (𝑚𝑔𝐵𝑇𝑋 𝑔 ―1
𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡) =  

weight of  BTX produced 
weight of catalyst loaded in the reactor 
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Calculation procedure for the calculated data shown in Figs. 3, 4, S3, and S4

The following general calculation equation was used:

Calculated carbon yield of the co-feed = Experimental performance data of Feed A × carbon 

fraction (C.%) of Feed A in the co-feed + Experimental performance data of Feed B × carbon 

fraction (C.%) of Feed B  in the co-feed

The mass ratio of glycerol and toluene in the co-feed was 93/7 wt.%.

The carbon ration of glycerol and toluene in the co-feed was 85/15 C.%.

Calculated data in Figs. 3 and S3

Glycerol Toluene Glycerol/Toluene (85/15 C.%)

(Experimental) (Experimental) (Calculated)

Carbon yield of benzene (C.%)# 4.4 26.7 4.4×0.85+26.7×0.15=7.7

Carbon yield of toluene (C.%) # 9.5 41.3 9.5×0.85+41.3×0.15=14.3

Carbon yield of xylenes (C.%) # 5.3 15.7 5.3×0.85+15.7×0.15=6.8
#The average value of the carbon yields at TOS of 1.5, 2, and 2.5 h.

Calculated data in Fig. 4

Glycerol Toluene Glycerol/Toluene (85/15 C.%)

(Experimental) (Experimental) (Calculated)

Overall carbon yield of benzene (C.%) 2.1 22.1 2.1×0.85+22.1×0.15=5.1

Overall carbon yield of toluene (C.%) 5.3 46.2 5.3×0.85+46.2×0.15=11.4

Overall carbon yield of xylenes (C.%) 3.6 16.4 3.6×0.85+16.4×0.15=5.5

Calculated data in Fig. S4

Glycerol Toluene Glycerol/Toluene (93/7 wt.%)

(Experimental) (Experimental) (Calculated)
Productivity of benzene on the catalyst 
during the first run (mg g-1

catalyst)
79 1859 79×0.93+1859×0.07=204

Productivity of toluene on the catalyst 
during the first run (mg g-1

catalyst)
206 3926 206×0.93+3926×0.07=466

Productivity of xylenes on the catalyst 
during the first run (mg g-1

catalyst)
141 1409 141×0.93+1409×0.07=230
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Figure S1. Pricing for benzene, toluene, mixed xylenes, and crude oil in 2017 - 2023.S1-S2 
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Figure S2. Synthesis of bio-based polymers from bio-based benzene and xylenes.S3-S7
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Figure S3. Productivity of (a) total BTX, (b) benzene, (c) toluene, and (d) xylenes on the catalyst 

during the first run for catalytic conversion of glycerol (left) and co-conversion of glycerol and 

toluene (93/7 wt.%, right). Reaction conditions: H-ZSM-5/Al2O3 (60/40 wt.%) catalyst of 10 g, 

WHSV of the (co-)feeds of 1 h−1, N2 flow of 50 ml min−1, reactor temperature of 550 °C, 

atmospheric pressure, and TOS of 8.5 h.
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Figure S4. Carbon yields of low-molecular-weight hydrocarbons versus TOS for catalytic 

conversion of individual glycerol (a) and toluene (c), and catalytic co-conversion of glycerol 

and toluene (93/7 wt.%, b).  Reaction conditions: H-ZSM-5/Al2O3 (60/40 wt.%) catalyst of 10 

g, WHSV of the (co-)feeds of 1 h−1, N2 flow of 50 ml min−1, reactor temperature of 550 °C, and 

atmospheric pressure.
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Figure S5. Mass balance for catalytic conversion of individual glycerol (a) and toluene (c), 

and catalytic co-conversion of glycerol and toluene (93/7 wt.%, b). Reaction conditions: H-

ZSM-5/Al2O3 (60/40 wt.%) catalyst of 10 g, WHSV of the (co-)feeds of 1 h−1, N2 flow of 50 ml 

min−1, reactor temperature of 550 °C, and atmospheric pressure.
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Figure S6. Carbon selectivity of the individual BTX in total BTX versus TOS for catalytic 

conversion of individual glycerol (a) and toluene (c), and catalytic co-conversion of glycerol 

and toluene (93/7 wt.%, b). Reaction conditions: H-ZSM-5/Al2O3 (60/40 wt.%) catalyst of 10 

g, WHSV of the (co-)feeds of 1 h−1, N2 flow of 50 ml min−1, reactor temperature of 550 °C, and 

atmospheric pressure.
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Figure S7. Carbon yields of CO and CO2 versus TOS for catalytic conversion of individual 

glycerol (a) and toluene (c), and catalytic co-conversion of glycerol and toluene (93/7 wt.%, 

b). 

Reaction conditions: H-ZSM-5/Al2O3 (60/40 wt.%) catalyst of 10 g, WHSV of the (co-)feeds of 

1 h−1, N2 flow of 50 ml min−1, reactor temperature of 550 °C, and atmospheric pressure.
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Figure S8. Overall BTX carbon yield (a), productivity of BTX on the catalyst during the first run 

including the toluene fraction for the recycle in co-feed (b), and productivity of BTX on the 

catalyst during the first run excluding the toluen fraction recycled in co-feed (c) for co-

conversion of glycerol and toluene (93/7 wt.%). Reaction conditions: H-ZSM-5/Al2O3 (60/40 

wt.%), WHSV of co-feed  of 1 h−1, N2 flow of 50 ml min−1, reactor temperature of 550 °C, 

atmospheric pressure, and TOS varied from 8.5 to 12 h.
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Figure S9. Enhanced production of bio-BTX aromatics (in particular xylenes) for catalytic 

conversion of glycerol (left) by self-sufficient toluene product recycling (right). Reaction 

conditions: H-ZSM-5/Al2O3 (60/40 wt.%), WHSV of the (co-)feeds of 1 h−1, N2 flow of 50 ml 

min−1, reactor temperature of 550 °C, atmospheric pressure, and TOS of 8.5 h.
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