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Experimental

Materials. A granular alumina bonded H-ZSM-5 catalyst (H-ZSM-5/Al,03, 60/40 wt.%, ¢
1.2 - 1.8 mm, SiO,/Al,03; molar ratio of 28) was produced at Yangzhou Baisheng Catalyst Co.,
Ltd., PR China. The as-received H-ZSM-5/Al,03 catalyst was calcined at 600 °C 8 h and the
calcined catalyst was stored in a vacuum desiccator. Glycerol (> 99.5% purity) was supplied
by Boom BV, The Netherlands. Toluene, ethanol, tetrahydrofuran (THF), and n-nonane were
of analytical grade and supplied by Sigma-Aldrich. The liquid and gaseous N, were supplied by
Linde.

Catalytic (co-)pyrolysis experiemnts. The experiments were performed on a well-
engineered bench-scale fixed bed reactor setup. The fresh H-ZSM-5/Al,0; catalyst (10 g) was
loaded to the isothermal zone of a stainless steel tubular reactor, of which the rest was filled
with quartz wool. The reactor was heated to 550 °C under an N, flow of 50 ml min'. The (co-
)feed was pumped (10 g h') into a preheater (maintained at 350 °C) by using the syringe
pump(s) and the gastight syringe(s). The vapor mixed with N, gas was first passed to the vent
to purge the system for ca. 2 h and then introduced to the catalyst reactor. The reactions
were continuously performed for a TOS of 12 h. Liquid samples (collected in a 20-ml glass vial)

and gas-phase samples (collected in a 5-L FlexFoil Plus sample bag) were taken every 30 min.

Product analysis. The liquid products collected in the 20-ml glass vials were diluted
approximately 7 times with a stock solution (ca. 20,000 ppm of n-nonane in a mixed solvent
containing THF and ethanol with a volume ratio of ca. 1 to 10) to prepare homogeneous
samples for various off-line analyses. The mixtures were analyzed by GC-MS (6890/5973,
Hewlett-Packard) and GC-FID (5890, Hewlett-Packard) equipped with a Rtx-1701 column (30
m x 0.25 mm x 0.25 um, Restek). The relative response factors of the individual aromatics to
the internal standard, viz., n-nonane, were applied for the quantification of aromatics. The
carbon, hydrogen, and oxygen contents in the samples were analyzed using a EuroEA3000
elemental analyzer (Eurovector). The gaseous products collected in the 5-L gas bags were
analyzed by GC-TCD (5890, Hewlett-Packard) equipped with a CP-PoraBOND Q column (50 m
x 0.53 mm x 10 um, Varian) and an HP-Molsieve column (30m x 0.53 mm x 50 um, Agilent).
Before and after the analyses, the GC-TCD was pre- and post-calibrated with a standard

reference gas mixture containing C;-C3, CO, CO,, and N,. The carbon yields of products, the
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selectivity of individual BTX components, and BTX productivity on the catalyst during the first

run were calculated using Equations 1-3.

mol of carbon in the individual product

Yield (%, on carbon basis) = ol of carbon in the feed X 100 (1)
L. mol of individual BTX component produced
BTX selectivity (%) = mol of total BTX product X 100 (2)
L. _1 . weight of BTX produced
BTX pI‘OdUCtIVIty (mgBTX gcatalyst) — weight of catalyst loaded in the reactor (3)
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Calculation procedure for the calculated data shown in Figs. 3, 4, S3, and S4

The following general calculation equation was used:

Calculated carbon yield of the co-feed = Experimental performance data of Feed A x carbon

fraction (C.%) of Feed A in the co-feed + Experimental performance data of Feed B x carbon

fraction (C.%) of Feed B in the co-feed

The mass ratio of glycerol and toluene in the co-feed was 93/7 wt.%.

The carbon ration of glycerol and toluene in the co-feed was 85/15 C.%.

Calculated data in Figs. 3 and S3

Glycerol

(Experimental)

Toluene

(Experimental)

Glycerol/Toluene (85/15 C.%)
(Calculated)

Carbon yield of benzene (C.%)* 4.4 26.7 4.4x0.85+26.7x0.15=7.7
Carbon yield of toluene (C.%)# 9.5 41.3 9.5x0.85+41.3x0.15=14.3
Carbon yield of xylenes (C.%)#* 5.3 15.7 5.3x0.85+15.7x0.15=6.8
#The average value of the carbon yields at TOS of 1.5, 2, and 2.5 h.
Calculated data in Fig. 4
Glycerol Toluene Glycerol/Toluene (85/15 C.%)

(Experimental)

(Experimental)

(Calculated)

Overall carbon yield of benzene (C.%) 2.1 22.1 2.1x0.85+22.1x0.15=5.1
Overall carbon yield of toluene (C.%) 53 46.2 5.3x0.85+46.2x0.15=11.4
Overall carbon yield of xylenes (C.%) 3.6 16.4 3.6x0.85+16.4x0.15=5.5

Calculated data in Fig. S4
Glycerol Toluene Glycerol/Toluene (93/7 wt.%)

(Experimental)

(Experimental)

(Calculated)

Productivity of benzene on the catalyst

. ) 79
during the first run (mg glctaiyst)
Productivity of toluene on the catalyst

. : . 206
during the first run (mg g™ catalyst)
Productivity of xylenes on the catalyst 141

during the first run (mg glcataiyst)

1859

3926

1409

79x0.93+1859x0.07=204

206x0.93+3926x0.07=466

141x0.93+1409x0.07=230
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BTX prices are collected from the weekly report of Ethanol Market and Pricing Data by U.S. Grains Council.
The reports are available at https://grains.org/ethanol_report/
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Crude oil prices are collected from the fuel prices data by U.S. Energy Information Administration.
The data are available at https://www.eia.gov/dnav/pet/pet_pri_spt_s1_w.htm

Figure S1. Pricing for benzene, toluene, mixed xylenes, and crude oil in 2017 - 2023.51-52
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Figure S3. Productivity of (a) total BTX, (b) benzene, (c) toluene, and (d) xylenes on the catalyst
during the first run for catalytic conversion of glycerol (left) and co-conversion of glycerol and
toluene (93/7 wt.%, right). Reaction conditions: H-ZSM-5/Al,05 (60/40 wt.%) catalyst of 10 g,
WHSV of the (co-)feeds of 1 h™1, N, flow of 50 ml min=%, reactor temperature of 550 °C,

atmospheric pressure, and TOS of 8.5 h.
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Figure S4. Carbon yields of low-molecular-weight hydrocar

0.0
012345678 9101112

bons versus TOS for catalytic

conversion of individual glycerol (a) and toluene (c), and catalytic co-conversion of glycerol

and toluene (93/7 wt.%, b). Reaction conditions: H-ZSM-5/Al,03 (60/40 wt.%) catalyst of 10

g, WHSV of the (co-)feeds of 1 h™1, N, flow of 50 ml min~1, reactor temperature of 550 °C, and

atmospheric pressure.
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Figure S5. Mass balance for catalytic conversion of individual glycerol (a) and toluene (c),

and catalytic co-conversion of glycerol and toluene (93/7 wt.%, b). Reaction conditions: H-

ZSM-5/Al,05 (60/40 wt.%) catalyst of 10 g, WHSV of the (co-)feeds of 1 h™%, N, flow of 50 ml

min!, reactor temperature of 550 °C, and atmospheric pressure.
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Figure S6. Carbon selectivity of the individual BTX in total BTX versus TOS for catalytic
conversion of individual glycerol (a) and toluene (c), and catalytic co-conversion of glycerol
and toluene (93/7 wt.%, b). Reaction conditions: H-ZSM-5/Al,03 (60/40 wt.%) catalyst of 10
g, WHSV of the (co-)feeds of 1 h™%, N, flow of 50 ml min~1, reactor temperature of 550 °C, and

atmospheric pressure.
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Figure S7. Carbon yields of CO and CO, versus TOS for catalytic conversion of individual

glycerol (a) and toluene (c), and catalytic co-conversion of glycerol and toluene (93/7 wt.%,
b).

Reaction conditions: H-ZSM-5/Al,0; (60/40 wt.%) catalyst of 10 g, WHSV of the (co-)feeds of

1 h™1, N, flow of 50 ml min~%, reactor temperature of 550 °C, and atmospheric pressure.
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Figure S8. Overall BTX carbon yield (a), productivity of BTX on the catalyst during the first run
including the toluene fraction for the recycle in co-feed (b), and productivity of BTX on the
catalyst during the first run excluding the toluen fraction recycled in co-feed (c) for co-
conversion of glycerol and toluene (93/7 wt.%). Reaction conditions: H-ZSM-5/Al,05 (60/40
wt.%), WHSV of co-feed of 1 h™1, N, flow of 50 ml min=%, reactor temperature of 550 °C,

atmospheric pressure, and TOS varied from 8.5 to 12 h.
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Figure S9. Enhanced production of bio-BTX aromatics (in particular xylenes) for catalytic

conversion of glycerol (left) by self-sufficient toluene product recycling (right). Reaction

conditions: H-ZSM-5/Al,05 (60/40 wt.%), WHSV of the (co-)feeds of 1 h-1, N, flow of 50 ml

min~?, reactor temperature of 550 °C, atmospheric pressure, and TOS of 8.5 h.
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