Design and Interpretation of Oral Contraceptive Drug-Drug Interaction Studies

> Vivek S. Purohit, Ph.D., Pfizer, Clinical Pharmacology, Global Innovative Pharma Business Unit, Groton, CT, USA.

Vivek S.Purohit is a fulltime employee and stockholder of Pfizer.

Acknowledgements

Pharmacokinetics, Dynamics and Metabolism

- David Rodrigues, Ernesto Callegari, Susanna Tse, Theunis Goosen
 Clinical Pharmacology
- Jack Cook
- Biostatistics
- Rob Labadie

Outline

- Summary of Pfizer (internal) guidance on "Oral Contraceptives (OC) Drug-Drug Interaction (DDI) Studies"
 - Design considerations for OC's as victim (object)
 - Value of pharmacodynamic endpoints
 - Considerations for OC's as perpetrators
- Pfizer experience with OC DDI studies
- Design and Interpretation Examples
- Summary

Current Understanding of OC DDI Potential

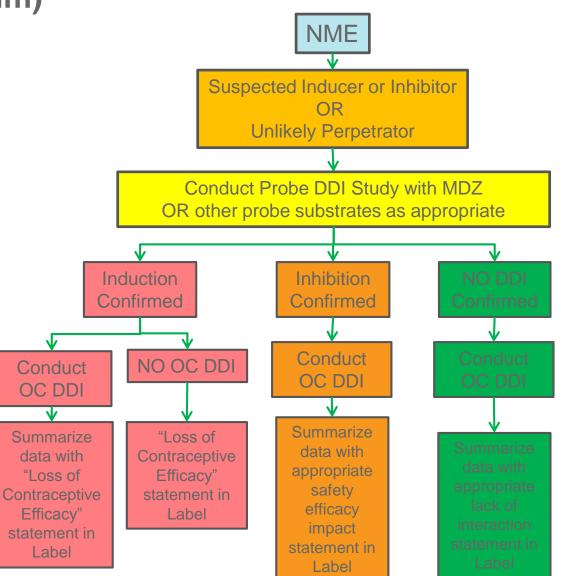
DDI Type	EE As Victim (Metabolized by CYP3A, CYP2C9,	EE as Perpetrator (Very low EE hepatic levels during first pass)	
	UGAT1A1, SULT1E1)		
Induction	 Concerns regarding loss of efficacy and break through bleeding Induction of CYP3A is the main focus especially moderate to strong inducers up to 65% decrease in EE AUC reported (rifampin) Induction of CYP2C9, UGT, SULT enzymes are also possible 	 Not sure that this is an issue of clinical significance Some evidence for CYP3A induction <u>in vitro</u> Very low plasma levels of EE (<< EC₅₀ for CYP3A induction) 	
Inhibition	 Most compounds increase EE AUC < 75% Concerns regarding elevated C_{max} and CV effects SULT1E1 plays a role in gut and liver first pass Inhibition of SULT1E1 (especially in gut) can increase EE AUC, C_{max} Etoricoxib only known inhibitor of SULT1E1 to date Impact of potent CYP inhibition (CYP3A4 and/or CYP2C9) on EE PK not well studied not well differentiated vs. SULT1E1 Association of EE PK with UGT1A1 genotype or inhibition not well studied 	 Evidence for inhibition of CYP2C19 and/or CYP1A1 clinically (gut CYP1A1 implicated) Higher first pass (low oral F) drugs that serve as CYP2C19 and CYP1A substrates elicit AUCR >2 IVIVE not well established for CYP2C19 and CYP1A Weak inhibitor of other CYPs Consistent with low [I]/Ki ratio Evidence for mechanism-based inhibition of CYP3A <i>in vitro</i> K_{inact}, KI measurable but plasma levels very low. 	

EE = Ethinyl estradiol

David A. Rodrigues, PDM Pfizer

Clin Pharmacokinet 2007; 46(2): 133-157

Rationale for OC (Victim) DDI Studies


•Evidence from *in vitro* studies suggesting NME influences CYP3A activity.

•Target patient population for the NME will include females of childbearing potential who use oral contraceptives.

•The NME is a teratogen or likely to be co-administered or combined with a teratogen.

•Results from the OC DDI study will influence the design of clinical trials involving combination therapy during the drug development process.

•If *in vitro* data do not suggest a CYP3A interaction, and a claim of lack of DDI is still desired in the label, then a confirmatory clinical DDI study is needed.

NME = New molecular entity,

MDZ = Midazolam (Sensitive CYP3A substrate)

Study Design Considerations

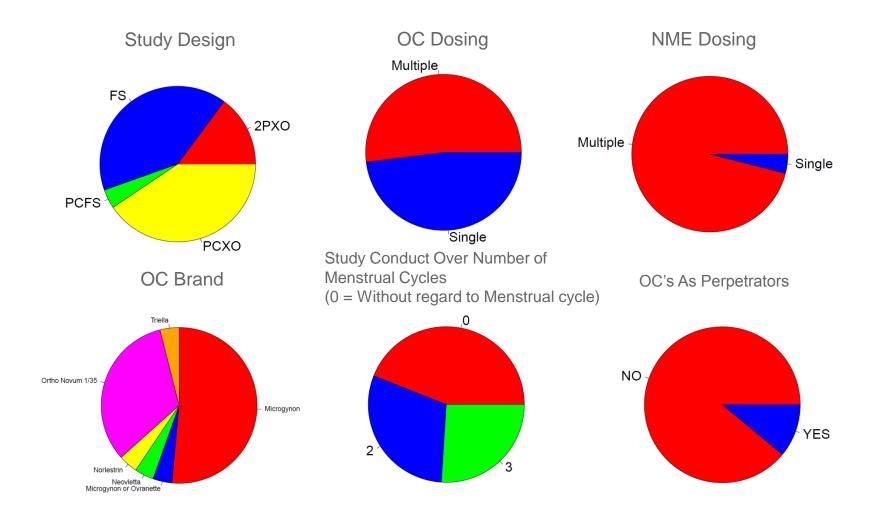
- OC Dosing:
 - Single OC dose can be considered if induction or inhibition has been confirmed for NME using probe substrates
 - Multiple OC dosing can be considered for demonstrating lack of interaction
- NME dosed to steady state or up to 14 days if induction or TDI suspected
- Design options:
 - Open label, fixed sequence, single or multiple dose OC
 - Randomized, cross over with single or multiple dose OC
- Menstrual cycle considerations
 - Can be conducted without regard to the cycle if primarily looking to confirm a PK interaction
 - Metabolism via CYP3A not affected by menstrual cycle (*Clin Pharmacol Ther 1998* 64: 268-277)
 - If PD endpoints are collected, dosing synchronized with menstrual cycle is necessary

Study Population

- Healthy women subjects with exceptions for ethical considerations (e.g. Oncology)
- Post menopausal women
 - CYP3A induction similar between young (26±4) and postmenopausal (72±5) female subjects (*Clin Pharmacol Ther 2003 Sep;74(3):275-87*)
 - Low dose OCs have been shown to be safe for 1- 3 years (Obstet Gynecol 2000, 95:87-94; Int J Fertil 1985, 30:15-28)
- Women of child bearing potential can be considered specifically if PD assessments become necessary
- Healthy males NOT recommended
 - Females are more sensitive to hepatic CYP3A induction (*Clin Pharmacol Ther 2003* Sep;74(3):275-87)
 - Inclusion of male subjects could underestimate the magnitude of interaction (*Clin Pharmacol Ther 2003 Sep;74: 525-535*)

Endpoint Considerations

- PK Endpoints AUC and C_{max}
- PK Criteria:
 - For claiming no interaction: 90% CI for GMR between 80 125 (Default)
 - Narrower or wider acceptance criteria may be considered on a case by case basis if justified, defined prospectively
- PD Endpoints Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), progesterone and/or endosonography
 - Daily diaries for recording breakthrough bleeding
- PD Endpoints are not recommended routinely
 - Endpoints more variable limiting the ability to power a study based on PD endpoints as primary.
 - Changes in PD parameters difficult to detect and take longer to stabilize for making meaningful conclusions
 - PK is generally a more sensitive measure of CYP modulation than PD marker; we want to use the most sensitive marker for DDI studies
 - PD results unlikely to influence labeling if significant PK interaction observed.

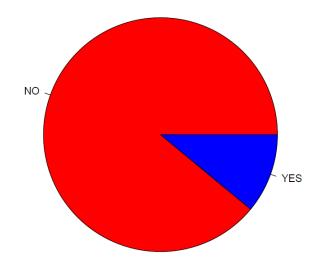


OC's as Perpetrator of DDI

- Clinically significant DDI with OC's as perpetrators is rare but occurs
 - Examples Selegeline, Tizanidine (NTI), Prednisolone
- Induction not usually of concern for OC's
- Inhibition of CYP2C19 or CYP1A may result in clinically significant DDI
- Design considerations are similar to OC's as victim

Pfizer Experience with OC DDI Studies (N=28*)

Pfizer


FS = Fixed sequence; PCFS = Placebo controlled fixed sequence; PCXO = Placebo controlled cross over; 2PXO = 2 Period cross over

* May not include all legacy studies prior to acquisition

Label Language Examples

- 1. Does not effect the PK of oral contraceptives.
- 2. No dose adjustments
- 3. No clinically significant drug-drug pharmacokinetic interactions were observed when drug X was administered with oral contraceptives (norethindrone/ethinyl estradiol).
- 4. Women of childbearing potential should use effective contraception during treatment. The co-administration of drug X with the oral contraceptive, Ortho-Novum[®] (35 mcg ethinyl estradiol and 1 mg norethindrone), results in an interaction between these two drugs, but is unlikely to reduce the contraceptive effect. Monitoring for adverse events related to oral contraceptives is recommended during co-administration.

No PD or biomarker data provided in labels.

It is unclear how PD data when available is being used to inform use of NME with OC's

Example 1: Design

Drug – Voriconazole

- Metabolized by CYP2C19, 2C9 and 3A4
- Strong CYP3A4 inhibitor
- Study designed to assess:
 - Voriconazole on OC's
 - OC's on Voriconazole
- Study design synchronized with menstrual cycle but no PD or Biomarker assessments

	Study period				
	Period 1	Wash-out	Period 2	Wash-out	Period 3
Study day*	1–4	5–11	12–32	33–39	40–60
Menstrual cycle day	18–21	22–28	1–21	22–28	1–21
Voriconazole dosing	Day 1: 400 mg q12 h Days 2–3: 200 mg q12 h Day 4: 200 mg qAm	None	None	None	Day 57: 400 mg q12 h Days 58–60: 200 mg q12 h
Ortho-Novum [®] 1/35 dosing	None	None	Days 12–32: q24 h	None	Days 40–60: q24 h

*Serial pharmacokinetic sampling was conducted on study days 4, 32 and 60.

Example 1: Results and Interpretation

NME as Victim:

Voriconazole exposure ↑ due to CYP2C19 inhibition

OC's as Victim:

Interpretation for Voriconazole:

- Magnitude of 1 in exposures by OC's alone is unlikely to influence the adverse event profile for Voriconazole
- May be of concern in poor CYP2C19 metabolizers. Need for caution in these patients with appropriate AE monitoring

Interpretation for OC's:

 în exposures of OC's with Voriconazole are within the range of exposures observed for higher doses of OC's^a. Need for appropriate AE monitoring necessary

Conclusion:

- Monitoring for AE due to Voriconazole and OC's is necessary when co administered
- For a drug like Voriconazole, the above results become important aid in developing monitoring guidelines for confirmatory studies (Phase 3 studies)

Pharmacokinetic parameter	% Ratio (90% Cl)*
Voriconazole AUC _τ (ng h ml ^{−1}) C _{max} (ng ml ^{−1}) T _{max} (h)†	145.84 (132.13, 160.97) 114.30 (103.05, 126.77) –‡
Ethinyl oestradiol AUCτ (pg h ml ⁻¹) C _{max} (pg ml ⁻¹) T _{max} (h)†	160.68 (149.81, 172.35) 135.99 (127.67, 144.85) –‡
Norethindrone AUC _τ (ng h ml ⁻¹) C _{max} (ng ml ⁻¹) T _{max} (h)†	153.39 (143.80, 163.62) 114.91 (103.05, 128.14) –‡

^a Br J Clin Pharmacol 1998; 46: 111-6 and Epilepsia 1999; 40:783-7

Br J Clin Pharmacol 2008, 65:4, 531-539

FDA Workshop Nov 2015 14

Example 2: Design, Results and Interpretation

- Drug Maraviroc
- Metabolized by CYP3A
- Increased midazolam AUC and C_{max} by 18% and 21% respectively. Hence not a significant inducer or inhibitor of CYP3A
- Placebo controlled cross over trial without regard to menstrual cycle
- Study designed to rule out any induction of CYP3A which could reduce OC efficacy

Maraviroc 100 mg			
or placebo			
b.i.d. days I–I0			
SD day II			
+			
ethinyloestradiol 30 µg			
levonorgestrel 150 µg			
SD days 2–8			

 Ethinyl Estradiol (EE) and Levonorgestrel (LN) levels not influenced by maraviroc

Treatment		AUCt (pg ml ^{−1} h)* mean (CV%)	C _{max} (pg ml ⁻¹)* mean (CV%)
EE	Maraviroc + EE/LN	745 (30)	84.0 (28)
	Placebo + EE/LN	746 (30)	84.8 (24)
	Ratio (%)‡ or difference§	99.6	98.4
	90% confidence interval	94.5, 105	91.3, 106
LN	Maraviroc + EE/LN	71 (24)	7.13 (19)
	Placebo + EE/LN	72 (28)	7.05 (22)
	Ratio (%)‡ or difference§	97.7	100
	90% confidence interval	92, 104	93, 108

*Unadjusted geometric means. †Unadjusted arithmetic means. ‡Ratio for AUC₁₂ and C_{max}. §Difference for T_{max}; AUC_t was calculated for EE instead of AUC_t because some subjects did not have measurable EE concentrations up to 24 h postdose.

Interpretation:

- Although maraviroc does not impact OC levels, it is likely to be combined with drugs which are inducers of CYP3A and likely to reduce OC levels
- Hence, the use of maraviroc with OC's will be dictated by the drugs it is being combined with
- Study results become critical when a maraviroc like drug is used in monotherapy or in combination with other non-inducers

FDA Workshop Nov 2015 15

Induction Interpretation

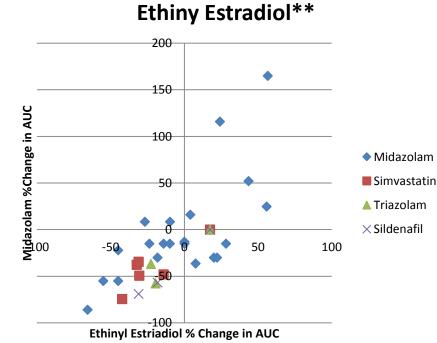
- If an NME shows induction with a sensitive CYP3A substrate
- Further confirmed with OC DDI study
- OC's cannot be considered an effective method of contraception.
 - Alternate methods of contraception should be considered for future studies
- Question for consideration:
 - If induction by NME shown with sensitive CYP3A substrate is an OC DDI study necessary?

Summary

- Need for OC DDI studies should be based on results from probe (CYP3A) substrates (OC as victim) or representative inhibitor (CYP2C19) studies (OC as perpetrator)
- Confirmation of induction with a midazolam study can obviate the need for a dedicated OC DDI study
 - Label to indicate, OC's may not provide adequate contraception
- Confirmation of CYP3A inhibition or lack thereof with Midazolam may need to be followed by dedicated OC DDI study for label claim of adequate contraception and safety precautions if necessary
- PK criteria are adequate to establish DDI, establish usage guidelines and inform label
 - Focusing on PK criteria allows simplification of study design, resulting in shorter and focused studies
- PD endpoints are not routinely necessary and their value in developing usage guidelines or labeling is not clear

Summary (Cont'd)

- For drugs similar to voriconazole, to be used in populations likely to use oral contraceptives – dedicated OC DDI study conducted early can be useful in establishing monitoring guidelines for P3 study and provide adequate data for labeling
 - Any observed interaction (↑ in exposures of OC's) should be contextualized based on the totality of the safety data available and not just the data from DDI study
- Areas Future of Research:
 - Use of PBPK modeling to predict and assess DDI potential of NME's on OC's
 - Impact of biologics on OC's and understanding inflammatory disease drug interaction
 - Drugs like Actemra can alter CYP expression by altering the underlying disease and hence impact drug exposures



BACKUP SLIDES.

How do Midazolam Study Results Compare to Ethinyl Estradiol*

Just looking, at available data. Should be confirmed in a comprehensive analysis

Sensitive CYP3A Substrate Vs Ethiny Estradiol**

* Data sourced from http://didb.druginteractioninfo.org/User/UserHome.aspx

** Removed two outliers (boceprevir and telaprevir)

Effect of Menstrual Cycle Phase on CYP3A activity.

- Midazolam (0.025 mg/kg) was administered intravenously to 10 white premenopausal female volunteers during the midfollicular and midluteal phases of the menstrual cycle for 3 complete cycles. Serum was collected for a 6-hour period, and enzyme activity was represented by midazolam plasma clearance.
- No difference in clearance was observed during the menstrual cycle phases. Mean +/- SD midazolam clearance was 0.00816 +/- 0.00252 L/min/kg during the midfollicular phase and 0.00818 +/- 0.00224 during the midluteal phase (P value = 0.96).

Clin Pharmacol Ther 1998 64: 268-277