

Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC)

Stefano Aliberti , Felix C. Ringshausen , Raja Dhar, Charles S. Haworth, Michael R. Loebinger, Katerina Dimakou, Megan L. Crichton, Anthony De Soyza , Montse Vendrell, Pierre-Regis Burgel , Melissa McDonnell , Sabina Skrgat, Luis Maiz Carro, Andres de Roux, Oriol Sibila, Apostolos Bossios , Menno van der Eerden, Paula Kauppi, Robert Wilson, Branislava Milenkovic, Rosario Menendez, Marlene Murris, Sermin Borekci, Oxana Munteanu, Dusanka Obradovic, Adam Nowinski, Adelina Amorim, Antoni Torres , Natalie Lorent , Eva Van Braeckel , Josje Altenburg, Amelia Shoemark , Michal Shteinberg , Wim Boersma, Pieter C. Goeminne, J. Stuart Elborn, Adam T. Hill, Tobias Welte , Francesco Blasi, Eva Polverino and James D. Chalmers on behalf of the EMBARC Registry Investigators

GRAPHICAL ABSTRACT We enrolled 13 484 patients with bronchiectasis from 31 countries. Assessment of sputum colour at baseline was used to investigate the relationship with disease severity and outcomes. We show a strong relationship between sputum colour and exacerbations and hospitalisation for severe exacerbations. Increasing sputum purulence is a marker of disease outcome in bronchiectasis.

Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC)

Stefano Aliberti 1, Felix C. Ringshausen 3,4,5, Raja Dhar⁶, Charles S. Haworth⁷, Michael R. Loebinger⁸, Katerina Dimakou⁹, Megan L. Crichton¹⁰, Anthony De Soyza 1, Montse Vendrell¹², Pierre-Regis Burgel 1, Melissa McDonnell 1, Sabina Skrgat^{16,17,18}, Luis Maiz Carro¹⁹, Andres de Roux²⁰, Oriol Sibila^{21,22}, Apostolos Bossios 2,2,4, Menno van der Eerden²⁵, Paula Kauppi²⁶, Robert Wilson⁸, Branislava Milenkovic^{27,28}, Rosario Menendez²⁹, Marlene Murris³⁰, Sermin Borekci³¹, Oxana Munteanu³², Dusanka Obradovic^{33,34}, Adam Nowinski³⁵, Adelina Amorim³⁶, Antoni Torres 2,1,22, Natalie Lorent 3, Eva Van Braeckel 3,3,9, Josje Altenburg⁴⁰, Amelia Shoemark 1, Michal Shteinberg 4, Wim Boersma⁴³, Pieter C. Goeminne⁴⁴, J. Stuart Elborn⁴⁵, Adam T. Hill⁴⁶, Tobias Welte 3,4,5, Francesco Blasi^{47,48}, Eva Polverino⁴⁹ and James D. Chalmers¹⁰ on behalf of the EMBARC Registry Investigators

¹Respiratory Unit, IRCCS Humanitas Research Hospital, Pieve Emanuele, Italy. ²Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy. ³Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany. ⁴Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany. ⁵European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany. ⁶CK Birla Hospitals, Kolkata, India. ⁷Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK. ⁸Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK. ⁹5th Respiratory Department and Bronchiectasis Unit, "Sotiria" General Hospital of Chest Diseases Medical Practice, Athens, Greece. ¹⁰Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK. ¹¹Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, UK. ¹²Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain. ¹³Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France. ¹⁴Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France. ¹⁵Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland. ¹⁶University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia. ¹⁷Medical Faculty, University of Ljubljana, Ljubljana, Slovenia. ¹⁸Division of Internal Medicine, Pulmonary Department, University Medical Centre Ljubljana, Ljubljana, Slovenia. ¹⁹Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain. ²⁰Pneumologische Praxis am Schloss Charlottenburg, Berlin, Germany. ²¹Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain. ²²CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. ²³Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden. ²⁴Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. ²⁵Erasmus MC, Department of Respiratory Medicine, Rotterdam, The Netherlands. ²⁶Heart and Lung Center, Helsinki, Finland. ²⁷Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Belgrade, Serbia. ²⁸School of Medicine, University of Belgrade, Belgrade, Serbia. ²⁹Pneumology Department, Hospital Universitario y Politécnico La Fe – Instituto de Investigación Sanitaria La Fe, Valencia, Spain. ³⁰Department of Respiratory Diseases, CHU Toulouse, Toulouse, France. ³¹Department of Pulmonology Diseases, Cerrahpasa Medical Faculty, Istanbul University – Cerrahpasa, Istanbul, Turkey. ³²Pneumology/Allergology Division, University of Medicine and Pharmacy Nicolae Testemitanu, Chisinau, Moldova. 33 Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia. ³⁴Institute for Pulmonary Diseases, Sremska Kamenica, Serbia. ³⁵Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland. ³⁶Pulmonology Department, Centro Hospitalar Universitário S. João and Faculty of Medicine, University of Porto, Porto, Portugal. ³⁷Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium. ³⁸Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium. Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
Department of Pulmonary Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel.
Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel.
Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel.
Rappaport Faculty of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands.
Respiratory Diseases, AZ Nikolaas, Sint-Niklaas, Belgium.
Respiratory Medicine, Royal Infirmary of Edinburgh, UK.
Respiratory Medicine, Royal Infirmary of Edinburgh, UK.
Royal Infirmary of Edinburgh, UK.
Royal Infirmary of Edinburgh, UK.
Royal Infirmary of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Royal Infirmary of Pathophysiology Department, Hospital Universitari Vall d'Hebron, Vall Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain.

Corresponding author: James D. Chalmers (j.chalmers@dundee.ac.uk)

Shareable abstract (@ERSpublications)

Sputum colour is a simple non-invasive marker of airway inflammation that identifies patients with bronchiectasis at higher risk of exacerbation, hospitalisation and mortality https://bit.ly/3HczGxO

Cite this article as: Aliberti S, Ringshausen FC, Dhar R, et al. Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J 2024; 63: 2301554 [DOI: 10.1183/13993003.01554-2023].

This extracted version can be shared freely online.

Copyright ©The authors 2024.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/13993003.00152-2024

Received: 13 Sept 2023 Accepted: 2 Jan 2024

Abstract

Background A validated 4-point sputum colour chart can be used to objectively evaluate the levels of airway inflammation in bronchiectasis patients. In the European Bronchiectasis Registry (EMBARC), we tested whether sputum colour would be associated with disease severity and clinical outcomes.

Methods We used a prospective, observational registry of adults with bronchiectasis conducted in 31 countries. Patients who did not produce spontaneous sputum were excluded from the analysis. The Murray sputum colour chart was used at baseline and at follow-up visits. Key outcomes were frequency of exacerbations, hospitalisations for severe exacerbations and mortality during up to 5-year follow-up.

Results 13 484 patients were included in the analysis. More purulent sputum was associated with lower forced expiratory volume in 1 s (FEV₁), worse quality of life, greater bacterial infection and a higher bronchiectasis severity index. Sputum colour was strongly associated with the risk of future exacerbations during follow-up. Compared to patients with mucoid sputum (reference group), patients with mucopurulent sputum experienced significantly more exacerbations (incident rate ratio (IRR) 1.29, 95% CI 1.22–1.38; p<0.0001), while the rates were even higher for patients with purulent (IRR 1.55, 95% CI 1.44–1.67; p<0.0001) and severely purulent sputum (IRR 1.91, 95% CI 1.52–2.39; p<0.0001). Hospitalisations for severe exacerbations were also associated with increasing sputum colour with rate ratios, compared to patients with mucoid sputum, of 1.41 (95% CI 1.29–1.56; p<0.0001), 1.98 (95% CI 1.77–2.21; p<0.0001) and 3.05 (95% CI 2.25–4.14; p<0.0001) for mucopurulent, purulent and severely purulent sputum, respectively. Mortality was significantly increased with increasing sputum purulence, hazard ratio 1.12 (95% CI 1.01–1.24; p=0.027), for each increment in sputum purulence.

Conclusion Sputum colour is a simple marker of disease severity and future risk of exacerbations, severe exacerbations and mortality in patients with bronchiectasis.

