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eAppendix 1.  Illustration of how individuals were included into the study
The methods use to restrict the data set and form the families in this section are defined herin. 
Consider the following pedigree with two grandparents (G1 and G2), four children of the 
grandparents with their partners, which we denote as “parents” (P1 to P8), and nine 
grandchildren (C1-C9). A circle indicates a female and a square indicates a male.

eFigure 1. Sample 3-generation pedigree - Children removed due to birth order

In this example, a lower number indicates a higher age. Thus, grandchildren C8 and C9 are 
removed as their mother is the fourth child. Moreover, grandchild C6 is removed because she 
is the fourth child of her mother. It should be noted that we count the birth order in the parent 
generation as the birth order of the mother. In the grandchild generation, we restrict the 
parents to be the first partner of each other. Thus, the birth order is the same regardless of 
whether one examines the mother or the father.
Next, we consider the following pedigree:
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eFigure 2. Sample 2-generation pedigree - Children removed due to 1st-partner-restriction

A dashed line indicates that it is the same individual. Here, we exclude grandchildren C4 and 
C5, as they are not children from the first partner of either of their parents. We also exclude 
C6 she is not a child of the first partner her farther, despite that she is the child of the first 
partner of her mother. Finally, we consider the way the grandchildren are possibly duplicated.
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eFigure 3. Sample 3-generation pedigree - Children duplicated in the analysis dataset

C1 and C2 are not duplicated, as they only have cousins on their mother’s sides. C3 is 
duplicated, because she has cousins on both her mother’s and father’s side. C4 and C5 are not 
duplicated as they only have cousins on their father’s side.
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eFigure 4  Plot of the strength of the unobserved binary exposure, ω, and the prevalence of the 
exposure, x-axis ν, which gives the observed values without the binary exposure.  

Note: The y-axis is divided by √(σ FA
2

+1)x so a unit is a standard deviation on the liability scale.
Marks are computed values while the line is from a smoother.
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eFigure 5 Flow chart for creating the analytical dataset
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eAppendix 2.  Simulating bias for the heritability difference
A possible concern is that the heritability difference could be biased because of the difference 
in prevalence between males and females. Bias may occur for two reasons in small samples. 
First, the maximum likelihood estimates of the variance parameters are biased for small 
sample sizes. In linear mixed models one can use restricted maximum likelihood estimates to 
avoid this but extensions to other generalized linear mixed models are not trivial.  Second, 
heritability is a bounded parameter and could be biased in small samples for this reason. 
Importantly, the bias is negligible in either case for sufficiently large sample sizes.
To investigate whether this is a problem, we performed a simulation to check for possible 
bias. We simplified the data slightly to make it possible to do a large number of replications. 
We altered the numbers of families to see its effect on the heritability difference. Each family 
consists of two sets of siblings who are each other's cousins. Sex was assigned randomly for 
each child with a 51.4% chance of being a male. The male ASD prevalence is 1.51% and the 
female prevalence is 0.80% which matches Table 1. The heritability for males is 87.1% and 
76% for females to match the model M6 results in Table 2.
We then sampled 100 data sets each consisting of 6,250 families (25,000 children), 25,000 
families (100,000 children), and 100,000 families (400,000 children). The models were fitted 
and the heritability differences was computed. The models include a childhood environment 
effect, like in the analysis in the paper, even though the data generating distribution does not 
include one. The resulting bias estimates (average of the heritability differences less the true 
value) are -0.030, 0.011, and 0.004 with standard errors 0.028, 0.017, and 0.012 for 6,250, 
25,000 and 100,000 families, respectively. None of this gives any evidence to suspect bias in 
our setting especially considering that we have more individuals than the 400,000 that are 
used here in the largest setting.
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eAppendix 3. Details of the statistical model
Common liability threshold models with a childhood environment effect and an additive 

genetic effect assume that the ASD status of an individual j in group i is given by (Eq. 0)

Y ij | A ij=a,C ij=c∼Bin ( pij (a ,c ) )

P (Y ij=1 | A ij=a,C ij=c )=p ij (a, c )=Φ (x ij⊤β+σ A a+σ E c )

where Aij and C ij are standard normally distributed random effects for the additive genetic 

effect and the childhood environment effect, respectively, Bin (p ) denotes a binary variable 

with probability p of being one and Φ is the standard normal distribution’s cumulative 

density function. The model can also be written as (Eq. 1),

Y ij={1 ηij≥0
0 ηij<0

ηij=x ij
⊤ β+σ A A ij+σCC ij+ϵ ij

where ϵ ij  is an independent standard normally distributed random variable for the  model 

residual capturing contributions not covered by the other two terms and ηij is the “liability”. 

The additive genetic correlation coefficient, Aijs, is 0.5 for full siblings and 0.125 for cousins. 

We assume that the correlation coefficient C ijs is one for children with the same mother and 

father and zero otherwise, like cousins. The shared environment effect does not take 

into account gaps in ages between siblings nor their sexes, a limitation in genetic 

epidemiological studies when using family data beyond twins data. ϵ ij is uncorrelated 

between all individuals. The x ijs are known fixed effect design vectors, which in the models 
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contain at most a fixed parameter for sex (male=1, female=0), birth year ([1985,1986), 

1987,1989), [1990,1991), [1992,1994), [1995,1998]) the categories of paternal (≤28, 29-32, 

≥33) and maternal age (≤25, 26-30, ≥31) at birth, and interactions between sex and the other 

variables. The categorical levels were based on quintiles for birth year and tertiles for 

parental age. The scale parameters, σ A and σ C, are of main interest in this analysis, which 

provides the proportion of variance explained by each effect. We are particularly interested in 

estimating the heritability (Eq. 2): 

σ A
2

1+σ A
2 +σC

2

Note that the scale in the model is not identifiable, so we set the variance of one of three 
random effects as is customary. To see that the scale is not identifiable, we can define a φ>0 
and then (Eq. 3)

Y ij={1 ~ηij≥0
0 ~ηij<0

,~ηij=φ>0

is the same model. The above states that the latent score, the liability, has a residual term with 

variance φ2, which was fixed to 1 beforehand. The implication of the equivalence is that we 

can only determine whether the additive genetic effect (or the shared environment) has a 

variance that is larger or smaller relative to the other two components but we cannot estimate 

the magnitude and we cannot estimate the total variance as φ is not identifiable.

We next extend the model to allow for different genetic variances through sex specific scale 

parameters. Using sij∈ {M ,F } to represent the sex of individual j in group i, the model we 

estimate is (Eq. 4),

Y ij={1 ηij≥0
0 ηij<0
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ηij=x ij
⊤ β+σ sij A

Aij+σ sijC
Cij+ϵ ij

which now includes four rather than two scale parameters, σMA, σMC, σ FA and σ FC.  

One challenge with this model is that the marginal log likelihood is intractable where each 

likelihood factor consists of an integral in which the number of variables is equal to the 

family size (the number of grandchildren). However, an efficient importance sampler can be 

applied to approximate the likelihood, and can also be extended to approximate the gradient 

as well1,2.

The main interest is the difference in the proportion of variance attributable to the genetic 

effect between the two sexes. Particularly, we would like to test the null hypothesis, in which 

that the heritabilities are identical against the two-sided alternative that they are not(Eq 5)

H 0 :
σMA
2

1+σMA
2 +σMC

2 =
σ FA
2

1+σFA
2 +σFC

2

Some caution is needed for the fixed effect parameters.  The marginal probability in the 

above model of an individual having ASD is (Eq. 6):

P (Y ij=1 )=Φ ( x ij
⊤β

√1+σ sij A
2 +σ sijC

2 )
The implication is that, for instance, a higher scale parameter for the additive genetic effect 

yields a marginal probability closer to 50% unless the increase can be offset by fixed effects. 

However, this offsetting by fixed effects is not desired as we are only interested in the 

relative size of the genetic effect which creates dependence between individuals. To solve the 

fixed effect offsetting issue, we added interactions between sex and all other covariates in 

each model we estimated.
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Using the above strategy, we created a sequence of models: First, we fitted a model (M1) to 

allow for a comparison to earlier heritability studies in the same population considering sex 

as the only fixed parameter. The next model (M3) adds to model M1 and additionally adjusts 

for birth year using a five-level dummy and sex-by-birth year interaction. M5 then contains 

the variables in M3 along with paternal and maternal age at birth as three-level dummies 

along with sex interactions. Paternal age is known to result in de novo mutations of ASD-

associated mutations3. Since de novo mutations would not be included in the directly 

inherited additive genetic effects, we also wanted to adjust for these. Therefore, M2, M4 and 

M6 are similar to M1, M3 and M5, but with sex-specific scale parameters.

We fitted four additional supplementary models. M7 is like M5 but were the interior limits 

are the 75% and 95% quantile of maternal and paternal age conditional on the child having an 

ASD diagnosis. This yields the groups [14,35) [35,43) [43,∞) for paternal age and [14,32) 

[32,38) [38, ∞) for maternal age. These more extreme groups were used to potentially capture 

relations between paternal age and de novo mutations better among other things. M9 extends 

M5 with a dummy for whether the gestational week is less than 37, a dummy for whether the 

gestational week is 37 or 38 and their interaction with sex. M8 and M10 are the counterparts 

of M7 and M9, respectively, but with sex specific scale parameters.

Finally, we computed a profile likelihood-based confidence interval for the difference 

between the sex specific heritabilities (Eq. 7):

σMA
2

1+σMA
2 +σMC

2 −
σ FA
2

1+σ FA
2 +σ FC

2

We constructed the (pseudo) likelihood by creating a cluster for each pair of grandparents as 
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described in section described above. 
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eAppendix 4. Computer code used
We provide a simplified example of calling the code in the pedmod package to estimate the 
models described in this report. We strongly encourage the reader to review the vignette in 
the package which provides both formulas and more detailed explanations. 
Estimating the models starts with a syntax like the following in R:

library(pedmod)

ll_terms <- pedigree_ll_terms_loadings(dat, max_threads = 4L)

This creates the C++ object which is used to evaluate the log likelihood and the gradient of it. 
The parameter “dat” needs to be a list of lists and “max_threads” indicates the greatest 
number of CPU threads to use in the computation. Each list in “dat” is a cluster (family in 
this case), assumed to be possibly marginally dependent. It contains element “y” with the 
binary outcomes, a design matrix “X” for the fixed effects (note that the user will have to add 
an intercept), a design matrix “Z” for the individual specific random effects (in this paper an 
intercept and a male dummy) and a list correlation matrices called “scale_mats”. The pedmod 
package can have an arbitrary number and types of effects (hence correlation matrices). In 
this paper we have two correlation matrices per cluster: a correlation matrix for the additive 
genetic effect and a correlation matrix for the shared childhood environment. 
Thus, the model can then be fitted by calling: 

start <- pedmod_start_loadings(ll_terms, data = dat)

opt_res <- pedmod_opt(

    ll_terms, par = start$par, maxvls = 25000L, minvls = 5000L, 

    abs_eps = 0, rel_eps = 1e-8, n_threads = 4L

)

The first call, “start”, uses a heuristic approach to find the starting values while the second 
call does the final optimization. “maxvls” is the maximum number of samples to use per 
cluster in the importance sampler and minvls is the minimum number. “abs_eps” and 
“rel_tol” are respectively the absolute and relative convergence thresholds for the importance 
sampler and “n_threads” is the number of threads to use.
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If the clusters have weights, then one can make a call like:
start <- pedmod_start_loadings(ll_terms, data = dat,

cluster_weights = c_weights)

opt_res <- pedmod_opt(

    ll_terms, par = start$par, maxvls = 25000L, minvls = 5000L, 

    abs_eps = 0, rel_eps = 1e-8, n_threads = 4L,

    cluster_weights = c_weights, vls_scales = sqrt(c_weights)

)

“cluster_weights” is used to pass on the weights and “vls_scales' ' sets the maximum and 
minimum number of samples proportional to the passed argument on a cluster level. Using 
the square root of the weights usually works well for clusters of roughly equal size.
It is important to check that the gradient at the result from “pedmod_opt()” is roughly a zero 
vector. The gradient can be approximated with the “eval_pedigree_grad()” function with 
similar arguments as “pedmod_opt()”. 
Subsequent inference can be performed using profile likelihood. This can either be performed 
using “pedmod_profile()” to compute a profile likelihood based confidence interval for one 
of the parameters or  “pedmod_profile_nleq()” for a function of the parameters (such as the 
heritability difference). Finally, the “use_tilting” argument may be worthwhile using in some 
applications. When true, minimax tilting is used which may greatly reduce the noise from the 
importance of sampler at the cost of longer computation times at a fixed number of samples.
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eAppendix 5.  Results under different modeling assumptions
What if the difference in heritability does not represent a true underlying etiology, but is 
instead caused by model miss-specification (e.g., due to unmeasured factors)? Below, we 
propose two scenarios corresponding to two alternative causes (C1 and C2). In a third 
proposal (C3), we examine the support for FPE within the current model. Because of sex 
interactions in model M3 to M6, we work with numbers deduced from the prevalence. 
Although these are essentially identical M1 and M2, the interactions are added: Otherwise, 
the birth year effect would become smaller for the males with greater variance (see Equation 
6), which would create nonsensical artifacts.

C.1. Proposal 1: Estimated heritability difference is due to an increased female
residual variance

In this section, we investigate how much the ASD prevalence (i.e., the marginal rate of the 
females would drop in a hypothetical scenario), where (1) the heritability difference between 
sexes is solely driven by an additional residual term for females and (2) if such additional 
effects are eliminated. The residual term may capture different influences (e.g., unshared 
environmental effects as well as de novo mutations). The shared environment effect C ij, is 
always tiny in the models we fitted and was removed for reasons of simplicity. Thus, we 
consider a simplified model for the females where we have decomposed the residual into two 
terms. The liabilities for the females are then:

ηij=β F+σ FA A ij+√1−ρ2 ξ ij +ρ ϵ ij

where Aij, ξ ij  and ϵ ij are standard normally distributed, ρ is a scalar,  ρ ∈ [0,1 ]. ξ ij is a 
hypothetical residual effect unique for females, Aij is for the genetic effect, and ϵ ij is the 
residual effect common for both males and females. Consequently, the male liability (with 
ξ ij= βM  + σ MA A ij+ ρ ϵ ij
The female prevalence in the simplified model and the heritability are, respectively, 

pF=Φ ( β F

√1+σFA
2 ) ,hF

2=
σ FA
2

1+σFA
2

If we remove the hypothetical female residual effect,  ξ ij=0, we have

pF=Φ ( β F

√ ρ2+σ FA
2 ) ,hF

2=
σ FA
2

ρ+σ FA
2

As an example, we take the heritability to be 0.76 for the females which matches Table 2 
with a prevalence of 0.80% which matches Table 1. We then find the initial parameters by 
solving:

σ FA
2 =

hF
2

1−hF
2 , βF=Φ−1 ( pF )√1+σ FG

2

which yields σ FA=√3.167 and βF=−4.917. Finally, to match the males’ heritability of 0.87 
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(which match Table 2) we solve: 

ρ2=(hF
−1−1 )σ FA

2

using hF
2=0.87. This gives ρ2=0.4731.

To reason about the plausibility of such a female residual effect, we consider the case where 
it is completely eliminated. If the female residual effect could be entirely removed from the 
female population, it would result in a drop of the already low female prevalence with 37%, 
i.e. from 0.8% (see Table 1) to 0.5%.

C.2. Proposal 2: Estimated heritability difference is due to a single binary female factor
In this section, we assume that there is a single unmodelled binary exposure (e.g., rare 
variants or a unique environmental risk factor) and ask how strong this exposure would need 
to be to explain the difference in heritability between males and females, assuming a fixed 
prevalence of the exposure.
We start with an expression for the liabilities for females

ηij=β F+σ FA A ij+ϵ ij

with a heritability of hF
2=0.87 (the estimate for males) and a prevalence of pF=0.008 

(similar to that of females). This implies σ FA=√6.6923 which we will use to fix σ FA in the 
subsequent examples.
Assume that the underlying truth used to generating the observed data is:

ηij=
~β F+ωDij+σ FA A ij+ϵij ,ω≥0 ,Dij∼Bin ( ν ) , ν∈ (0,0.5 )

but we do not observe the binary exposure Dij. The question then is what combinations of the 
strength of the effect, ω, and the population prevalence of the unobserved binary exposure, ν, 
can give the observed values  σ̂ FA=√3.167 (hF

2=0.76) and  β̂F=−4.917 (pF=0.008 when
hF

2=0.76) in the model where we do not include Dij as a fixed effect (i.e. a misspecified 
model). 
As an example, we include families consisting of only two siblings for simplicity and 
consider the limiting case with an infinitely large sample (so we can compute the expected 
fraction of cases in each combination of the binary exposure and the outcome). Then we find 
the (ω ,ν ) values that yields σ̂ FA=√3.167 and β̂F=−4.917  when Dij is not included in the
model and σ FA=√6.6923.

The full procedure is:

- Fix σ FA=√6.6923.

- Find (ω , ν ) that yields σ̂ FA=√3.167 and β̂F=−4.917 where for given (ω , ν ) where find the βF in the 
true model so the prevalence matches pF=0.008 in a true model for consistency.

This yields the eFigure 4 and illustrates the exposure level of a single binary factor, affecting women, and its effect on 
ASD prevalence, assuming other factors to be fixed, to level out the observed difference in ASD prevalence between 
sexes.  We standardize the y-axis by dividing with  √ σ2FA so the units on the y-axis are standard deviations (SD) on 
the liability scale. The plot shows that an exposure with a prevalence of 1%, or less, in the total population needs to 
move the liability by at least 1.63 SD if present. As an example, this represents a change in prevalence from 0.62% to 
19.2%, i.e. 
Φ (−2.5 )=0.0062 to Φ (−0.87 )=0.192 , if an individual is exposed (eFigure 8).
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eTable. Tetrachoric correlations and 2-sided 95% confidence intervals by cousin and 
sibling male-male and female-female pairs

M-M sibling M-F sibling F-F sibling M-M cousin M-F cousin F-F cousin
0.447

(0.401, 0.508)
0.429

(0.382, 0.480)
0.373

(0.293, 0.472)
0.102

(0.047, 0.171)
0.107 

(0.053, 0.162)
0.123

(0.035, 0.234)

M-M: Male-Male; F-F: Female-Female; M-F: Male-Female.
Note: The confidence intervals are based on non-parametric bootstraps where we sampled individuals. The
correlations were calculated using R-package mvtnorm to evaluate the CDF of bi-variate normal distribution
and the optimization was done using the optim function from the stats package. The bootstrap packages was
used for the confidence intervals.
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eFigure 6. Genetic correlations between family members

Note: Only full siblings and full cousins were included in the calculations.
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eFigure 7. Profile likelihood for differences in heritability#

Note: The model incorporating birth-year (5 categories) and sex. The dots are points where 
the likelihood is evaluated and the line is an interpolation. The vertical dotted lines denotes 
statistical cut-offs corresponding to two-sided 95% confidence intervals. 
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eFigure 8 Plot of ASD prevalences for females who are exposed and not exposed (y-axis)
plotted against the prevalence of the exposure (x-axis).

Another example, assuming 6% prevalence exposed would yield an increase by 0.98 SD. 
This correspond to a prevalence of ϕ (−2.58 )=0.0050, i.e. 0.5%, for the unexposed and 
Φ (−1.59 )=0.0559, i.e. 5.6%, for the exposed. 

C.3. Summary of the scenarios in C1 and C2:
The examples from the previous sections show, within the model framework, consequences if 
a single female specific ASD causing factor drives the difference in heritability, or, if a set of 
different factors each perhaps of less impact explains the difference in heritability.

1. The first proposal assumes that there are many different underlying causes together
generating a random effect (i.e., female specific residual). For this proposal to alone
explain the difference in heritability between males and females, the set of causes
building up the female variance would have to be responsible for at least 37% of the
female ASD cases in the population.

2. For the second proposal to be true, that there is a single binary factor (e.g., de novo
mutation or an environmental exposure), which explains the difference in heritability
the factor must be very prevalent or extremely strong. Even with a prevalence as high
as 6% the factor would have to be sufficiently strong to change the ASD prevalence in
females in the general population from the observed 0.5% to 5.5%.
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The two proposals may be considered extreme and a combination of causes could instead be 
true. Moreover, the total variance is not identifiable in absolute terms and only identifiable 
in relative terms between males and females under strong parametric assumptions. Hence, 
the above are all hypothetical causes and also assumes that the model assumptions are true.




