
iScience, Volume 27
Supplemental information
Turbo autoencoders for the DNA data

storage channel with Autoturbo-DNA

Marius Welzel, Hagen Dreßler, and Dominik Heider



1 Configuration parameters
Parameters

Option Strings Type Default Help
-h, –help None ==SUPPRESS== show this help message and exit.
-v, –version None ==SUPPRESS== show program’s version number and exit.
–wdir str None Path to the working directory, if not exist-

ing the model will be saved here, if already
existing the model will be loaded.

–train bool False Create and train the desired model.
–bitenc None None Encode with a model a bit string into a

code.
–bitdec None None Decode with a model a bit string into a

code.
–encode, -e None None Encode with a model a file.
–decode, -d None None Decode with a model a code back into a

file.
–input, -i str None Path to the file to be en-/decoded.
–output, -o str None Path to the output file.
–index size, -is int 16 size (in bits) of the added index, larger

files need bigger index sizes, has to be a
multiple of 8.

–simulate None None Simulate errors on a generated code.
–ids None False Shows a list of the default ids of the dif-

ferent options for DNA synthesis, storage
and sequencing simulation.

–seed int 0 Specify a integer number, this allows to
reproduce the results.

–gpu None False Whether the calculations of the models
should run on the GPU (using CUDA).

–parallel None False Whether to run the calculations on multi-
ple GPUs, if there are more than one.

–threads int 8 If using the CPU, how many threads
should be used.

–rate str onethird Rate of the code, supported are 1/3
(argument=onethird) and 1/2 (argu-
ment=onehalf).

–block-length int 64 Length of the bitstreams to be used
–block-padding int 18 Length of the padding by which the bit-

stream is extended.
–encoder str cnn Choose which encoder to use
–enc-units int 64 The number of expected features in the

hidden layer for the encoder.
–enc-actf str elu Choose which activation function should

be applied to the encoder: tanh, elu, relu,
selu, sigmoid or identity.

–enc-dropout float 0.0 Dropout probability for the encoder.
–enc-layers int 5 Number of recurrent layers per RN-

N/CNN structure in the encoder.
–enc-kernel int 5 Size of the kernels for the CNN in the en-

coder
–enc-rnn str GRU Choose which structure to use for the

RNN in the encoder: GRU or LSTM.
–vae-beta float 0.0 The beta multiplier of the Kull-

back–Leibler divergence if using a VAE.
–decoder str cnn Choose which decoder to use.
–dec-units int 64 The number of expected features in the

hidden layer for the decoder.
Continued on next page



Option Strings Type Default Help
–dec-actf str identity Choose which activation function should

be applied to the decoder: tanh, elu, relu,
selu, sigmoid or identity.

–dec-dropout float 0.0 Dropout probability for the decoder.
–dec-layers int 5 Number of recurrent layers per RN-

N/CNN structure in the decoder.
–dec-inputs int 5 The number of expected input features for

the decoder.
–dec-iterations int 6 Number of iterative loops to be made in

the decoder.
–dec-kernel int 5 Size of the kernels for the CNN in the de-

coder.
–dec-rnn str GRU Choose which structure to use for the

RNN in the decoder: GRU or LSTM.
–not-extrinsic None True Whether extrinsic information should be

applied to the decoder each iteration.
–coder str cnn Choose which coder to use.
–coder-units int 64 The number of expected features in the

hidden layer for the coder.
–coder-actf str elu Choose which activation function should

be applied to the coder: tanh, elu, relu,
selu, sigmoid or identity.

–coder-dropout float 0.0 Dropout probability for the coder.
–coder-layers int 5 Number of recurrent layers per RN-

N/CNN structure in the coder.
–coder-kernel int 5 Size of the kernels for the CNN in the

coder.
–coder-rnn str GRU Choose which structure to use for the

RNN in the coder: GRU or LSTM.
–init-weights str None Choose which method to use to initial-

ize the linear layers of the model: nor-
mal, uniform, constant, xavier normal,
xavier uniform, kaiming normal or kaim-
ing uniform.

–lat-redundancy int 0 Redundancy of the final encoder layer
(and first decoder layer), required to ac-
count for constraints. Has to be divisible
by 2.

–ens-models int 3 If ensemble coders are used, defines the
number of coder instances in the ensem-
ble.

–padding-style str constant If padding should be constant values or a
circular copy of the input.

–blocks int 1024 Number of the bitstreams to be used.
–batch-size int 256 Size of the batch to be used during train-

ing.
–epochs int 100 Number of epochs the whole model should

be trained.
–enc-lr float 0.00001 Value of the learning rate to be used for

the encoder.
–enc-optimizer str adam Choose which optimizer to use for the en-

coder: Adam, SGD or Adagrad.
–enc-steps int 1 Number of training steps to be performed

per epoch for the encoder.
–dec-lr float 0.00001 Value of the learning rate to be used for

the decoder.
–dec-optimizer str adam Choose which optimizer to use for the de-

coder: Adam, SGD or Adagrad.
Continued on next page



Option Strings Type Default Help
–dec-steps int 2 Number of training steps to be performed

per epoch for the decoder.
–coder-lr float 0.001 Value of the learning rate to be used for

the coder.
–coder-optimizer str adam Choose which optimizer to use for the

coder: Adam, SGD or Adagrad.
–coder-steps int 5 Number of training steps to be performed

per epoch for the coder.
–simultaneously None False Whether the encoder and decoder are to

be trained at the same time, if so, the
learning parameters from the encoder are
used.

–batch-norm bool False Whether to use batch normalization or
not.

–separate-coder-training None False If the coder should be split into 3 seperate
instances during training.

–all-errors None False train each part of the model always with
all error types.

–channel str dna which channel model should be used for
training.

–continuous-coder None False toggles that the intermediate decoder
(coder) passes continuous values to the
decoder.

–constraint-training None False If the code should also be trained to ad-
here to constraints.

–loss-beta float 1.0 beta parameter for the smooth L1 loss.
–coder-train-target str encoded data how the coder should be trained, for best

reconstruction accuracy or to be as close
to the encoder output as possible.

–simultaneously-warmup int 0 if using simultaneously training, how
many warmup epochs should be trained
seperatly, before moving to simultane-
ously training.

–synthesis None (1, None) Specify the id of the synthesis method.
–pcr-cycles int 30 Number of cycles to be used for the PCR.
–pcr None (14, None) Specify the id of the PCR type.
–storage-months int 24 Months of storage to be simulated.
–storage None (1, None) Specify the id of the storage host.
–sequencing None (2, None) Specify the id of the sequencing method.
–amplifier float 5.0 Value by how much more distinct the er-

rors should be.
–probabilities str probabilities.json Path to json file for error probabilities.
–useq str undesired sequences.json Path to json file for undesired sequences.
–gc-window int 50 Size of the window to be used for the GC-

Content error probability detection.
–kmer-window int 10 Size of the window to be used for the Kmer

error probability detection.

Table 1: Supported parameters of Autoturbo-DNA, related to Figure 1.



Encoder
Parameter Description
rnn Recurrent neural network, each copy of the input is encoded by seperate RNNs.
srnn Recurrent neural network, returns the unencoded inputs and 1 or 2 encoded

copies, depending on the rate parameter.
cnn Convolutional neural network, each copy of the input is encoded by seperate

CNNs.
scnn Convolutional neural network, returns the unencoded inputs and 1 or 2 encoded

copies, depending on the rate parameter.
transformer Encoding structure based on a transformer encoder. Each copy of the input is

encoded by seperate instances.
vae Variational autoencoder structure. Using CNN as base neural network.
cnn kernel inc CNN with an increasing kernel size, first pass is through a CNN with half the

kernel size of the parameter value, second is with the full kernel size.
resnet1d One dimensional residual neural net.

Table 2: Implemented encoder structures, related to Figure 2.

Transcoder
Parameter Description
mlp Multilayer perceptron, the input is split into subsequences that correspond to

the number of encoded copies and transcoded by seperate MLPs.
cnn Convolutional neural network. Each subsequence is encoded by seperate in-

stances.
rnn Recurrent neural network. Each subsequence is encoded by seperate instances.
transformer Transcoding structure based on a transformer encoder. Each subsequence is

encoded by seperate instances.
cnn rnn A combination of CNNs and RNNs. Each subsequence is encoded by seperate

instances.
cnn conc A single CNN that transcodes the input sequence without splitting it into sub-

sequences.
cnn ensemble An ensemble of CNNs, using majority voting to return the most likely candidate

sequence. Only useable with binary outputs.
resnet Residual neural network, the inputs are transcoded by a one dimensional

ResNet together and split afterwards, to be seperatly transcoded by a linear
layer.

resnet2d Residual neural network, the inputs are transcoded by a two dimensional
ResNet together and split afterwards, to be seperatly transcoded by a linear
layer. Before the transcoding, the interleaved sequence is deinterleaved.

resnet2d 1d Residual neural network for rate 1/3 only. The not interleaved inputs are
transcoded by a two dimensional ResNet together, while the interleaved input
is seperatly transcoded by a one dimensional ResNet.

resnet ens An ensemble of the basic ResNet component, using majority voting to return
the most likely candidate sequence. Only useable with binary outputs.

resnet sep ResNet components that are inpendently trained from each other for each sub-
sequence.

resnet conc A single, one dimensional ResNet that transcodes the input sequence without
splitting it into subsequences.

cnn sep CNNs that are inpendently trained from each other for each subsequence.

Table 3: Implemented indel reduction transcoders, related to Figure 1.



Decoder
Parameter Description
rnn Recurrent neural network based decoder structure.
cnn Convolutional neural network based decoder structure.
entransformer Decoder structure based on a transformer encoder.
ensemble dec An ensemble of CNNs, using majority voting to return the most likely candidate

sequence.
resnet1d One dimensional residual neural net.

Table 4: Implemented decoder structures, related to Figure 3.

Error rates
Synthesis method Error-correction Deletion Insertion Substitution Raw rate
Column synthesized

oligos ErrASE 0.6 0.2 0.2 2.50 · 10−5

Microarray based
oligo pools ErrASE 0.6 0.2 0.2 1.20 · 10−3

Column synthesized
oligos MutS 0.7 0.15 0.15 1.00 · 10−4

Column synthesized
oligos

Consensus
Shuffle 0.7 0.15 0.15 1.25 · 10−4

PCR Polymerase Proofread
Taq No 0.01 0 0.99 4.30 · 10−5
Pwo Yes 0 0 1 2.40 · 10−6
Pfu Yes 0 0 1 2.80 · 10−6

Storage Host Domain
E. coli Prokaryotes 0.08 0.08 0.84 3.17 · 10−7

H. sapiens Eukaryotes 0.06 0.06 0.88 6.90 · 10−11
M. musculus Eukaryotes 0.025 0.025 0.95 4.40 · 10−9

D. melanogaster Eukaryotes 0.33 0.33 0.34 2.10 · 10−8
S. cerevisiae Eukaryotes 0.13 0.13 0.74 7.90 · 10−8

Sequencing method Submethod
Illumina Single end 0.0024 0.0013 0.9963 2.10 · 10−3
Illumina Paired end 0.0018 0.0011 0.79 3.20 · 10−3

Nanopore 1D 0.37 0.15 0.48 2.00 · 10−1
Nanopore 2D 0.36 0.23 0.41 1.30 · 10−1

PacBio Subread 0.2 0.05 0.75 2.00 · 10−1
PacBio CCS 0.21 0.42 0.37 1.40 · 10−1

Table 5: Out-of-the-box supported error rates for the channel simulation, related to Figure 1



Used Hyperparameters
Parameter Value
Amplifier 15
Epochs 400
Encoder dropout 0.2
Encoder layers 7
Encoder learning rate 0.00001
Encoder steps 20
Decoder layers 7
Decoder learning rate 0.00001
Decoder steps 30
Decoder iterations 10
Transcoder layers 7
Transcoder learning rate 0.00001
Transcoder steps 20
Transcoder-units 128
Transcoder train target Encoded data
Combined steps 20
Weight initialization Normal
Block length 8

Table 6: Hyperparameters used in the evaluations that deviate from the default Autoturbo-DNA
hyperparameters, related to Figure 4 to 7



Figure 1: Example of generating a configuration file that can be used to train models with Autoturbo-
DNA, related to Figure 1. Top: the MESA interface to design a new rule, showing the ability to
name the rule (here ”Autoturbo-DNA test”), defining the raw error rate, the distribution of errors
between deletions, insertions, and substitutions/mismatches, and the distribution and positions for
each error type. For example, an insertion happens to 80 % at a random position and 20 % in a
homopolymer, and the inserted base is one of the four bases with equal probability. Bottom: the sim-
ulation interface of MESA, with the new rule chosen as the sequencing method. Close to the bottom
of the image, the ”Download current config” button allows the download of a JSON file containing
all parameters. The JSON file data can then be used for training by adding it to the corresponding
config/error sources file of Autoturbo-DNA. The new error profile can then be selected by its ID
using the related hyperparameter (either –sequencing, –synthesis, –pcr, or –storage).



3 · 8 block size slopes
Model Slope
cnn cnn resnet 2 8 1.412 · 10−6
cnn cnn resnet 4 8 1.212 · 10−7
cnn cnn resnet 8 8 2.170 · 10−7
vae cnn resnet 2 8 1.966 · 10−6
vae cnn resnet 4 8 1.246 · 10−6
vae cnn resnet 8 8 9.408 · 10−7

Table 7: Slopes of the last 200 epochs for the evaluated models using a block size of 3 · 8, related to
Figure 5. The naming convention is encoder, decoder, transcoder, latent redundancy, block length.

3 · 18 block size slopes
Model Slope
cnn cnn resnet 2 16 1.956 · 10−6
cnn cnn resnet 4 16 −2.422 · 10−7
cnn cnn resnet 8 16 4.868 · 10−6
vae cnn resnet 2 16 2.878 · 10−6
vae cnn resnet 4 16 2.377 · 10−6
vae cnn resnet 8 16 2.944 · 10−6

Table 8: Slopes of the last 200 epochs for the evaluated models using a block size of 3 · 16, related to
Figure 6. The naming convention is encoder, decoder, transcoder, latent redundancy, block length.

2 Results

CNN RNN ResNet VAE Transformer
Encoder Architecture

0.8
75
0.9

0.9
25

0.9
5

0.9
75

1

Ac
cu

ra
cy

Evaluation Encoder

CNN RNN ResNet
Transcoder Architecture

0.8
75
0.9

0.9
25

0.9
5

0.9
75

1

Ac
cu

ra
cy

Evaluation Transcoder

CNN RNN ResNet Transformer
Decoder Architecture

0.8
75
0.9

0.9
25

0.9
5

0.9
75

1

Ac
cu

ra
cy

Evaluation Decoder

Figure 2: Boxplot of the accuracy of the trained models, separated either by the used encoder,
transcoder or decoder architecture, related to Figure 1 to 3. A red line represents the median, a
green triangle represents the mean, and the outliers are represented by green dots.



0 200 400 600 800 1000
Epoch

0.86

0.88

0.90

0.92

0.94

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_2_8
vae_cnn_resnet_2_8

const_cnn_cnn_resnet_2_8
const_vae_cnn_resnet_2_8

0 200 400 600 800 1000
Epoch

0.80

0.82

0.84

0.86

0.88

0.90

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_4_8
vae_cnn_resnet_4_8

const_cnn_cnn_resnet_4_8
const_vae_cnn_resnet_4_8

0 200 400 600 800 1000
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_8_8
vae_cnn_resnet_8_8

const_cnn_cnn_resnet_8_8
const_vae_cnn_resnet_8_8

0 200 400 600 800 1000
Epoch

0.84

0.86

0.88

0.90

0.92

0.94

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_2_16
vae_cnn_resnet_2_16

const_cnn_cnn_resnet_2_16
const_vae_cnn_resnet_2_16

0 200 400 600 800 1000
Epoch

0.88

0.90

0.92

0.94

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_4_16
vae_cnn_resnet_4_16

const_cnn_cnn_resnet_4_16
const_vae_cnn_resnet_4_16

0 200 400 600 800 1000
Epoch

0.86

0.88

0.90

0.92

0.94

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_8_16
vae_cnn_resnet_8_16

const_cnn_cnn_resnet_8_16
const_vae_cnn_resnet_8_16

Figure 3: Stability score over 1000 epochs in a 10 epoch rolling average for a latent redundancy
of 2 bits (left), 4 bits (middle) and 8 bits (right), related to Figure 7. On the top, the models were
trained using a block size of 3 · 8, and on the bottom, the training was carried out with a block size
of 3 · 16. The legend labels are structured in the form of constraint adherence training, encoder,
decoder, transcoder, latent redundancy, block size.

Unconstrained Constrained
0.9

87
0.9

9
0.9

92
0.9

95
0.9

97

1

Re
co

ns
tru

ct
io

n 
ac

cu
ra

cy

Unconstrained Constrained
0.8

0.8
25

0.8
5

0.8
75
0.9

0.9
25

St
ab

ilit
y 

sc
or

e

Figure 4: Boxplots of the reconstruction accuracy score (left) and the stability score (right) of models
trained without (left) and with (right) the stability score as training metric, related to Figure 7. The
models were further trained with either 2, 4, or 8 bits of latent redundancy and a block size of either
3 · 8 or 3 · 16 bits. A red line represents the median, a green triangle represents the mean, and the
outlier are represented by green dots.



0 200 400 600 800 1000
Epoch

0.80

0.85

0.90

0.95

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_2_8
cnn_cnn_resnet_4_8
cnn_cnn_resnet_6_8
cnn_cnn_resnet_8_8

vae_cnn_resnet_2_8
vae_cnn_resnet_4_8
vae_cnn_resnet_6_8
vae_cnn_resnet_8_8

0 200 400 600 800 1000
Epoch

0.850

0.875

0.900

0.925

0.950

0.975

St
ab

ilit
y 

sc
or

e

cnn_cnn_resnet_2_16
cnn_cnn_resnet_4_16
cnn_cnn_resnet_6_16
cnn_cnn_resnet_8_16

vae_cnn_resnet_2_16
vae_cnn_resnet_4_16
vae_cnn_resnet_6_16
vae_cnn_resnet_8_16

Figure 5: Stability score for different block lengths in a 10 epoch rolling average, for a block size of
3·8 (left) and 3·16 (right), related to Figure 7. Each model was trained for 1000 epochs without taking
the stability score into account when training the encoder, followed by 100 epochs with the stability
score being taking into account when training the encoder. The legend labels are structured in the
form of encoder, decoder, transcoder, latent redundancy, block size.

Before fine-tuning After fine-tuning0.9
85

0.9
88

0.9
90.9

93
0.9

95
0.9

98

1

Re
co

ns
tru

ct
io

n 
ac

cu
ra

cy

Figure 6: Boxplot of the reconstruction accuracy score of models trained before (left) and after
(right) fine-tuning by utilizing the stability score as additional training metric, related to Figure 7.
The models were further trained with either 2, 4, or 8 bits of latent redundancy and a block size of
either 3 · 8 or 3 · 16 bits. A red line represents the median, a green triangle represents the mean, and
the outlier are represented by green dots.


	ISCI109575_illustmmc.pdf
	Configuration parameters
	Results


