SUPPORTING INFORMATION: 1 2 3 ## Ionizable lipid nanoparticles for therapeutic base editing of congenital brain disease 4 - 5 Rohan Palanki**1,2, Sourav K Bose**2, Apeksha Dave², Brandon M. White², Cara Berkowitz², - 6 Valerie Luks², Fazeela Yaqoob⁹, Emily Han¹, Kelsey L Swingle¹, Pallavi Menon², Emily - 7 Hodgson², Arijit Biswas¹⁰, Margaret M Billingsley¹, Li Li⁶, Fan Yiping¹⁰, Marco Carpenter², - 8 Alexandra Trokhan², Julie Yeo¹⁰, Nuryanti Johana¹⁰, Tan Yi Wan¹⁰, Mohamad-Gabriel Alameh³, - 9 Frederick Chris Bennett⁹, Phillip B. Storm¹², Rajan Jain^{3,6}, Jerry Chan^{10,11}, Drew Weissman³, - 10 Michael J. Mitchell*1,4,5,6,7, William H. Peranteau*2,8 - **Equal contribution - *Co-corresponding authors: (M.J.M.) mjmitch@seas.upenn.edu; (W.H.P.) peranteauw@chop.edu - ¹Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA. - ²Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. - 16 ³Department of Medicine, Perelman School of Medicine, University of Pennsylvania, - 17 Philadelphia, PA 19104, USA. - ⁴Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, - 19 Philadelphia, PA 19104, USA. - 20 ⁵Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, - 21 Philadelphia, PA 19104, USA. - ⁶Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, - 23 PA 19104, USA. - ⁷Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA 19104, - 25 USA. - ⁸Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, PA, USA. - ⁹Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, - 28 Philadelphia, PA 19104, USA. - 29 ¹⁰Duke-NUS Graduate Medical School, Singapore, 169547, SG. - 30 ¹¹Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, - 31 229899, SG. - 32 ¹²Division of Neurosurgery, Children's Hospital of Philadelphia, PA 19104, USA. | | Size (nm) | PDI | Encapsulation Efficiency (%) | рКа | Zeta Potential (mV) | |----|-----------|-------|------------------------------|------|---------------------| | A1 | 128 | 0.094 | 84.2 | 6.81 | 8.43 | | A2 | 68 | 0.103 | 79.9 | 5.57 | 2.99 | | А3 | 82 | 0.113 | 83.5 | 5.97 | 4.55 | | A4 | 102 | 0.075 | 97.0 | 6.76 | 11.1 | | B1 | 83 | 0.109 | 93.4 | 7.14 | 3.12 | | В2 | 107 | 0.146 | 85.1 | 5.79 | 5.89 | | В3 | 80 | 0.154 | 88.1 | 5.94 | 10.4 | | В4 | 130 | 0.064 | 90.2 | 6.60 | 15.6 | | C1 | 71 | 0.116 | 96.6 | 6.87 | 2.57 | | C2 | 107 | 0.138 | 91.1 | 5.83 | 7.89 | | С3 | 88 | 0.043 | 92.0 | 5.05 | 9.78 | | C4 | 95 | 0.087 | 97.6 | 6.01 | 2.43 | **Table S1:** Physiochemical properties of LNP library including size, polydispersity index (PDI), encapsulation efficiency, pK_a, and zeta potential. **Fig. S1** | Luciferase expression (A) and viability (B) of Neuro-2A cells after treatment with either C3 or MC3 LNP (100 ng of mRNA) encapsulating luciferase mRNA. ** p < 0.01, **** p < 0.0001 by two-way analysis of variance (ANOVA) with post-hoc Šídák's multiple comparisons test. Fig. S2 | Relationship between LNP library physiochemical properties – including (A) pK_a , (B) size, and (C) zeta potential – and LNP transfection efficacy *in vivo* after ICV injection to E18 Balb/c fetuses as measured by quantification of luciferase signal 4 hours after administration via IVIS imaging. Correlation coefficient (R) of linear regression analysis is reported in the top left corner of each individual graph. **Fig. S3** | Quantification of *luciferase* signal via IVIS imaging from harvested livers of E18 BALB/c fetuses 4 hours after ICV injection (1 mg/kg) with each LNP in the screening library, free mRNA, or MC3 LNP following normalization to background autofluorescence. **Fig. S4** | Quantification of *luciferase* signal via IVIS imaging from harvested organs (brain, heart, lung, intestine, liver, spleen, kidney) of E18 BALB/c fetuses 4 hours after ICV injection (1 mg/kg) with C3 LNP or PBS following normalization to background autofluorescence. **** p < 0.0001 by two-way analysis of variance (ANOVA) with post-hoc Šídák's multiple comparisons test. **Fig. S5** | Percentage of green fluorescent protein (GFP) positive cells among sub-populations of microglia (CD11b⁺/CD45¹⁰), astrocytes (GFAP⁺/CD45⁻), and neurons (NFM⁺/CD45⁻) in the brain after ICV injection (1 mg/kg) of C3 LNPs encapsulating Cre mRNA to P0 R26^{mTmG} neonates. | | FACTORS (MOLAR RATIO %) | | | | | |--------|-------------------------|------|-------------|--|--| | LEVELS | Ionizable Lipid | DOPE | Cholesterol | | | | 1 | 29 | 13 | 40 | | | | 2 | 35 | 16 | 46.5 | | | | 3 | 41 | 19 | 53 | | | **Fig. S6** | Orthogonal DOE array displaying the range of excipient molar ratios used in C3.1-C3.9 LNP formulation. **Fig. S7** | Impact trend curves generated during design-of-experiments investigation for C3 ionizable lipid, DOPE, and cholesterol, respectively, on *in vitro* LNP-mediated mRNA transfection efficacy in Neuro-2A cells. **Fig. S8** | Viability after treatment by C3 LNPs (200 ng of mRNA) with different excipient ratios (A) or different N:P ratios (B) in Neuro-2A cells and after treatment by C3.MPS LNPs (200 ng of total mRNA) in primary fibroblasts / primary neurons isolated from an *IDUA*-W392X mouse (C) **Fig. S9** | Next-generation sequencing data of DNA isolated from the liver and gonadal tissue of C3.MPS LNP treated *Idua*-W392X neonates at the target G→A *Idua* site, normalized to data collected from PBS-injected negative control animals. Fig. S10 | Size and PDI measurements of C3.MPS LNPs incubated in either human cerebrospinal fluid (A) or human serum (B) at increasing volume percentages of biological fluid, along with zeta potential measurement of C3.MPS LNPs incubated in increasing volume percentages of human cerebrospinal fluid (C). **** p < 0.0001 by one-way ANOVA with post-hoc Dunnett's test compared to positive control (0%).