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1. FOVEAL BLUR FOR BOOSTING DATASETS

As deep learning systems require a large scale of training images and annotations for effective
training, we use foveal blur to rapidly enrich the dataset by generating ‘nuclei-level’ pathology
image patches. In Fig. S1, we plot segmentation performances of different deep learning systems
for comparison by Jaccard coefficient and accuracy when they are trained with different numbers
of training images from the GBM dataset. Results in the other two datasets share similar patterns.
Our system FB-Net trained with foveal blurred images achieves the best performance regardless
of the training image number. In the most extreme case, we provide only one image patch for
system training. In this case, our system outperforms other methods the most. As the number
of training images increases, our system consistently outperforms other methods, but with a
smaller advantage. It is noticed that all tested deep learning systems have limited generalizability
to perform well over the testing set when they are trained with a small number of training
images with limited diverse input information. With the help of foveal blur deriving a large
number of nuclei-level images from one raw image, our system is able to yield 0.7021 by Jaccard
coefficient when it is trained with only one image, only a 5% decrease from its performance
associated with seven training images. DeepLabV3+ system achieves competitive results when it
is trained with seven training images capturing about 1,000 nuclei. However, its performance
drops dramatically to 0.6667 by Jaccard coefficient when trained with one image. By contrast,
c¢GAN and U-Net both perform consistently worse in all cases and are more sensitive to the
training data scale. Additionally, it is noticed that all methods for comparison present similar
patterns by Accuracy. Thanks to the foveal blur boosting the training dataset, our system FB-Net
with U-Net as its backbone is more robust and generalizable with a limited dataset than other
methods for comparison.

2. EXPLICIT MORPHOLOGICAL KNOWLEDGE LEARNING BY MODIFIED LOSS FUNC-
TION

As demonstrated in the methodology section, the newly designed shape prior term in the loss
function makes the deep learning model explicitly learn representative nuclei shapes and con-
forms its prediction to be compliant with the prior shape knowledge. Furthermore, the term of
smoothness in the predicted probability map is designed to prevent the system from producing
predictions with uneven edges.

In Fig. S2, the nuclei size histograms from our different deep learning models (i.e., FB-Net,
FB+SP, and FB+SP+SM) are compared to the ground truth for the GBM dataset. In ground truth
annotations, no nucleus is under 100 pixels in size. Note that more than 30% of nuclei produced
by the FB-Net system are smaller than 100 pixels in size, while the FB+SP and FB+SP+SM
systems reduce the percentage of such nuclei prediction to about 15% and 10%, respectively. The
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Fig. S1. Two performance plots are presented to compare (a) Jaccard coefficient and (b) Accu-
racy of diverse models trained with different numbers of images from the GBM dataset.

experimental results suggest that explicitly encapsulating the human knowledge, shape prior
term and smoothness term can effectively restrain nuclei segmentation systems from producing
unduly small nuclei.

We notice that the average nuclei size from the FB-Net, FB+SP, and FB+SP+SM systems are
326.4,397.2, and 429.2 by pixels, respectively, while the average nuclei size from ground truth is
460.2 by pixels. The median and interquartile range (IQR) of nuclei size share a similar pattern.
The medians of the nuclei size for FB-Net, FB+SP, FB+5P+SM, and ground truth are 313.0, 410.0,
442.0, and 448.5, respectively. The IQR of the nuclei size for FB-Net, FB+SP, FB+SP+SM, and
ground truth are (60.0, 504.0), (209.5, 543.0), (262.0, 544.0), and (326.0, 569.0), respectively. These
results suggest that the FB+SP and FB+SP+SM systems produce results more similar to the ground
truth than the FB-Net system in terms of average nuclei size and two new loss terms improve the
system’s ability in generating nuclei segmentation with common size and shapes.

Fig. S3 demonstrates the performance improvement resulting from our two new loss function
terms. Specifically, we present typical segmentation results of three regions of interest from
our proposed three systems, i.e., FB-Net, FB+SP, and FB+SP+SM, respectively. Compared to
the ground truth annotated by experienced pathologists, the FB-Net generates more small false
positive nuclei regions than FB+SP and FB+SP+SM. These false positives can be readily avoided by
human reviewers because of their irrational shapes and unduly small sizes. Thanks to the shape
prior and morphology smoothness terms in the loss function, significantly less false positive
nuclei are produced. In addition, it is noted that the smoothness term makes the prediction
map smoother, making it easier for nuclei segregation during the post-processing step. By
these experiments, we conclude human-knowledge boosted deep learning produces enhanced
segmentation results.

In addition to results from our proposed system, we demonstrate typical segmentation results
of conventional and some state-of-the-art deep learning methods for comparison in Fig. S4, and
Fig. S5, respectively.
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Fig. S2. Nuclei size histograms are presented with the ground truth from the GBM dataset and
prediction results from our proposed models (i.e., FB-Net, FB+SP, and FB+SP+SM).
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Fig. S3. We present a) ground truth, and representative segmentation results from b) FB-Net, c)
FB+SP, and d) FB+SP+SM. It is noted that our new loss function terms help reduce small false
positive nuclei and make the nuclei contour more regulated.
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Fig. S4. We present typical segmentation results of conventional methods and our proposed
system for comparison. The first, the second and the last two rows are histopathology images
from GBM, TCGA, and MoNuSeg datasets, respectively. The columns from left to right present
(a) ground truth, and results from (b) mRLS, (c) MOW, (d) IVW, (e) RACM, and (f) FB+SP+5M,
respectively.



Fig. S5. We present typical segmentation results of some state-of-the-art deep learning meth-
ods and our proposed system for comparison. The first, the second, and the last two rows
present histopathology images from GBM, TCGA, and MoNuSeg dataset, respectively.

The columns from left to right present (a) ground truth, and results of (b) U-Net+CE, (c)
DeepLabV3+, (d) cGAN, and (e) FB+SP+SM, respectively.
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