Supporting Information

A fungal P450 deconstructs the 2,5-diazabicyclo[2.2.2]octane ring *en route* to the complete biosynthesis of 21*R*-citrinadin A

Shuai Liu^{1†}, Qiuyue Nie^{1†}, Zhiwen Liu¹, Siddhant Patil¹, Xue Gao^{1,2,3*}

¹Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.

²Department of Bioengineering, Rice University, Houston, TX 77005, USA.

³Department of Chemistry, Rice University, Houston, TX 77005, USA.

[†] S.L. and Q.Y.N. contributed equally to this work.

*Corresponding author. Email: <u>xue.gao@rice.edu</u>

Table of Content

Experimental procedures	5
1. Strains and culture conditions.	5
2. Preparation of protoplast of Penicillium citrinum ATCC 9849 and Aspergillus nic	dulans
A1145	5
3. Gene knock-out of <i>Penicillium citrinum</i> ATCC 9849.	5
4. Heterologous expression in A. nidulans A1145.	6
5. gDNA extraction, RNA extraction, and RT-PCR.	6
6. Expression and preparation of CtdY-containing microsome for in vitro assays	6
7. Chemical complementation assays.	6
8. Expression and purification of CtdR, CtdV, and CtdJ from E. coli	7
9. In vitro assays of CtdY.	7
10. In vitro assays of CtdR	7
11. In vitro assays of CtdV.	7
12. In vitro assays of CtdJ.	8
Supplementary Tables	9
Table S1. Strains in this study.	9
Table S2. Plasmids used in this study	9
Table S3. Primers used in this study	10
Table S4. Proteins encoded in the ctd gene cluster	12
Table S5. NMR data of 15 (δ in ppm, J in Hz).	14
Table S6. NMR data of 16 (δ in ppm, J in Hz).	15
Table S7. NMR data of 17 (δ in ppm, J in Hz).	16
Table S8. NMR data of 18 (δ in ppm, J in Hz).	17
Table S9. NMR data of 20 (δ in ppm, J in Hz).	18
Table S10. NMR data of 25 (δ in ppm, J in Hz).	20
Table S11. NMR data of 23 (δ in ppm, J in Hz).	21
Table S12. NMR data of 24 (δ in ppm, J in Hz).	22
Table S13. NMR data of 22R (δ in ppm, J in Hz).	23
Supplementary Figures	25
Figure S1. Biosynthesis of the precursor of DKPs and MKPs	25
Figure S2. Proposed biosynthesis pathway of methylated L-pipecolic acid	25
Figure S3. Cleavage of the amide bonds by different enzymes.	26
Figure S4. PCR verification of <i>ctd</i> mutants.	27
Figure S5. LC-MS analysis of <i>ctd</i> mutants.	28
Figure S6. HR-ESI-MS data of compounds 21 (A), 22 (B), 21R (C) and 22R (D)	30
Figure S7. Feeding of 25 to A. nidulans expressing ctdS	30
Figure S8. Feeding of 18 to A. nidulans expressing ctdG	31
Figure S9. Feeding of 20 to <i>A. nidulans</i> expressing <i>ctdYG</i> and <i>ctdYS</i>	31
Figure S10. TMHMM analysis of the transmembrane domain of CtdY.	32
Figure S11. Detection of carbon dioxide produced in the CtdY assay with a kit	32

Figure S12. Sequence similarity network (SSN) of CtdY.	33
Figure S13. SDS-PAGE gels of CtdR, CtdV and CtdJ	33
Figure S14. LC-MS analysis of the in vitro assays of CtdV, CtdV and CtdJ.	34
Figure S15. In vitro assays of CtdV with 15.	34
Figure S16. Biosynthetic pathway of 21 <i>R</i> -citrinadin A.	35
Figure S17. Feeding of 14 to <i>A. nidulans</i> expressing <i>ctdY</i>	36
Figure S18-1. ¹ H NMR (600 Hz) spectrum of 10 in CDCl ₃	37
Figure S18-2. ¹³ C NMR (150 Hz) spectrum of 10 in CDCl ₃ .	37
Figure S18-3. DEPT spectrum of 10 in CDCl ₃ .	38
Figure S19-1. ¹ H NMR (600 Hz) spectrum of 15 in CDCl ₃	38
Figure S19-2. ¹³ C NMR (150 Hz) spectrum of 15 in CDCl ₃	39
Figure S19-3. DEPT spectrum of 15 in CDCl ₃ .	39
Figure S19-4. ¹ H- ¹ H COSY spectrum of 15 in CDCl ₃	40
Figure S19-5. HSQC spectrum of 15 in CDCl ₃ .	40
Figure S19-6. HMBC spectrum of 15 in CDCl ₃ .	41
Figure S19-7. NOESY spectrum of 15 in CDCl ₃	41
Figure S20-1. ¹ H NMR (600 Hz) spectrum of 16 in CDCl ₃	42
Figure S20-2. ¹³ C NMR (150 Hz) spectrum of 16 in CDCl ₃ .	42
Figure S20-3. DEPT spectrum of 16 in CDCl ₃ .	43
Figure S20-4. ¹ H- ¹ H COSY spectrum of 16 in CDCl ₃	43
Figure S20-5. HSQC spectrum of 16 in CDCl ₃ .	44
Figure S20-6. HMBC spectrum of 16 in CDCl ₃ .	44
Figure S20-7. NOESY spectrum of 16 in CDCl ₃ .	45
Figure S21-1. ¹ H NMR (600 Hz) spectrum of 17 in CDCl ₃	45
Figure S21-2. ¹³ C NMR (150 Hz) spectrum of 17 in CDCl ₃ .	46
Figure S21-3. DEPT spectrum of 17 in CDCl ₃ .	46
Figure S21-4. ¹ H- ¹ H COSY spectrum of 17 in CDCl ₃	47
Figure S21-5. HSQC spectrum of 17 in CDCl ₃ .	47
Figure S21-6. HMBC spectrum of 17 in CDCl ₃ .	48
Figure S21-7. NOESY spectrum of 17 in CDCl ₃	48
Figure S22-1. ¹ H NMR (600 Hz) spectrum of 18 in CDCl ₃	49
Figure S22-2. ¹³ C NMR (150 Hz) spectrum of 18 in CDCl ₃ .	49
Figure S22-3. DEPT spectrum of 18 in CDCl ₃ .	50
Figure S22-4. ¹ H- ¹ H COSY spectrum of 18 in CDCl ₃	50
Figure S22-5. HSQC spectrum of 18 in CDCl ₃ .	51
Figure S22-6. HMBC spectrum of 18 in CDCl ₃ .	51
Figure S22-7. NOESY spectrum of 18 in CDCl ₃	52
Figure S23-1. ¹ H NMR (600 Hz) spectrum of 20 in CDCl ₃	52
Figure S23-2. ¹³ C NMR (150 Hz) spectrum of 20 in CDCl ₃ .	53
Figure S23-3. DEPT spectrum of 20 in CDCl ₃ .	53
Figure S23-4. ¹ H- ¹ H COSY spectrum of 20 in CDCl ₃	54
Figure S23-5. HSQC spectrum of 20 in CDCl ₃ .	54
Figure S23-6. HMBC spectrum of 20 in CDCl ₃ .	55
Figure S23-7. NOESY spectrum of 20 in CDCl ₃	55

Figure S24-1. ¹ H NMR (600 Hz) spectrum of 23 in CDCl ₃	56
Figure S24-2. ¹³ C NMR (150 Hz) spectrum of 23 in CDCl ₃	56
Figure S24-3. DEPT spectrum of 23 in CDCl ₃ .	57
Figure S24-4. ¹ H- ¹ H COSY spectrum of 23 in CDCl ₃	57
Figure S24-5. HSQC spectrum of 23 in CDCl ₃ .	58
Figure S24-6. HMBC spectrum of 23 in CDCl ₃ .	58
Figure S24-7. NOESY spectrum of 23 in CDCl ₃	59
Figure S25-1. ¹ H NMR (600 Hz) spectrum of 24 in CDCl ₃	59
Figure S25-2. ¹³ C NMR (150 Hz) spectrum of 24 in CDCl ₃	60
Figure S25-3. DEPT spectrum of 24 in CDCl ₃ .	60
Figure S25-4. ¹ H- ¹ H COSY spectrum of 24 in CDCl ₃	61
Figure S25-5. HSQC spectrum of 24 in CDCl ₃ .	61
Figure S25-6. HMBC spectrum of 24 in CDCl ₃ .	62
Figure S25-7. NOESY spectrum of 24 in CDCl ₃	62
Figure S26-1. ¹ H NMR (600 Hz) spectrum of 25 in CDCl ₃	63
Figure S26-2. ¹³ C NMR (150 Hz) spectrum of 25 in CDCl ₃	63
Figure S26-3. DEPT spectrum of 25 in CDCl ₃ .	64
Figure S26-4. ¹ H- ¹ H COSY spectrum of 25 in CDCl ₃	64
Figure S26-5. HSQC spectrum of 25 in CDCl ₃ .	65
Figure S26-6. HMBC spectrum of 25 in CDCl ₃ .	65
Figure S26-7. NOESY spectrum of 25 in CDCl ₃	66
Figure S27-1. ¹ H NMR (600 Hz) spectrum of 22R in CDCl ₃	66
Figure S27-2. ¹³ C NMR (150 Hz) spectrum of 22R in CDCl ₃	67
Figure S27-3. DEPT spectrum of 22R in CDCl ₃ .	67
Figure S27-4. ¹ H- ¹ H COSY spectrum of 22R in CDCl ₃	68
Figure S27-5. HSQC spectrum of 22R in CDCl ₃	68
Figure S27-6. HMBC spectrum of 22R in CDCl ₃ .	69
Figure S27-7. NOESY spectrum of 22R in CDCl ₃	69

Experimental procedures

1. Strains and culture conditions.

Penicillium citrinum ATCC 9849 was obtained from ATCC (https://www.atcc.org/). *P. citrinum* ATCC 9849 and the mutants were cultured in YM (5 g/L yeast extract, 10 g/L peptone, 10 g/L maltose) at 28°C for secondary metabolite production. *Aspergillus nidulans* A1145 was used as the host for heterologous expression of the *ctd* gene cluster. *Saccharomyces cerevisiae* RC01¹ was used for in vivo homologous recombination to construct the *Aspergillus nidulans* A1145 overexpression plasmids. Yeast extract peptone dextrose (YPD) medium (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) was used for routine growth, while uracil-dropout semisynthetic medium was used for selection of plasmids transformed into *S. cerevisiae*. *Escherichia coli* BL21 (DE3) and *E. coli* stbl3 were grown in LB media and used for standard DNA manipulations.

2. Preparation of protoplast of *Penicillium citrinum* ATCC 9849 and *Aspergillus nidulans* A1145.

Protoplasts of P. citrinum ATCC 9849 and A. nidulans A1145 were prepared in a similar manner. Fresh spores were inoculated into 25 mL liquid CD medium 10 g/L glucose, 50 mL 20 × nitrate salts, 1 mL trace elements, pH 6.5) in 250 mL flask and germinated at 30°C and 250 rpm for approximately 9 h. For the preparation of 20 × nitrate salts, 120 g NaNO₃, 10.4 g KCl, 10.4 g MgSO₄·7H₂O, 30.4 g KH₂PO₄ were dissolved in 1 L double distilled water. The 100 mL trace elements with pH 6.5 contained 2.20 g ZnSO₄·7H₂O, 1.10 g H₃BO₃, 0.50 g MnCl₂·4H₂O, 0.16 g FeSO₄·7H₂O, 0.16 g CoCl₂·5H₂O, 0.16 g CuSO₄·5H₂O, and 0.11 g (NH₄)₆Mo₇O₂₄·4H₂O. Mycelia were harvested by centrifugation at 3500 rpm for 10 min, and washed with 10 mL of Osmotic buffer (1.2 M MgSO₄, 10 mM sodium phosphate, pH 5.8). Then the mycelia were transferred to 10 mL of Osmotic buffer containing 30 mg of lysing enzymes from Trichoderma and 20 mg of Yatalase in a 125 mL flask. The flask was shaken at 80 rpm overnight at 30°C. Cells were collected in a 30 mL Corex tube and overlaid gently by 10 mL of Trapping buffer (0.6 M sorbitol, 0.1 M Tris-HCl, pH 7.0). After centrifugation at 3500 rpm for 15 min at 4°C, the protoplasts were collected at the interface of the two buffers. The protoplasts were then transferred to a sterile 15 mL Falcon tube and washed with 10 mL STC buffer (1.2 M sorbitol, 10 mM CaCl₂, 10 mM Tris-HCl, pH 7.5). The protoplasts were resuspended in 1 mL STC buffer for transformation.²

3. Gene knock-out of Penicillium citrinum ATCC 9849.

The hygromycin-resistance split-marker approach was used for targeted gene knockout by homologous recombination. The homologous regions (~2 kb) were amplified by PCR from the *P. citrinum* ATCC 9849 genome. Deletion cassettes were generated by a fusion PCR technique. The two overlapping hygromycin resistance gene fragments were transformed into *P. citrinum* ATCC 9849 by polyethylene glycol (PEG)-mediated protoplast transformation. The lyophilized DNA fragments were incubated with 100 μ L of the protoplasts then 50 μ L of filtered PEG solution (25 % PEG average molecular weight 3350, 0.6 M KCl, 50 mM CaCl₂, 10 mM Tris-HCl, pH 7.5) was added and gently mixed. Place in an ice water bath for 25 min. Add 1 mL of room temperature, filtered PEG solution. Mix the PEG solution with the protoplast suspension by gently aspirating and ejecting the solution into the tip of the micropipette at least ten times. Leave at room temperature for 25 min. Plate transformation mixture onto selective plates.³

4. Heterologous expression in A. nidulans A1145.

The genes in the *ctd* cluster were amplified by PCR and cloned into vectors by recombination in yeast. The genomic DNA of *P. citrinum* ATCC 9849 were used as the templates of PCR. pYTU, pYTR and pYTP were used for amplification of *glaA*, *gpdA*, and *amyB* promoters, respectively. The overlapping DNA fragments and *PacI/SwaI*-digested expression vectors pYTP and pYTR were co-transformed into yeast. The primers used for the heterologous expression are listed in Table S3.

The selection markers of the three expression vectors were uridine, pyridoxine and riboflavin in *A. nidulans* A1145.⁴ CDST media (20 g/L starch, 20 g/L tryptone, 50 mL 20 × nitrate salts, 1 mL trace elements, pH 6.5) was used to induce gene expression. The constructed plasmids for heterologous expression were transformed into protoplasts of *A. nidulans* A1145 by polyethylene glycol (PEG) mediated protoplast transformation as described in above.

5. gDNA extraction, RNA extraction, and RT-PCR.

The Zymo ZR Fungal/Bacterial DNA MicroprepTM kit was used to extract gDNA from *P. citrinum* ATCC 9849. The Zymo ZR Fungal/Bacterial RNA MicroprepTM kit was used to extract RNA from *P. citrinum* ATCC 9849. RevertAid RT Reverse Transcription Kit from Thermo Scientific was used to synthesize cDNA from the RNA extracted from *P. citrinum* ATCC 9849.

6. Expression and preparation of CtdY-containing microsome for in vitro assays.

The intron-free *ctdY* was amplified from *P. citrinum* cDNA using the primer pair xw55-ctdY-F/ xw55-ctdY-R. The PCR product and *NdeI/PmlI*-linearized 2µ expression plasmid which containing the *ura* marker were co-transformed into *S. cerevisiae* RC01 using a ZYMO Frozen-EZ Yeast Transformation II Kit, yielding the pXW55-CtdY⁵ by in vivo recombination. The resulting pXW55-CtdY plasmid was recovered using ZymoprepTM Yeast Plasmid Miniprep (Zymo Research) for propagation in *E. coli* stbl3 and verified by sequencing. *ctdY* was expressed under the control of the *ADH2* promoter.

The constructed plasmids pXW55-CtdY were transferred into the *S. cerevisiae* RC01. Selected cells were grown in 5 mL of SC medium without uracil at 30°C for 48 h at 250 rpm. The culture was transferred into 100 mL YPD medium at 30°C for 72 h at 250 rpm. Cells were harvested by centrifugation at 3000 g. All the subsequent procedures were performed at 4°C or on ice. Harvested cells were resuspended in 100 mL of TEK buffer (0.1 M KCl, 50 mM Tris-HCl (pH 7.4) and 1 mM EDTA). Cells were incubated at 4°C or on ice and collected by centrifugation at 3000 g. Cells were resuspended in 5 mL TES buffer (0.6 M sorbitol, 50 mM Tris-HCl (pH 7.4) and 1 mM EDTA) supplemented with 0.2 mM phenylmethylsulfonyl fluoride. Approximately 2.5 mL of zirconia/silica beads (0.5 mm in diameter, Biospec Products) were added. Cell walls were manually disrupted by hand shaking in a cold room for 20 min at 30 s intervals separated by 30 s intervals on ice. The lysate was clarified by centrifugation at 8000 g. Finally, microsomes were obtained by centrifugation at 100000 g for 70 min at 4°C. The pellet was resuspended in 1 mL of TEG buffer (20% (v/v) glycerol, 50 mM Tris-HCl (pH 7.4) and 1 mM EDTA) to obtain a microsomal fraction.

7. Chemical complementation assays.

For precursor feeding in A. nidulans A1145, 1 mg precursors were dissolved in DMSO and then

added to 20 mL of liquid CDST cultures of each strain. After further cultivation at 30°C for 5 days, the secondary metabolites were extracted with ethyl acetate, dissolved in MeOH, and analyzed by LC-MS.

8. Expression and purification of CtdR, CtdV, and CtdJ from E. coli.

To construct the plasmid for expression of CtdR, CtdV, and CtdJ in *E. coli*, the ORF was amplified by PCR using the *P. citrinum* ATCC 9849 cDNA as the template. The recovered DNA fragment was ligated into the vector pET by Gibson assembly. After confirmation by sequencing, the plasmids were transferred into *E. coli* BL21 (DE3) for protein expression and purification.

Overexpression and subsequent protein purification were performed as follows: *E. coli* harboring the plasmid was grown overnight in 5 mL of LB with 50 μ g/mL ampicillin at 37°C. 500 mL of fresh LB with 50 μ g/mL ampicillin was inoculated with 5 mL of the overnight culture and incubated at 37°C until the optical density at 600 nm reached 0.6. The protein was overexpressed with 0.1 mM IPTG for 16 h at 16°C. Cells were harvested by centrifugation (3000 g, 15 min). All subsequent procedures were performed at 4°C or on ice. Harvested cells were resuspended in disruption buffer (50 mM Tris-HCl (pH 7.8), 200 mM NaCl). After sonication and centrifugation (17000 g, 60 min, 4°C), the supernatant was subjected to His-tag affinity purification.

9. In vitro assays of CtdY.

The 100 μ L CtdY microsomal fractions containing 0.5 mM compound **20** and 2 mM NADPH were incubated overnight at 28 °C and extracted twice with 200 μ L ethyl acetate. The organic phase was dried and dissolved in 50 μ L MeOH for LC-MS analysis. Samples were analyzed on an Agilent 6120B Single Quadrupole LC-MS using an Agilent Poroshell 120 EC-C18 column (3.0 × 150 mm) with the following time program: 5%-95% acetonitrile for 15 min, 95% acetonitrile for 5 min, 95% of formic acid was added to H₂O. The flow rate was 0.5 mL/min.

10. In vitro assays of CtdR.

Assays of CtdR were performed in 100 μ L volumes containing 50 mM Tris-HCl (pH 7.8), 0.2 mM compound **19**, 20 μ M CtdR, 2.5 mM NADPH. The mixture was incubated at 30°C for 12 h and extracted twice with ethyl acetate. The organic phases were dried and dissolved in 50 μ L MeOH and subjected to LC-MS analysis. Samples were analyzed on an Agilent 6120B Single Quadrupole LC-MS using an Agilent Poroshell 120 EC-C18 column (3.0×150 mm) with the following time program: 5% acetonitrile over 5 min, 5%-60% acetonitrile for 25 min, 95% acetonitrile for 5 min, 95%-5% acetonitrile for 1 min, and 5% acetonitrile for 4 min. 0.1% of formic acid was added to H₂O. The flow rate was 0.5 mL/min, and the reactions were monitored at 280 nm.

11. In vitro assays of CtdV.

Assays of CtdV were performed in 100 μ L volumes containing 50 mM Tris-HCl (pH 7.8), 0.2 mM compound **15** or **16**, 20 μ M CtdV, 2 mM ascorbic acid, 2 mM α -ketoglutarate, 0.5 mM FeSO₄·7H₂O. The mixture was incubated at 30°C for 12 h and extracted twice with ethyl acetate. The organic phases were dried and dissolved in 50 μ L MeOH and subjected to LC-MS analysis as described for CtdR assays.

12. In vitro assays of CtdJ.

Assays of CtdJ were performed in 100 μ L volumes containing 50 mM Tris-HCl (pH 7.8), 0.2 mM compound **17**, 20 μ M CtdJ, 2 mM α -ketoglutarate. The mixture was incubated at 30°C for 12 h and extracted twice with ethyl acetate. The organic phases were dried and dissolved in 20 μ L MeOH and subjected to LC-MS analysis as described for CtdR assays.

Supplementary Tables

Strain	Characteristics	source	
P. citrinum ATCC 9849	Wild type P. citrinum used in this study	ATCC	
$\Delta ctdT$	ctdT knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdF$	ctdF knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdY$	ctdY knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdS$	ctdS knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdG$	ctdG knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdR$	ctdR knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdV$	ctdV knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdJ$	ctdJ knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdD$	ctdD knockout mutant of P. citrinum ATCC 9849	This study	
$\Delta ctdC$	ctdC knockout mutant of P. citrinum ATCC 9849	This study	

Table S1. Strains in this study.

Table S2. Plasmids used in this study.

Plasmids	Description of Plasmid
pXW55-CtdY	2µ yeast expression plasmid
•	CtdY gene under the ADH2 promoter
pXW55-CtdY(L102A)	2µ yeast expression plasmid
	CtdY(L102A) gene under the ADH2 promoter
pXW55-CtdY(N106A)	2µ yeast expression plasmid
1	CtdY(N106A) gene under the ADH2 promoter
pXW55-CtdY(F110A)	2u veast expression plasmid
1	CtdY(F110A) gene under the ADH2 promoter
pXW55-CtdY(F119A)	2u veast expression plasmid
1	CtdY(F119A) gene under the ADH2 promoter
pXW55-CtdY(P218A)	2u veast expression plasmid
F()	CtdY(P218A) gene under the <i>ADH2</i> promoter
pXW55-CtdY(F300A)	2u veast expression plasmid
·····)	CtdY(F300A) gene under the <i>ADH2</i> promoter
pXW55-CtdY(H304A)	2u veast expression plasmid
·····)	CtdY(H304A) gene under the <i>ADH2</i> promoter
pXW55-CtdY(S305A)	2µ yeast expression plasmid
	CtdY(S305A) gene under the ADH2 promoter
pXW55-CtdY(M308A)	2µ yeast expression plasmid
-	CtdY(M308A) gene under the ADH2 promoter
pXW55-CtdY(I365A)	2µ yeast expression plasmid
	CtdY(I365A) gene under the ADH2 promoter
pXW55-CtdY(F486A)	2µ yeast expression plasmid
	CtdY(F486A) gene under the ADH2 promoter
pXW55-CtdY(S305Y)	2µ yeast expression plasmid
	CtdY(S305Y) gene under the <i>ADH2</i> promoter
pXW55-CtdY(S305D)	2µ yeast expression plasmid
	CtdY(S305D) gene under the <i>ADH2</i> promoter
pXW55-CtdY(S305T)	2µ yeast expression plasmid
	CtdY(S305T) gene under the <i>ADH2</i> promoter
pXW55-CtdY(S305V)	2µ yeast expression plasmid
	CtdY(S305V) gene under the <i>ADH2</i> promoter
pXW55-CtdY(S305C)	2µ yeast expression plasmid
	CtdY(S305C) gene under the <i>ADH2</i> promoter
pYTP-CtdY	Aspergillus nidulans expression vector containing gene
	<i>ctdY</i> under the <i>amyB</i> promoter
pYTR-CtdS	Aspergillus nidulans expression vector containing gene
	<i>ctdS</i> under the <i>gpdA</i> promoter
pYTP-CtdG	Aspergillus nidulans expression vector containing gene
	ctdG under the amyB promoter
pYTP-CtdGY	Aspergillus nidulans expression vector containing gene
	<i>ctdG</i> under the <i>amyB</i> promoter and <i>ctdY</i> under the <i>gpdA</i> promoter
pYTP-CtdYRGJ	Aspergillus nidulans expression vector containing gene
	ctdY under the <i>amvB</i> promoter and <i>ctdR</i> under the <i>gndA</i> promoter

	<i>ctdG</i> under the <i>glaA</i> promoter and <i>ctdJ</i> under the <i>trpC</i> promoter		
pYTR-CtdCSDV	Aspergillus nidulans expression vector containing gene		
_	ctdC under the gpdA promoter and ctdS under the amyB promoter		
	<i>ctdD</i> under the <i>glaA</i> promoter and <i>ctdV</i> under the <i>trpC</i> promoter		
pET-CtdR	vector for CtdR expression in E. coli BL(DE3)		
pET-CtdV	vector for CtdV expression in <i>E. coli</i> BL(DE3)		
pET-CtdJ	vector for CtdJ expression in E. coli BL(DE3)		

Table S3. Primers used in this study.

Primer	Sequence (5'→3')
KO-CtdT-1F	CGAGGTCCGATGTATAACTCG
KO-CtdT-1R	ACTCCAGAATCAGCTAGGTCAACGCAACGCGCTAAGATGTATCCACAT
KO-CtdT-2F	ATGTGGATACATCTTAGCGCGTTGCGTTGACCTAGCTGATTCTGGAGT
KO-CtdT-2R	CACATGCCCTCATCATCCCAGTCACCGTTGATCTGCTTGATCTCGT
KO-CtdT-3F	ACGAGATCAAGCAGATCAACGGTGACTGGGATGATGAGGGCATGTG
KO-CtdT-3R	CTTGCATAGCAGCTTCTCTG
YZ-KO-CtdT-F	TCATCTAGGCGCTCAGGGTG
YZ-KO-CtdT-R	CTATCTTCAATAGATTGACAG
KO-CtdF-1F	CTCGAAGCCTACGGTTCCA
KO-CtdF-1R	ACTCCAGAATCAGCTAGGTCAACGTACCCCAAGAAAGAGGACATTGTT
KO-CtdF-2F	AACAATGTCCTCTTTCTTGGGGTACGTTGACCTAGCTGATTCTGGAGT
KO-CtdF-2R	GGAATGGCACAAAGTATATGGTCCACCGTTGATCTGCTTGATCTCGTC
KO-CtdF-3F	GACGAGATCAAGCAGATCAACGGTGGACCATATACTTTGTGCCATTCC
KO-CtdF-3R	AGAGTACAGTTGGAGGTTGG
YZ-KO-CtdF-F	CGAGGAGTACTTTCAAACAGC
YZ-KO-CtdF-R	ACCGTCTGTGCAATCAGAGA
KO-CtdY-1F	CTGATATTGGATTTCTGCGTG
KO-CtdY-1R	ACTCCAGAATCAGCTAGGTCAACGCGAAACCAAAGATGACATTGT
KO-CtdY-2F	ACAATGTCATCTTTGGTTTCGCGTTGACCTAGCTGATTCTGGAGT
KO-CtdY-2R	CAAGATGAAGAAGAATGAGCACACCGTTGATCTGCTTGATCTCGT
KO-CtdY-3F	ACGAGATCAAGCAGATCAACGGTGTGCTCATTCTTCTTCATCTTG
KO-CtdY-3R	TGTCGAGAACAAGATGTCCA
YZ-KO-CtdY-F	AAATACAGGTCGGTGCTTAG
YZ-KO-CtdY-R	CCAAGAGTTGTGAAAGTTTCA
KO-CtdS-1F	TCCAGCTGCTGAGATCTTGG
KO-CtdS-1R	ACTCCAGAATCAGCTAGGTCAACGCGCCAGACTTTCTACACCATA
KO-CtdS-2F	TATGGTGTAGAAAGTCTGGCGCGTTGACCTAGCTGATTCTGGAGT
KO-CtdS-2R	GTAGCCAACCAACCTCTCGATTTACCGTTGATCTGCTTGATCTCGT
KO-CtdS-3F	ACGAGATCAAGCAGATCAACGGTAAATCGAGAGGTTGGTT
KO-CtdS-3R	CTCGTACGCAAAAGGAACAC
YZ-KO-CtdS-F	AATAATACCAAACAGCGAAGT
YZ-KO-CtdS-R	GCCCTCATCATCCCAGTCC
KO-CtdG-1F	GAATCGGTTGTCTTTGGCAC
KO-CtdG-1R	ACTCCAGAATCAGCTAGGTCAACGTGTCACCCTGCACCTGCATTACT
KO-CtdG-2F	AGTAATGCAGGTGCAGGGTGACACGTTGACCTAGCTGATTCTGGAGT
KO-CtdG-2R	CAGAGAATCGACCCATTCTAGGCACCGTTGATCTGCTTGATCTCGT
KO-CtdG-3F	ACGAGATCAAGCAGATCAACGGTGCCTAGAATGGGTCGATTCTCTG
KO-CtdG-3R	CCAAGGCCAATAGCATATGG
YZ-KO-CtdG-F	CAAGCACTATTCGCGTCCGA
YZ-KO-CtdG-R	TGGCATGTAAAGTGGAGACAG
KO-CtdR-1F	AGGGTAAACAACACCCAAAC
KO-CtdR-1R	ACTCCAGAATCAGCTAGGTCAACGGGCGTCGTGTTTTCTTTGATGACC
KO-CtdR-2F	GGTCATCAAAGAAAACACGACGCCCGTTGACCTAGCTGATTCTGGAGT
KO-CtdR-2R	CATTAGTGGATGCCTTTGCTCGAACCGTTGATCTGCTTGATCTCGT
KO-CtdR-3F	ACGAGATCAAGCAGATCAACGGTTCGAGCAAAGGCATCCACTAATG
KO-CtdR-3R	CCCTGAAAGAGGTTCTCTGT
YZ-KO-CtdR-F	CGACCGTGGCCTACATCCGG
YZ-KO-CtdR-R	GAACGCGGTCGAATGAACAG
KO-CtdV-1F	GTGGAGCAGCAGTATCTCTAC
KO-CtdV-1R	ACTCCAGAATCAGCTAGGTCAACGCAATGGGACCTTCTTCCTCGAGTC
KO-CtdV-2F	GACTCGAGGAAGAAGGTCCCATTGCGTTGACCTAGCTGATTCTGGAGT
KO-CtdV-2R	TTCCAAAGTTGTGACTATCAGATACCGTTGATCTGCTTGATCTCGT
KO-CtdV-3F	ACGAGATCAAGCAGATCAACGGTATCTGATAGTCACAACTTTGGAA

KO-CtdV-3R	AGTACACGTGTCGTGGTCTG
YZ-KO-CtdV-F	CCACTGCTTGCACGGGTCTT
YZ-KO-CtdV-R	TCTAAGGAGTTCTAGCCTAGG
KO-CtdJ-1F	CCCTATGTCAAGTTAGCTAGT
KO-CtdJ-1R	ACTCCAGAATCAGCTAGGTCAACGATGCTGGGCTTTCAACATTTTG
KO-CtdJ-2F	CAAAATGTTGAAAGCCCAGCATCGTTGACCTAGCTGATTCTGGAGT
KO-CtdJ-2R	TCAAAGTGCATACCTTGTGAGCTACCGTTGATCTGCTTGATCTCGT
KO-CtdJ-3F	ACGAGATCAAGCAGATCAACGGTAGCTCACAAGGTATGCACTTTGA
KO-CtdJ-3R	GCAGACCCATACGATGGGCC
YZ-KO-CtdJ-F	AATCCATGAAATTGCTGACT
YZ-KO-CtdJ-R	GCTTCAGTCGGGCAAACATA
KO-CtdD-1F	GCACTTGGAATATCCTGAGAG
KO-CtdD-1R	ACTCCAGAATCAGCTAGGTCAACGAGCTATTTCAATTTTGCACGCCAT
KO-CtdD-2F	ATGGCGTGCAAAATTGAAATAGCTCGTTGACCTAGCTGATTCTGGAGT
KO-CtdD-2R	GAATGAAATACTTACGTATGATAGACCGTTGATCTGCTTGATCTCGT
KO-CtdD-3F	
KO-CtdD-3R	
YZ-KO-CtdD-F	
YZ-KO-CtdD-R	
KO-CtdC-IF	
KO-CtdC-IR	
KO-CtdC-2F	
KO-CtdC-2R	
KO-CtdC-3F	
KU-CtaC-3K	
YZ-KO-CldC-F	
IZ-KU-CldC-K	
Пуд-Г Цуд Р	
nyg-K	
pXW55-CtdVP	
CtdV-F110A-R	GGGGATGTATA AGCTGTTTGGGCGTACTCCTCGTTGA A AGCGT
CtdV-F110A-F	GCCCAAACAGCTTATACATCCCC
CtdV-F119A-R	
CtdY-F119A-F	GCAGTCGACTCGAAGCCTACGGT
CtdY-F300A-R	TGCGATGACGGAAACCATCATCT
CtdY-F300A-F	AGATGATGGTTTCCGTCATCGCAGGCTCCGTACATTCTGCAGG
CtdY-F486A-R	GACGCGAATAGTGCTTGAGGCACTAAATCCTTTCGAGGTCT
CtdY-F486A-F	GCCTCAAGCACTATTCGCGTC
CtdY-H304A-R	GCCAAGACCATGCCTGCAGAGGCTACGGAGCCGAAGATGACGG
CtdY-H304A-F	GCCTCTGCAGGCATGGTCTTGGC
CtdY-I365A-R	GGCAGGGTTATGACGGTGACTTT
CtdY-I365A-F	AAAGTCACCGTCATAACCCTGCCGGAGCAGCTTCGTTGTTTCG
CtdY-L102A-F	TGCCGAAAATATACTATCGGGTA
CtdY-L102A-R	TACCCGATAGTATATTTTCGGCAAACGCTTTCAACGAGGAGTA
CtdY-M308A-R	TAAATAGAACTGGCCAAGACTGCGCCTGCAGAATGTACGGAGC
CtdY-M308A-F	GCAGTCTTGGCCAGTTCTATTTA
CtdY-P218A-R	TGCGACTGTGGCACCGTAGCGAG
CtdY-P218A-F	CTCGCTACGGTGCCACAGTCGCACGAGACGGCCAACGGATTGC
CtdY-S305A-R	GGCATGTACGGAGCCGAAGATGA
CtdY-S305A-F	TCATCTTCGGCTCCGTACATGCCGCAGGCATGGTCTTGGCCAG
CtdY-S305Y-R	GTAATGTACGGAGCCGAAGATGA
CtdY-S305Y-F	TCATCTTCGGCTCCGTACATTACGCAGGCATGGTCTTGGCCAG
CtdY-S305C-R	ACAATGTACGGAGCCGAAGATGA
CtdY-S305C-F	TCATCITCGGCTCCGTACATTGTGCAGGCATGGTCTTGGCCAG
CtdY-S305V-R	CACATGTACGGAGCCGAAGATGA
CtdY-S305V-F	TCATCTTCGGCTCCGTACATGTGGGCAGGCATGGTCTTGGCCAG
CtdY-S305D-R	ATCATGTACGGAGCCGAAGATGA
CtdY-S305D-F	TCATCTTCGGCTCCGTACATGATGCAGGCATGGTCTTGGCCAG
CtdY-S305T-R	
CtdY-S305T-F	
pYIP-CtdY-F	CUTTUTUTUAACAAIAAACCCCACAGAAGGCATTTATGTCATCTTTGGTTTC
WTD CHIV D	
ртте-сют-к	ΑΙ ΦΑΦΑΓΓΙΑΑ ΓΑΙ ΤΑΙ ΤΑΙ ΑΓΙ ΤΑΙ ΑΓΙ ΤΗ ΤΟΑΑΙ Ι ΓΙ ΤΟΑΑΙ Ι Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο

	AATGTA	
pYTR-CtdS-F	GCCACATAGACACATCTAAACAATGGCCTCTGTAGCCAACCAA	
pYTR-CtdS-R	CATCGAAAGGGAGTCATCCAATTTAAATCTGAATATGTCTCCCATCTG	
pYTP-CtdG-F	CCTTCTCTGAACAATAAACCCCACAGAAGGCATTTATGCAGGTGCAGGGTG	
-	ACAC	
pYTP-CtdG-R	ATGAGACCCAACAACCATGATACCAGGGGATTTAAATCTTGTACTGAGACT	
	TTGAAT	
pYTP-CtdGY-1F	CCTTCTCTGAACAATAAACCCCACAGAAGGCATTTATGCAGGTGCAGGGTG	
	ACAC	
pYTP-CtdGY-1R	TCACCCAAATCAATTCACCGGAGTCTTGTACTGAGACTTTGAATTGAA	
pYTP-CtdGY-2F	TTCAATTCAAAGTCTCAGTACAAGACTCCGGTGAATTGATTTGGGTGA	
pYTP-CtdGY-2R	ACAGAACGAAACCAAAGATGACATTGTTTAGATGTGTCTATGTGGCGG	
pYTP-CtdGY-3F	CCGCCACATAGACACATCTAAACAATGTCATCTTTGGTTTCGTTCTGT	
pYTP-CtdGY-3R	ATGAGACCCAACAACCATGATACCAGGGGATTTAAATTTTGAATTCCTGAA	
	AATGTAT	
pYTP-CtdYRGJ-1F	CCTTCTCTGAACAATAAACCCCACAGAAGGCATTTATGTCATCTTTGGTTTC	
	GTT	
pYTP-CtdYRGJ-1R	CACCCAAATCAATTCACCGGAGTTTTGAATTCCTGAAAATGTATTA	
pYTP-CtdYRGJ-2F	TAATACATTTTCAGGAATTCAAAACTCCGGTGAATTGATTTGGGTG	
pYTP-CtdYRGJ-2R	ATCTTTCTTTCAACAGTCATTGTTTAGATGTGTCTATGTGGC	
pYTP-CtdYRGJ-3F	GCCACATAGACACATCTAAACAATGACTGTTGAAAGAAAG	
pYTP-CtdYRGJ-3R	TACGACCAGTTCGGAAGATCAGGCTGGTGCCCCTGGAAAGGATGTG	
pYTP-CtdYRGJ-4F	CACATCCTTTCCAGGGGCACCAGCCTGATCTTCCGAACTGGTCGTA	
pYTP-CtdYRGJ-4R	ACTGTGTCACCCTGCACCTGCATTGCTGAGGTGTAATGATGCTGGG	
pYTP-CtdYRGJ-5F	CCCAGCATCATTACACCTCAGCAATGCAGGTGCAGGGTGACACAGT	
pYTP-CtdYRGJ-5R	AGCCAAGCCCAAAAAGTGCTCCTCTTGTACTGAGACTTTGAATTGA	
pYTP-CtdYRGJ-6F	TCAATTCAAAGTCTCAGTACAAGAGGAGCACTTTTTGGGCTTGGCT	
pYTP-CtdYRGJ-6R	AGTTGATGCTGGGCTTTCAACATGGTTACTTCCTAATCGAAGCTT	
pYTP-CtdYRGJ-7F	AAGCTTCGATTAGGAAGTAACCATGTTGAAAGCCCAGCATCAACT	
pYTP-CtdYRGJ-7R	GACCCAACAACCATGATACCAGGGGATTTAAATGCCTTTCATAGGCGACCA	
WTD CHICODU IE		
PY IP-CIdCSDV-IF		
TP-CldCSDV-IK		
pYTP-CldCSDV-2F		
pYTP-CldCSDV-2K		
prip-CucSDV-SF		
pTTP-CtdCSDV-SK		
pTTP-CtdCSDV-4F		
pTTP-CtdCSDV-4K		
pTTP CtdCSDV-5P		
pTTP CtdCSDV-5K		
pTTP-CtdCSDV-0P	GGCTGATTGAGGATTACAGTCATGGTTACTTCCTAATCGAAGCTTT	
pTTP CtdCSDV-0K		
pTTP-CtdCSDV-7P	ATCATCGA A AGGGAGTCATCCA ATTTA A ATTTGTCTTATGGCGCTGTCAGGG	
p111-CuCSDV-/K	Т	
pET-CtdR-F	CTTTAAGAAGGAGATATACCATGACTGTTGAAAGAAAGAT	
pET-CtdR-R	TTAGTGATGGTGGTGGTGGTGGTGGGAAGCATTGAGACGCTTAAA	
pET-CtdV-F	CTTTAAGAAGGAGATATACCATGACTGTAATCCTCAATCAGCC	
pET-CtdV-R	TTAGTGATGGTGGTGGTGGTGATGGATCGCCCGCTCAGAACAGACA	
pET-CtdJ-F	CTTTAAGAAGGAGATATACCATGTTGAAAGCCCAGCATCAA	
pET-CtdJ-R	TTAGTGATGGTGGTGGTGATGTGTTGTCCTGGCTTCATGGAA	

Table S4. Proteins encoded in the ctd gene cluster.

Gene	Size(bp)	Putative function	Protein	Coverage/Identify	Organism
			homologue	(%)	8
ctdC	867	Methyltransferase	EPS25854.1	99/52.54	Penicillium oxalicum 114-2
ctdD	4157	Nonribosomal peptide synthetase	KAF3403516.1	93/44.15	Penicillium rolfsii
ctdE	1421	FAD-dependent monooxygenase	XP_040756164.1	96/58.02	Aspergillus ochraceoroseus IBT 24754

ctdY	1916	Cytochrome P450	EPS25875.1	89/47.05	Penicillium
		monooxygenase			oxalicum 114-2
ctdF	1547	Cytochrome P450	RHZ66411.1	87/44.24	Aspergillus
		monooxygenase			turcosus
ctdG	1990	Cytochrome P450	RLL97463.1	99/44.07	Aspergillus
		monooxygenase			turcosus
ctdH	1371	Prenyltransferase	OQE41216.1	98/70.77	Penicillium
					coprophilum
ctdI	1383	Transporter	KAF3403517.1	92/49.37	Penicillium rolfsii
ctdJ	1066	Dioxygenase	KAF3403672.1	96/59.09	Penicillium rolfsii
ctdK	946	Hvdroxymethylglutaryl-	XP 026615404.1	97/62.76	Aspergillus
		CoA lyase	_		thermomutatus
ctdL	1918	Cystathionine gamma-	GFF48424.1	94/65.62	Penicillium
		synthase	-		arizonense
ctdM	1043	Imine reductase	XP 031920864.1	99/64.26	Aspergillus
					caelatus
ctdN	801	SDR family	XP 040756165.1	97/57.92	Aspergillus
		oxidoreductase	_		ochraceoroseus
					IBT 24754
ctdO	1253	NmrA	XP 040756166.1	97/60.18	Aspergillus
			_		ochraceoroseus
					IBT 24754
ctdP	1252	NmrA	XP 040756163.1	92/62.77	Aspergillus
			_		ochraceoroseus
					IBT 24754
ctdQ	7215	Nonribosomal peptide	KKK13836.1	98/49.49	Aspergillus
		synthetase			rambellii
ctdR	1163	NmrA	KKK12906.1	98/50.74	Aspergillus
					ochraceoroseus
ctdS	885	Methyltransferase	KKK13831.1	91/46.18	Aspergillus
		, j			rambellii
ctdT	1848	FAD-dependent	EPS25873.1	96/55.07	Penicillium
		monooxygenase			oxalicum 114-2
ctdU	1367	Prenyltransferase	XP 040756152.1	96/62.17	Aspergillus
		-	_		ochraceoroseus
					IBT 24754
ctdV	1074	Dioxygenase	KKK13834.1	94/45.79	Aspergillus
					rambellii

Table S5. NMR data of **15** (δ in ppm, J in Hz).

Position	$^{1}\mathrm{H}$	¹³ C	
1	9.41, s		NH
2		184.0	С
3		60.6	С
3a		136.7	С
4	7.67, d (8.0)	133.4	СН
5	7.08, t (7.7)	121.2	CH
6	7.76, d (7.4)	126.8	СН
7		116.7	С
7a		143.6	C
0	2.08, ov.	42.0	CU
0	1.97, ov.	42.9	CH_2
9		68.2	С
10	2.98, m	57.6	CH ₂
10	2.28, ov.	57.0	
12	3.07, br s	54.0	CH
12	2.04, ov.	26.2	CH ₂
15	1.76, m	30.2	
14	5.20, brs	68.1	CH
15	1.87, m	20.0	CH ₂
15	1.53, ov.	30.0	
16	2.64, m	47.5	CH
17	1.55, ov.	22.1	CU
17	1.16, ov.	32.1	CH ₂
18	1.87, ov.	56.6	CH
19		48.0	С
20		194.8	С
21	4.04, s	64.4	CH
22		61.5	C
23	1.60, s	24.4	CH ₃
24	1.25, s	18.7	CH ₃
26	2.32, s	29.8	CH ₃
27	1.16, ov.	13.5	CH ₃
28	1.03, s	26.6	CH ₃
29	1.24, s	29.3	CH ₃

1'		171.0	С
2'	2.70, d (10.5)	75.0	CH
4'	2.04, ov.	27.6	СН
5'	0.90, d (6.6)	19.4	CH ₃
6'	0.99, d (6.6)	20.1	CH ₃
7'	2.32, s	41.7	CH ₃
8'	2.32, s	41.7	CH ₃

Key NOESY correlations

Table S6. NMR	data of 16	$(\delta \text{ in ppm},$	J in Hz).
14010 000 1 11111		(o m ppm,	0

Position	$^{1}\mathrm{H}$	¹³ C	
1	9.41, s		NH
2		184.1	С
3		60.3	С
3a		136.9	С
4	7.66, d (8.0)	133.6	CH
5	7.07, t (7.1)	121.2	CH
6	7.78, d (7.4)	126.7	CH
7		116.6	С
7a		143.6	С
0	2.07, ov.	12.8	CH ₂
0	1.95, ov.	42.8	
9		62.6	С
10	2.94, d (11.1)	57.0	CH
10	2.17, d (11.1)	51.9	
12	3.01, m	55.4	CH
12	1.66, m	24.5	CU
15	1.23, ov.	54.5	CH ₂
14	1.43, m	20.0	CII
14	1.14, m	29.9	CH_2
15	1.77, ov.	22.8	CU
15	1.52, ov.	52.8	CH_2
16	2.36, m	52.6	CH
17	1.77, m	22.8	СЦ
1/	1.53, ov.	32.0	

18	1.79, ov.	57.0	СН
19		48.0	С
20		194.8	С
21	4.05, s	64.4	СН
22		61.7	С
23	1.60, s	24.5	CH ₃
24	1.25, s	18.7	CH ₃
26	2.27, s	29.3	CH ₃
27	0.99, d (6.7)	10.2	CH ₃
28	1.25, ov.	29.6	CH ₃
29	1.01, ov.	26.7	CH ₃

 a Measured in CDCl₃, 600 MHz for 1 H and 150 MHz for 13 C NMR. Overlapped signals are reported without designating multiplicity.

Key NOESY correlations

Table S7. NMR data of 17 (δ in	n ppm, .	J in Hz)).
---	----------	----------	----

Position	¹ H	¹³ C	
1	9.65, s		NH
2		185.6	С
3		60.7	С
3a		134.9	С
4	7.66, d (7.4)	133.5	CH
5	7.19, t (7.8)	122.7	CH
6	7.74, d (8.0)	127.6	CH
7		117.6	С
7a		142.8	С
0	2.21, d (14.0)	41.0	CH ₂
0	2.13, d (14.0)	41.9	
9		68.1	С
10	3.65, d (11.5)	51.0	CU
10	3.24, d (11.5)	51.0	
12	3.73, ov.	52.5	CH
13	2.80, m	20.0	CH.
	1.64, ov.	29.0	CH_2
14	2.36, br s	20.4	CU.
	1.70, ov.	29.4	$C\Pi_2$

15	1.72, ov.	17.5	CH ₂
16	3.70, ov.	58.2	СН
17	2.25, m	21.7	CU
17	1.71, ov.	51.7	
18		82.7	С
18-OH	5.25, s		OH
19		51.3	С
20		195.0	С
21	4.07, s	64.3	СН
22		61.9	С
23	1.61, s	24.4	CH ₃
24	1.25, s	18.7	CH ₃
26	2.46, s	30.4	CH ₃
27	1.41, d (6.9)	12.2	CH ₃
28	1.38, s	28.2	CH ₃
29	1.00. s	21.9	CH ₃

Table S8. NMR data of **18** (δ in ppm, J in Hz).

Position	$^{1}\mathrm{H}$	¹³ C	
1	8.63, s		NH
2		185.6	С
3		62.3	С
3a		133.9	С
4	7.02, ov.	128.7	CH
5	6.99, ov.	122.5	CH
6	7.33, d (7.3)	126.6	CH
7		119.8	С
7a		140.2	С
0	2.08, ov.	41.1	CU
0	2.12, m		CH_2
9		68.3	С
10	3.34, ov.	50.3	CIL
	2.80, ov.		CH ₂
12	3.29, ov.	54.5	CH

13	2.26, ov.	25.1	CH
15	1.82, m	35.1	CH ₂
14	5.21, s	67.4	CH
15	1.80, ov.	27.5	CU
15	1.58, ov.	57.5	CH_2
16	3.44, ov.	43.7	CH
17	1.69, ov.	24.2	CUL
17	1.57, ov.	54.2	
18		83.3	С
19		51.3	С
20	3.02, m	32.6	СЦ
20	2.60, m	52.0	CH ₂
21	2.97, m	63.7	CH
22		59.8	С
23	1.41, s	19.3	CH ₃
24	1.36, s	24.7	CH ₃
26	2.32, s	29.8	CH ₃
27	1.31, ov.	13.9	CH ₃
28	1.40, s	28.1	CH ₃
29	1.00, s	22.1	CH ₃
1'		170.8	С
2'	2.71, d (10.2)	74.5	CH
4'	2.05, ov.	27.5	CH
5'	1.00, d (6.4)	18.9	CH ₃
6'	0.89, d (6.4)	19.3	CH ₃
7'	2.30, s	41.5	CH ₃
8'	2.30, s	41.5	CH ₃

Key NOESY correlations

Table S9. NMR data of **20** (δ in ppm, J in Hz).

Position	$^{1}\mathrm{H}$	¹³ C	
1	9.21, s		NH
2		183.8	С
3		63.0	С
3a		130.5	С
4	7.38, d (7.4)	124.8	CH

5	6.98, t (7.6)	121.8	CH
6	7.08, d (7.6)	128.9	CH
7		119.5	С
7a		140.7	С
0	2.38, d (15.3)	40.5	CU
0	2.25, d (15.3)	40.5	CH_2
9		61.6	С
10	3.55, d (9.1)	64.5	CIL
10	2.44, d (9.1)	04.3	CH_2
12	2.22, m	59.4	CH
12	1.61, ov.	24.4	CU
15	1.26, m	54.4	CH ₂
1.4	1.84, m	20.0	CIL
14	1.61, ov.	20.9	CH_2
15	2.29, ov.	21.0	CIL
15	1.40, m	51.9	CH_2
16	3.12, ov.	46.8	CH
17	1.93, dd (13.5, 10.2)	25.4	CH ₂
17	1.52, dd (13.5, 8.0)	55.4	
18	2.22, ov.	59.5	CH
19		47.5	С
20	2.94, dd (15.4, 3.9)	21.4	CIL
20	2.75, dd (15.4, 8.0)	51.4	CH_2
21	2.99, dd (7.9, 4.0)	63.7	СН
22		59.6	С
23	1.43, s	18.8	CH ₃
24	1.37, s	24.7	CH ₃
25	8.50, s		NH
27	1.08, d (6.0)	21.2	CH ₃
28	0.97, s	20.7	CH ₃
29	0.80, s	23.1	CH ₃
30		174.9	С

 a Measured in CDCl₃, 600 MHz for 1 H and 150 MHz for 13 C NMR. Overlapped signals are reported without designating multiplicity.

Key NOESY correlations

Position	$^{1}\mathrm{H}$	¹³ C	
1	9.70, s		NH
2		185.5	С
3		60.4	С
3a		134.8	С
4	7.75, d (7.9)	133.6	СН
5	7.18, t (7.8)	122.5	СН
6	7.90, d (7.4)	127.5	CH
7		117.4	С
7a		142.7	С
0	2.45, ov,	49.2	CII
8	1.85, ov.	48.2	CH_2
9		63.6	С
10	3.99, m	58.0	CII
10	3.09, m	58.9	CH ₂
12	3.85, m	55.7	СН
12	2.63, m	22.1	CII
15	1.92, ov.	33.1	CH ₂
14	5.28, br s	65.7	СН
15	2.48, m	24.6	CIL
15	1.97, ov.	54.0	
16	3.99, ov.	47.0	СН
17	2.13, m	21.0	CH
17	1.70, m	51.9	
18		81.7	С
19		51.7	С
20		194.9	С
21	4.07, s	64.2	CH
22		61.7	С
23	1.61, s	24.3	CH ₃
24	1.26, s	18.5	CH ₃
27	1.52, m	14.6	CH ₃
28	1.40, s	27.9	CH ₃
29	1.03, ov.	21.9	CH ₃
1'		170.2	С
2'	2.81, m	74.2	CH
4'	2.06, m	27.6	CH
5'	1.01, ov.	19.3	CH ₃
6'	0.91, d (6.6)	19.9	CH ₃
7'	2.35, s	41.3	CH ₃
8'	2.35, s	41.3	CH ₃

Table S10. NMR data of **25** (δ in ppm, *J* in Hz).

 a Measured in CDCl₃, 600 MHz for 1 H and 150 MHz for 13 C NMR. Overlapped signals are reported without designating multiplicity.

Key NOESY correlations

Position	¹ H	¹³ C	,
1	9.68. s	-	NH
2		185.6	С
3		60.8	С
3a		135.1	С
4	7.68, d (7.1)	133.5	СН
5	7.20, t (7.7)	122.6	СН
6	7.76, d (7.9)	127.5	СН
7		117.6	С
7a		142.9	С
0	2.22, d (14.0)	41.0	CII
8	2.16, d (14.0)	41.8	CH ₂
9		68.0	С
10	3.70, ov.	50.2	CIL
10	3.19, d (11.0)	30.2	CH_2
12	3.65, ov.	56.7	CH
12	2.50, m	27.2	CU
15	1.82, m	57.5	CH_2
14	4.27, brs	63.6	CH
15	2.24, m	31 /	CH
15	1.81, m	51.4	
16	4.10, ov.	46.3	СН
17	2.70, m	35.5	CH ₂
17	1.86, m	55.5	
18		82.8	С
18-OH	5.17, s		OH
19		51.5	С
20		195.0	С
21	4.08, s	64.3	СН
22		61.8	С
23	1.63, s	24.4	CH ₃
24	1.27, s	18.7	CH ₃
26	2.43 s	29.9	CH ₃
27	1.60, d (7.0)	15.3	CH ₃
28	1.40, s	28.3	CH ₃
29	1.03, s	22.0	CH ₃

Table S11. NMR data of **23** (δ in ppm, *J* in Hz).

 a Measured in CDCl₃, 600 MHz for 1 H and 150 MHz for 13 C NMR. Overlapped signals are reported without designating multiplicity.

Table S12. NMR data of **24** (δ in ppm, J in Hz).

Position	¹ H	¹³ C	
1	9.72, s		NH
2		185.4	С
3		60.6	С
3a		134.7	С
4	7.67, brs	133.3	CH
5	7.22, m	122.6	CH
6	7.77, brs	127.7	CH
7		117.5	С
7a		142.7	С
0	2.25, m	41.6	CU
8	2.17, m	41.0	CH ₂
9		67.9	С
10	3.76, m	50.6	CIL
10	3.33, m	50.0	$C\Pi_2$
12	3.85, br s	56.1	CH
12	2.66, m	22.5	CH.
15	1.96, m	55.5	CH_2
14	5.32, m	67.9	CH
15	2.94, ov.	22.0	CH ₂
15	1.94, ov.	55.0	
16	4.03, m	47.3	CH
17	2.67, m	22.6	CH ₂
17	1.96, ov.	55.0	
18		82.5	С
19		51.2	С
20		194.9	С
21	4.09, s	64.2	СН
22		61.8	С
23	1.64, s	24.3	CH ₃
24	1.27, s	18.5	CH ₃
26	2.45, s	30.0	CH ₃
27	1.27, m	18.6	CH ₃
28	1.04, ov.	19.4	CH ₃
29	1.40, s	28.1	CH ₃

1'		172.2	С
2'	2.88, ov.	74.0	CH
4'	2.21, ov.	31.0	CH
5'	0.95, ov.	17.7	CH ₃
6'	1.01, ov.	21.7	CH ₃

 a Measured in CDCl₃, 600 MHz for 1 H and 150 MHz for 13 C NMR. Overlapped signals are reported without designating multiplicity.

Key NOESY correlations

Position	$^{1}\mathrm{H}$	¹³ C	
1	8.31, s		NH
2		183.3	С
3		61.5	С
3a		132.9	С
4	7.39, d (7.0)	126.4	CH
5	6.97, t (7.5)	122.1	CH
6	7.01, d (6.9)	128.8	CH
7		119.2	С
7a		140.2	С
0	2.02, d (13.6)	42.0	CH ₂
8	2.29, d (13.6)	43.0	
9		62.5	С
10	2.78, d (11.9)	57 5	CH ₂
10	3.49, d (11.9)	57.5	
12	3.61, m	58.1	CH
13	1.61, ov.	28.9	CH ₂
1.4	1.25, m	20.9	CH ₂
14	1.77, ov.	29.8	
15	1.65, ov.	17.0	CH ₂
15	1.75, ov.	17.2	
16	3.01, ov.	58.4	CH
17	1.67, ov.	26.5	CH ₂
1/	2.06, ov.	20.3	
18	2.19, dd (13.5, 2.6)	55.5	CH
19		47.1	С

Table S13. NMR data of **22R** (δ in ppm, J in Hz).

20	2.63, ov.	32.6	CH ₂
	2.99, ov.		
21	2.97, ov.	63.7	CH
22		59.6	С
23	1.42, s	18.9	CH ₃
24	1.37, s	24.7	CH ₃
26	2.50, s	29.6	CH ₃
27	1.36, d (6.8)	12.1	CH ₃
28	1.17, s	25.5	CH ₃
29	1.05, s	26.1	CH ₃

Supplementary Figures

Figure S1. Biosynthesis of the precursor of DKPs and MKPs.

A) Proposed early steps of DPKs biosynthesis involve the NRPS NotE. B) Proposed early steps of MPKs biosynthesis involve the NRPS MalG, PhqB, CtdQ, and CndA.⁶⁻⁸

Figure S2. Proposed biosynthesis pathway of methylated L-pipecolic acid.⁹

Figure S3. Cleavage of the amide bonds by different enzymes.¹⁰⁻¹³

Figure S4. PCR verification of *ctd* mutants.

A) Scheme of hygromycin-resistance split-marker approach for gene knockout of genes in *ctd*. B) Verification of mutants by PCR.

5 6 7 8 9 10 11 12min 5 6 7 8 9 10 11 12min

Figure S5. LC-MS analysis of *ctd* mutants.

A) HPLC traces of metabolic extracts from *ctd* mutants. B) LC-MS analysis (extracted ion chromatogram, EIC) of *P. citrinum* wild-type (WT) and *ctd* mutants. $\Delta ctdF$ and $\Delta ctdT$ mutants all retained the production of compound **10**. C) LC-MS analysis (EIC) of *P. citrinum* WT and mutants $\Delta ctdS$, $\Delta ctdD$ and $\Delta ctdC$. i) *P. citrinum* wild-type, ii) $\Delta ctdS$ mutant produces **25**, iii) $\Delta ctdD$ mutant produces **23**, iv) $\Delta ctdC$ mutant produces **24**.

Figure S6. HR-ESI-MS data of compounds 21 (A), 22 (B), 21R (C) and 22R (D).

Figure S7. Feeding of 25 to A. nidulans expressing ctdS.

LC-MS analysis of feeding experiments of **25** to *A. nidulans* with i) empty vector, ii) with pYTR-CtdS, iii) standard compound **10**.

Figure S8. Feeding of 18 to *A. nidulans* expressing *ctdG*.

LC-MS analysis of feeding experiments of **18** to *A. nidulans*. i) standard compound **10**, ii) pYTP, iii) pYTP-CtdG.

Figure S9. Feeding of 20 to *A. nidulans* expressing *ctdYG* and *ctdYS*.

LC-MS analysis of feeding experiments of **20** to *A. nidulans* containing i) pYTP-CtdY and pYTR-CtdS, ii) pYTP-CtdYG, iii) pYTP and pYTR.

Figure S10. TMHMM analysis of the transmembrane domain of CtdY.¹⁴

Figure S11. Detection of carbon dioxide produced in the CtdY assay with a kit. (A) The mechanism of CO₂ detection kit (Attogene, Austin, USA). The assay uses a coupled enzyme assay to detect CO₂ (as HCO₃⁻) as follows. In the first step, the bicarbonate condenses with phosphoenol pyruvate to form oxalate (and phosphoric acid); this reaction is catalyzed by the enzyme Phosphoenolpyruvate Decarboxylase, PEPC. The oxalate is then enzymatically reduced by the enzyme Malate Dehydrogenase (using an NADH cofactor) to form malate and NAD⁺. Since the NADH molecule absorbs light at 340 nm but the NAD⁺ does not, the decrease in absorbance is dependent on the presence of CO₂ in the reaction. Therefore, the CO₂ analyte causes a decrease in absorbance at 340 nm which is directly proportional to the CO₂ concentration in the samples. The kit comes with a CO₂ standard that contains 30 mM of sodium bicarbonate in an aqueous solution. (B) The absorbance at 340 nm of i) positive control, ii) CtdY microsome (negative control), iii) CtdY microsome + **20**.

Figure S12. Sequence similarity network (SSN) of CtdY.

The SSN was generated with the Enzyme Similarity Tool (EFI-EST) web tool using the UniRef databases. A total of 1000 nodes are included in this SSN. The alignment score is 129 and SSN colored by Phylum and Genus.¹⁵

Figure S13. SDS-PAGE gels of CtdR, CtdV and CtdJ. CtdR. CtdV and CtdJ contain the C-terminal His₆-Tag.

Figure S14. LC-MS analysis of the in vitro assays of CtdV, CtdV and CtdJ.

Figure S15. In vitro assays of CtdV with 15.

The initial concentration of **15** was 0.2 mM, CtdV was 40 μ M, the reactions were carried out at 28°C. Tris-HCl (pH 7.5) buffer contained 2 mM ascorbic acid, 2 mM α -ketoglutarate, 0.5 mM FeSO₄·7H₂O.

Figure S16. Biosynthetic pathway of 21*R*-citrinadin A.

Figure S17. Feeding of 14 to A. nidulans expressing ctdY.

LC-MS analysis of feeding experiments of 14 to A. nidulans containing i) pYTP-CtdG ii) pYTP.

Figure S19-1. ¹H NMR (600 Hz) spectrum of 15 in CDCl₃.

Figure S19-2. ¹³C NMR (150 Hz) spectrum of 15 in CDCl₃.

Figure S19-3. DEPT spectrum of 15 in CDCl₃.

Figure S19-4. ¹H-¹H COSY spectrum of 15 in CDCl₃.

Figure S19-5. HSQC spectrum of 15 in CDCl₃.

Figure S19-6. HMBC spectrum of 15 in CDCl₃.

Figure S19-7. NOESY spectrum of 15 in CDCl₃.

Figure S20-2. ¹³C NMR (150 Hz) spectrum of 16 in CDCl₃.

Figure S20-4. ¹H-¹H COSY spectrum of 16 in CDCl₃.

Figure S21-2. ¹³C NMR (150 Hz) spectrum of 17 in CDCl₃.

Figure S21-3. DEPT spectrum of 17 in CDCl₃.

Figure S21-5. HSQC spectrum of 17 in CDCl₃.

Figure S21-7. NOESY spectrum of 17 in CDCl₃.

Figure S22-2. ¹³C NMR (150 Hz) spectrum of 18 in CDCl₃.

Figure S22-4. ¹H-¹H COSY spectrum of 18 in CDCl₃.

Figure S22-6. HMBC spectrum of 18 in CDCl₃.

Figure S23-3. DEPT spectrum of 20 in CDCl₃.

Figure S23-5. HSQC spectrum of 20 in CDCl₃.

Figure S23-6. HMBC spectrum of 20 in CDCl₃.

Figure S23-7. NOESY spectrum of 20 in CDCl₃.

Figure S24-2. ¹³C NMR (150 Hz) spectrum of 23 in CDCl₃.

Figure S24-4. ¹H-¹H COSY spectrum of 23 in CDCl₃.

Figure S24-6. HMBC spectrum of 23 in CDCl₃.

Figure S25-1. ¹H NMR (600 Hz) spectrum of 24 in CDCl₃.

Figure S25-2. ¹³C NMR (150 Hz) spectrum of 24 in CDCl₃.

Figure S25-3. DEPT spectrum of 24 in CDCl₃.

Figure S25-4. ¹H-¹H COSY spectrum of 24 in CDCl₃.

Figure S25-5. HSQC spectrum of 24 in CDCl₃.

Figure S25-7. NOESY spectrum of 24 in CDCl₃.

Figure S26-2. ¹³C NMR (150 Hz) spectrum of 25 in CDCl₃.

Figure S26-4. ¹H-¹H COSY spectrum of 25 in CDCl₃.

Figure S27-3. DEPT spectrum of 22R in CDCl₃.

Figure S27-7. NOESY spectrum of 22R in CDCl₃.

(1) Tang, M.-C.; Lin, H.-C.; Li, D.; Zou, Y.; Li, J.; Xu, W.; Cacho, R. A.; Hillenmeyer, M. E.; Garg, N. K.; Tang, Y. J. Am. Chem. Soc. 2015, 137, 13724.

(2) Szewczyk, E.; Nayak, T.; Oakley, C. E.; Edgerton, H.; Xiong, Y.; Taheri-Talesh, N.; Osmani, S. A.; Oakley, B. R. *Nat. protocols* **2006**, *1*, 3111.

(3) Szewczyk, E.; Nayak, T.; Oakley, C. E.; Edgerton, H.; Xiong, Y.; Taheri-Talesh, N.; Osmani, S. A.; Oakley, B. R. *Nat. Protocols* **2007**, *1*, 3111.

(4) Zhang, Z.; Tamura, Y.; Tang, M.; Qiao, T.; Sato, M.; Otsu, Y.; Sasamura, S.; Taniguchi, M.; Watanabe, K.; Tang, Y. J. Am. Chem. Soc. **2020**, *143*, 132.

(5) Xu, W.; Cai, X.; Jung, M. E.; Tang, Y. J. Am. Chem. Soc. 2010, 132, 13604.

(6) Liu, Z.; Rivera, S.; Newmister, S. A.; Sanders, J. N.; Nie, Q.; Liu, S.; Zhao, F.; Ferrara, J. D.; Shih, H.-W.; Patil, S. *Nat. Chem.* **2023**, 1.

(7) Dan, Q.; Newmister, S. A.; Klas, K. R.; Fraley, A. E.; McAfoos, T. J.; Somoza, A. D.; Sunderhaus, J. D.; Ye, Y.; Shende, V. V.; Yu, F. *Nat. Chem.* **2019**, *11*, 972.

(8) Ye, Y.; Du, L.; Zhang, X.; Newmister, S. A.; McCauley, M.; Alegre-Requena, J. V.; Zhang, W.; Mu, S.; Minami, A.; Fraley, A. E. *Nat. Catal.* **2020**, *3*, 497.

(9) Chen, M.; Liu, C.-T.; Tang, Y. J. Am. Chem. Soc. 2020, 142, 10506.

(10) Ghuysen, J.-M. Trends Microbiol. 1994, 2, 372.

(11) Janetzko, J.; Trauger, S. A.; Lazarus, M. B.; Walker, S. Nat. Chem. Biol. 2016, 12, 899.

(12) Zheng, Y.; Nair, S. K. Nat. Chem. Biol. 2023, 19, 111.

(13) Philmus, B.; Abdelwahed, S.; Williams, H. J.; Fenwick, M. K.; Ealick, S. E.; Begley, T. P. J. *Am. Chem. Soc.* **2012**, *134*, 5326.

(14) Hallgren, J.; Tsirigos, K. D.; Pedersen, M. D.; Almagro Armenteros, J. J.; Marcatili, P.; Nielsen, H.; Krogh, A.; Winther, O. *BioRxiv* **2022**, 2022.04. 08.487609.

(15) Zallot, R.; Oberg, N.; Gerlt, J. A. Biochemistry 2019, 58, 4169.