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SUPPLEMENTAL MATERIAL I – LV Segmentation 

A 2-step state-of-art approach was applied to segment the LV endo- and epicardium (see Fig. SI.1), 
from which the LV cavity and myocardium can be estimated (32,33): 

 In the first step, pre-processing, the images are re-oriented, cropped and normalized. Considering 
the mid-ventricular SAx slice as reference, the first neural network (NN) detects the position of 
the heart and defines a region of interest (ROI) of 139.7x139.7 mm centered in the LV. Based on 
these LV centroid and ROI, the LV is aligned to a canonical position by a rigid registration of the 
same SAx reference slice to the atlas built in (33). The SAx is then cropped accordingly, and the 
intensities are normalized. 

 The second step, fine segmentation, applies another NN to the pre-processed images to regress 
the enhanced LV segmentation. Fig. SI.2 illustrates the architecture of this fine-segmentation 
network. A final postprocessing is applied to binarized the segmentation predictions and improve 
the segmentation quality. 
 

 

Fig. SI.1 – Scheme of the proposed 2-step segmentation pipeline (top) along with a step-by-step 
explanatory illustration of its application on patient S221 (bottom). This pipeline design addresses 
canonical orientation for LV regional metrics quantification and label imbalance for segmentation 

performance improvement. See (33) for further details. 

 

A cohort of 100 patients of the study, manually segmented ,with random resolutions and endpoints, 
was used to train the 2 NNs, following a 5-fold cross-validation strategy and using the same training-
validation-testing split ratio as in (33). Translation, rotation and flipping were used for augmentation. 
Architectures and implementation are detailed in (32,33). Segmentation performance assessment is 
based on endocardium and epicardium gold standard Dice scores. This metric accounts for the overlap 
between manual segmentation and automated prediction and varies between 0 and 1, with 1 
corresponding to a perfect match. Fig. SI.3 provides a visual sample of the segmentation results. 
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Fig. SI.2 – Graphical overview of the convolutional neural network structure, skip connections 
following a U-Net architecture, that is applied to achieve the fine-segmentation (2nd pipeline step). 

Reproduced from (32). 

 

 

Fig. SI.3 – Segmentation results of a representative patient (median Dice) at ED. The green contours 
correspond to the LV reference segmentation (manual segmentation); and the red contours, to the 

prediction results based on our proposed 2-step deep learning approach.
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SUPPLEMENTAL MATERIAL II – Volume Transient Normalization 

The LV volume temporal transients are described by the magnitude of the curve (i.e. maximum and 
minimum LV volumes) and by its shape (i.e. relative filling contributions, presence or absence of 
diastasis, etc.). While the latter rather involves subtle changes and its understanding is the aim of this 
study, the former, that contains information about ventricle size and amplitude of contraction or 
stroke volume, is a major source of variability and can be completely described by the well-established 
EDV, ESV and LVEF markers. This motivates the standardization in magnitude, to remove cofounding 
factors, towards facilitating multivariate models, and variability noise, so that the PCA analysis 
concentrates on these subtle transient shape changes. Thus, a standard minmax normalization is 
proposed: 

തܸ(ݐ) =  
(ݐ)ܸ − ܸܵܧ

ܸܵ
, 

where ܸ(ݐ) represents the original LV volume transient (mL/s); ഥܸ(ݐ), the normalized LV volume 
transient (%/s); ܸܵܧ, the end-systolic volume (mL); and ܸܵ, the stroke volume (mL), calculated as end-
systolic minus end-diastolic volume. 

Fig. SII.1 illustrates two LV volume temporal transients from patients of a similar ventricle size 
before and after the proposed normalization. The intra-relationships within a transient are preserved, 
that is, the active versus passive contribution balance or the systolic and diastolic velocities ratio, for 
instance, are constant before and after normalization. However, the volumes are no longer absolute 
values but expressed as percentage of SV, enabling for direct inter-comparison between patients of a 
very different ventricle size or LVEF. This should be considered when drawing conclusions on the 
resulting transient patterns, presented in the main manuscript (see Fig. 3). Thus, a plausible conclusion 
from Fig. SII.1 is not that the passive filling is faster in patient 1 but that, considering the rest of the 
transient velocities, the passive filling is relatively faster in patient 1.  

 

Fig. SII.1 – LV volume temporal transient normalization for 2 patients. LEFT: LV volume temporal 
transients expressed in absolute volumes (mL/s). RIGHT: Normalized LV Volume temporal transients 
(%SV/s). The normalization standardizes for ventricle size and stroke volume, enabling for transient 
‘shape’ inter-comparisons. In consequence, the passive filling peak velocity, considering its smaller 

SV and the rest of the transient velocities, is relatively faster for patient 2 (ݒଶሬሬሬሬ⃗ > ଵሬሬሬሬ⃗ݒ ), while, in 
absolute terms, this is the opposite (ݒଵሬሬሬሬ⃗ > ଶሬሬሬሬ⃗ݒ ).  
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SUPPLEMENTAL MATERIAL III – Dimensionality Reduction 

The LV volume temporal transients are obtained by LV cavity volume integration in each frame of the 
cardiac cycle, as explained in the manuscript (see Methods). Therefore, the transients are described 
as a collection of 2D points, where the ‘x’ dimension corresponds to the trigger time of the frame, or 
time-point within the cardiac cycle, and the ‘y’ dimension represents the integrated cavity volume. 
Given the multicenter and multi-scanner nature of the study, patients are imaged at different 
resolutions, which results in 2D collection of points of different sizes (i.e. from 20 frames, and, in 
consequence, 20 pairs of time and volume 2D points, to 50 frames). Thus, a first step resamples the 
obtained volume transients, via splines, to ensure that all of them are described with the same number 
of points, that is, 30 points (evenly distributed in the ‘x’ or time dimension). This effectively means 
that the LV volume transient of each patient is described by 60 variables (30 points x 2 dimensions), 
which take a certain different value per patient. A second step normalizes the ‘y’ or volume dimension, 
as explained in Supplemental Material II, to standardize in ventricle size and SV.  

 

Fig. SIII.1 – LEFT: LV Volume transient of patient 692. MIDDLE: The 60 variables that describe the 
patient volume transient are sorted in columns, one per patient, to apply PCA. RIGHT: Projection of 

the patients in the 2 PCA directions that contributed the most to multivariate models (see Table 3) in 
order to maximize MACE (red) vs No MACE (blue) differences, that it, VtAI3 and VtAI5. We moved 

from 60 to just 2 transient variables per patient, which, additionally, are interpretable. 

PCA, the dimensionality reduction technique applied in this work, is able to encode the information 
contained in these 60 variables (LV volume transient variability) into a few variables, the PCA modes, 
that describe the main LV volume transient variations. Mathematically, this is done by finding the 
vector space whose basis are the orthogonal directions that maximize the variance of the data, and 
subsequently projecting the data in this new space (See Fig. SIII.1).These directions that maximize the 
variance are, precisely, the PCA modes of variation that represent the way in which the LV volume 
transient varies in the population (i.e. RR-interval length, passive vs active filling relative contributions, 
etc.). As illustrated in Fig. SIII.2, if we move in the direction of a mode, we can see how the mean 
transient curve deforms in its particular way. This allows to describe each LV volume transient as a 
mean volume transient curve plus the variations encoded by each linear anatomical mode times the 
amount and direction of variation, or PCA coefficients (See Fig. SIII.4): 

ݐ݊݁݅ݏ݊ܽݎݐ ݁݉ݑ݈݋ܸ ܸܮ = ߮଴ + ෍ ஺ூ݅ݐܸ ∙ ߮௜
௜

, 

where ߮଴ represents the mean volume transient, ߮௜ the anatomical PCA modes, and ܸݐ஺ூ݅ their 
respective PCA coefficients. Each of the modes, ݅, is therefore a continuous variable, that accounts for 
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a particular shape variation, which has a certain value for each patient, ܸݐ஺ூ݅, and whose MACE 
predictive power can be analyzed. In other words, we can investigate which LV transient features or 
contraction patterns (modes) are related to AMI prognosis. 

The modes are sorted in descending order of importance according to the amount of variability of 
the population that they explain (i.e. in our results 51.6% variability is described by mode 1; 18.4%, by 
mode 2; etc.).  As we progressively incorporate modes, the LV transient reconstruction improves to 
the point that with only few modes we can accurately approximate any volume transient (i.e. 95.99% 
of LV transient variance described by first 6 modes), and hence the dimensionality reduction is 
achieved (See Fig. SIII.3). 

 

Fig. SIII.2 – The PCA direction of maximum variability corresponds to mode 1. In our results, the 
shape variation that it encodes is interpreted as mainly RR-interval length, although some other 

subsequent changes in transient morphology (i.e. diastasis) can be appreciated. As we move along 
the direction of mode 1, the RR-interval of the mean LV volume transient is reduced (positive VtAI1) 

or increased (negative VtAI1), proportionally to the value of its PCA coefficient VtAI1. 

 
Fig. SIII.3 – Cumulative % of the population variance explained by the modes. As we incorporate 

more modes, we account for more variance and we accurately approximate the target shape 
(Patient 692). The first few modes account for the majority of the variance, and as we move to latter 

modes the improvement in reconstruction is smaller (i.e. mode 6 vs mode 7). 
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Fig. SIII.4 – Following PCA application, each LV volume temporal transient is decomposed into the 
mean volume transient (average of population of LV transients) plus the anatomical modes 

(transient variations, illustrated here as mean plus the positive extreme) times the corresponding 
PCA coefficient, ܸݐ஺ூ݅. The figure illustrates the decomposition of patient 692. 
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SUPPLEMENTAL MATERIAL IV – Additional Patient Characteristics 

 

Fig. SIV.1 – The 3 main ES shape features (ES1, ES5, ES6) and contraction patterns (C3, C5, C16) 
related to MACE occurrence, resulting from the shape analysis explained in detail in (18), are 
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illustrated. Meshes shown in anterior and septal views, and as differential thickness maps (ED-ES 
thickness) on polar plots of the AHA model. To facilitate comparisons, the contractions are applied 

on the mean ED shape (reference transparent surface) and visualized as resulting ES shapes. No 
MACE (blue, class 0) and MACE (red, class 1) representations correspond to the 5th and 95th 

percentiles in the LDA direction. P values and both resubstitution (RS) and leave-one-out (L1) AUCs 
shown along MACE and no MACE distributions, further stratified into infarct aetiology (STEMI and 

NSTEMI). Reproduced from (18). 

Table SIV.1 – Basic patient characteristics, cardiovascular risk factors and 3D LV biomarkers 

Variable ALL Patients MACE (n = 73) No MACE (n = 948) AUCk
 P value HR HR P-val 

Age 63 (52 - 72) 72 (61 - 77) 63 (52 - 72) 0.659 <0.001 1.80 (1.39 - 2.32) <0.001 
Sex 753/1011 (74.5) 46/71 (64.8) 707/940 (75.2) 0.505 0.052 0.81 (0.65 - 1.00) 0.050 
Height, cm 2 (1 - 2) 2 (1 - 3) 1 (1 - 2) 0.597 0.003 0.69 (0.55 - 0.86) 0.001 
Weight, kg 81 (72 - 90) 76 (70 - 86) 82 (73 - 90) 0.568 0.035 0.82 (0.64 - 1.05) 0.110 
Cardiovascular risk factors        
   Current smoking 405/935 (43.3) 19/63 (30.2) 386/872 (44.3) 0.522 0.029 0.75 (0.57 - 0.97) 0.032 
   Hypertension 716/1010 (70.9) 61/71 (85.9) 655/939 (69.8) 0.545 0.004 1.53 (1.13 - 2.08) 0.006 
   Hyperlipoproteinemia 624/1005 (62.1) 45/71 (63.4) 579/934 (62.0) <0.5 0.816 1.03 (0.81 - 1.30) 0.824 
   Diabetes mellitus 231/1010 (22.9) 26/71 (36.6) 205/939 (21.8) 0.526 0.004 1.34 (1.09 - 1.64) 0.005 
   Body mass index, kg/m

2 27.4 (25.0 - 30.4) 27.0 (25.2 - 30.8) 27.4 (25.0 - 30.3) <0.5 0.959 1.03 (0.82 - 1.30) 0.773 
   Body surface area, m2 1.95 (1.83 - 2.08) 1.88 (1.76 - 2.00) 1.96 (1.83 - 2.08) 0.593 0.006 0.74 (0.59 - 0.94) 0.014 
Killip class on admission    0.573 <0.001 0.52 (0.41-0.65) <0.001 
   1 899/1011 (88.9) 49/71 (69.0) 850/940 (90.4)     
   2 76/1011 (7.5) 13/71 (18.3) 63/940 (6.7)     
   3 20/1011 (2.0) 4/71 (5.6) 16/940 (1.7)     
   4 16/1011 (1.6) 5/71 (7.0) 11/940 (1.2)     
Nr. of diseased vessels    0.567 0.003 1.40 (1.12 - 1.75) 0.003 
   1 502/1011 (49.7) 25/71 (35.2) 477/940 (50.7)     
   2 310/1011 (30.7) 23/71 (32.4) 287/940 (30.5)     
   3 199/1011 (19.7) 23/71 (32.4) 176/940 (18.7)     
TIMI flow grade post-PCI    <0.5 0.318 0.95 (0.77 - 1.16) 0.598 
   0 19/1011 (1.9) 1/71 (1.4) 18/940 (1.9)     
   1 21/1011 (2.1) 2/71 (2.8) 19/940 (2.0)     
   2 78/1011 (7.7) 8/71 (11.3) 70/940 (7.4)     
   3 893/1011 (88.3) 60/71 (84.5) 833/940 (88.6)     
CMR biomarkers        
   LV ESV, mL 70 (53 - 91) 86 (60 - 110) 69 (53 - 90) 0.599 0.004 1.43 (1.18 - 1.73) <0.001 
   LV EDV, mL 144 (117 - 171) 145 (121 - 170) 144 (117 - 172) <0.5 0.987 1.05 (0.83 - 1.33) 0.679 
   LVEF (%) 50.5 (43.3 - 57.3) 40.6 (33.1 - 52.2) 50.8 (44.0 - 57.5) 0.683 <0.001 0.80 (0.74 - 0.87) <0.001 
   Infarct size, mL 17.2 (6.4 - 30.2) 24.6 (9.7 - 36.4) 16.7 (6.0 - 29.9) 0.591 0.006 1.29 (1.08 - 1.53) 0.005 
   Infarct size (% LV mass) 13.4 (5.4 - 21.8) 20.3 (9.6 - 28.9) 13.1 (5.3 - 21.4) 0.609 0.001 1.44 (1.18 - 1.76) <0.001 
   MVO, mL 0.00 (0.00 - 1.90) 0.40 (0.00 - 3.00) 0.00 (0.00 - 1.80) 0.543 0.060 1.27 (1.11 - 1.45) <0.001 
   MVO (% LV mass) 0.00 (0.00 - 1.39) 0.32 (0.00 - 2.15) 0.00 (0.00 - 1.27) 0.547 0.044 1.26 (1.09 - 1.46) 0.002 
ES Shape    0.680    
   Mode 1 -5 (-135 - 126) 62 (-61 - 233) -10 (-136 - 119)  0.002 1.49 (1.18 - 1.87) <0.001 
   Mode 5 0 (-34 - 36) -11 (-51 - 22) 1 (-33 - 37)  0.014 0.73 (0.58 - 0.91) 0.006 
   Mode 6 -3 (-30 - 28) -21 (-44 - 3) -2 (-29 - 30)  <0.001 0.64 (0.50 - 0.81) <0.001 
Contraction Displacement    0.716    
   Mode 3 -4 (-54 - 62) 49 (-29 - 106) -6 (-55 - 59)  <0.001 1.70 (1.36 - 2.12) <0.001 
   Mode 5 3 (-37 - 39) -30 (-57 - 23) 4 (-33 - 40)  <0.001 0.63 (0.51 - 0.78) <0.001 
   Mode 16 1 (-15 - 14) -9 (-19 - 5) 1 (-14 - 15)  <0.001 0.65 (0.52 - 0.82) <0.001 
Data presented as n/N (%) or median (interquartile range). P values calculated between MACE/No-
MACE groups. Hazard ratios (HR) presented with 95% confidence intervals and predictor significance. 
AUCk provides the predictive power of each biomarker, assessed via LDA (median AUC, 10-cross-fold 
validated, 100 random data splits). MACE: major adverse cardiac events; PCI: percutaneous coronary 
intervention; TIMI: Thrombolysis in Myocardial Infarction. Reproduced from (18). 
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Fig. SIV.2 – Average LV volume transient, normalized by stroke volume, of the AMI cohort (dashed 
line), along with the average transient stratifying by MACE (red) and no MACE (blue). 

 

 

Fig. SIV.3 – Study flowchart. AMI indicates acute myocardial infarction; CMR, cardiac magnetic 
resonance; MACE, major adverse cardiac events; NSTEMI, non–ST-segment–elevation myocardial 

infarction; STEMI, ST-segment–elevation myocardial infarction.
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SUPPLEMENTAL MATERIAL V – Endpoint Prediction Additional Results 

Table SV.1 – LDA models coefficients 

MODEL VARIABLES LDA COEFFICIENTS CONSTANT 

LVEF LVEF -0.65 -2.77 
CMR ESV, EDV 1.91, -1.51 -2.93 

CMR + Vt ESV, EDV, RR, tdiastolic 1.90, -1.48, -0.73, 0.69 -3.00 
CMR + VtAI ESV, EDV, VtAI2, VtAI3, VtAI5 1.79, -1.42, 0.36, 0.28, 0.37 -3.07 

CMR + Strain ESV, EDV, GLS 1.31, -1.14, 0.52  -3.00 
CMR + LV3D ESV, EDV, C5, C16 1.76, -1.34, -0.33, -0.47 -3.07 

ALL ESV, EDV, Age, Killip 1.55, -1.14, 0.50, 0.53 -3.16 
ALL + Vt ESV, Age, Killip, BSA, RR, tdiastolic 0.65, 0.58, 0.53, -0.32, -0.91, 0.65 -3.15 

ALL + VtAI ESV, EDV, Age, Killip, VtAI3, VtAI5 1.52, -1.17, 0.55, 0.51, 0.36, 0.35 -3.26 
ALL + Strain ESV, Age, Killip, BSA, Weight, Vessels, GLS 0.41, 0.44, 0.43, -1.19, 0.83, 0.21, 0.63 -3.24 
ALL + LV3D ESV, EDV, Age, Killip, C5, C16 1.40, -0.98, 0.48, -0.34, -0.43, 0.51 -3.28 

All + VtAI + Strain + LV3D ESV, EDV, Age, C16, GLS, VtAI3, VtAI5 1.09, -0.88, 0.58, -0.47, 0.58, 0.37, 0.42 -3.35 

Coefficients and constant of the resulting LDA models following the backward stepwise variable 
selection, to assess the additional prognostic contribution of LV contraction unravelling via 
conventional (Vt) and AI-derived (VtAI) volume transient; CMR-FT strains (strains); and LV 3D detail 
patterns (LV3D) metrics on top of considering only CMR biomarkers (CMR) or all the cardiovascular risk 
factors and patient characteristics of the study (ALL). All the variables are normalized to zero mean 
and unit variance prior to LDA fitting. The performance of these models is reported in the main 
manuscript (Table 3).  

 

 

 
Fig. SV.1 – Underlying baseline hazard function 
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Table SV.2 – Cox models hazard ratios 

MODEL VARIABLES HR P-value 

LVEF LVEF 0.80 (0.74 - 0.87) < 0.001 

CMR 
ESV 4.45 (3.01 - 6.58) < 0.001 
EDV 0.28 (0.18 - 0.43) < 0.001 

CMR + Vt 
ESV 4.45 (3.01 - 6.58) < 0.001 
EDV 0.28 (0.18 - 0.43) < 0.001 

CMR + VtAI 

ESV 4.51 (2.95 - 6.89) < 0.001 
EDV 0.26 (0.16 - 0.42) < 0.001 
VtAI3 1.28 (1.05 - 1.55) 0.013 
VtAI5 1.28 (1.05 - 1.56) 0.015 

CMR + Strain 
ESV 2.79 (1.73 - 4.52) < 0.001 
EDV 0.38 (0.23 - 0.63) < 0.001 
GLS 1.69 (1.28 - 2.23) < 0.001 

CMR + LV3D 

ESV 4.23 (2.72 - 6.60) < 0.001 
EDV 0.29 (0.18 - 0.48) < 0.001 
C16 0.64 (0.51 - 0.80) < 0.001 
C5 0.76 (0.61 - 0.95) 0.018 

ALL 

ESV 3.22 (2.12 - 4.91) < 0.001 
EDV 0.39 (0.24 - 0.63) < 0.001 
Age 1.55 (1.19 - 2.01) 0.001 
Killip 1.26 (1.10 - 1.45) 0.001 

ALL + Vt 

ESV 1.56 (1.29 - 1.89) < 0.001 
Age 1.66 (1.27 - 2.17) < 0.001 
RR 0.58 (0.44 - 0.78) < 0.001 

vdiastolic_avg 0.09 (0.02 - 0.43) 0.003 
Killip 1.22 (1.05 - 1.41) 0.008 

ALL + VtAI 

ESV 3.32 (2.12 - 5.19) < 0.001 
EDV 0.36 (0.21 - 0.60) < 0.001 
Age 1.59 (1.21 - 2.07) < 0.001 
Killip 1.25 (1.08 - 1.43) 0.002 
VtAI3 1.29 (1.06 - 1.57) 0.011 
VtAI5 1.26 (1.03 - 1.54) 0.025 

ALL + Strain 

GLS 1.78 (1.38 - 2.30) < 0.001 
Age 1.58 (1.21 - 2.05) < 0.001 
Killip 1.22 (1.04 - 1.43) 0.013 
BSA 0.72 (0.55 - 0.93) 0.014 
ESV 1.31 (1.06 - 1.63) 0.014 

ALL + LV3D 

ESV 3.41 (2.15 - 5.40) < 0.001 
C16 0.65 (0.51 - 0.81) < 0.001 
EDV 0.39 (0.23 - 0.65) < 0.001 
Age 1.55 (1.19 - 2.02) 0.001 
C5 0.76 (0.60 - 0.95) 0.019 

ALL + VtAI + Strain + LV3D 

GLS 1.78 (1.38 - 2.30) < 0.001 

C16 0.61 (0.48 - 0.78) < 0.001 

ESV 2.36 (1.42 - 3.92) < 0.001 

Age 1.49 (1.15 - 1.95) 0.003 

EDV 0.47 (0.27 - 0.81) 0.007 

VtAI5 1.25 (1.05 - 1.49) 0.012 

Hazard ratios, HR (95% confidence interval), and predictor significance, P-value, of the resulting Cox 
multivariate models following the backward stepwise variable selection, to assess the additional 
prognostic contribution of LV contraction unravelling via conventional (Vt) and AI-derived (VtAI) 
volume transient; CMR-FT strains (strains); and LV 3D detail patterns (LV3D) metrics on top of 
considering only CMR biomarkers (CMR) or the cardiovascular risk factors and patient characteristics 
of the study (ALL). The performance of these models is summarized in the manuscript (Table 3). 
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Fig. SV.2 – AUC endpoints prediction results stratifying by LVEF (threshold: 0.35) and applying the 
LDA models resulting from the backward stepwise analysis (See Table 3 and Table SV.1). The labels 

are presented as subgroup (MACE vs No MACE cases within the subgroup).  

 

 

 
Fig. SV.3 – AUC endpoints prediction results stratifying by infarct aetiology (STEMI vs NSTEMI) and 

applying the LDA models resulting from the backward stepwise analysis (See Table 3 and Table SV.1). 
The labels are presented as subgroup (MACE vs No MACE cases within the subgroup). 
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SUPPLEMENTAL MATERIAL VI – Modes Correlation Additional Results 

 

Fig. SVI.1 – Heat map of Spearman correlation coefficients between AI-derived (columns) and 
conventional (rows) volume transient metrics. 

 

 

Fig. SVI.2 – Heat map of R2 correlation coefficients between AI-derived (columns) and conventional 
(rows) volume transient metrics. 
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SUPPLEMENTAL MATERIAL VII – Systolic vs Diastolic Components 

The LV volume temporal transients are split into their systolic and diastolic components using the 
systolic time as reference. The analysis is repeated for each of the two components independently as 
described in Methods and Supplemental Material III. 

The 95% of the population variance was explained by the first 4 systolic modes of variation (Vt-SAI) 
and the first 5 diastolic modes of variation (Vt-DAI), respectively. Among them, the LDA stepwise 
analysis determined modes 2, 4 and 5 (Vt-DAI2, Vt-DAI4 and Vt-DAI5) as relevant to MACE in the diastolic 
component analysis; and only mode 2 (Vt-SAI2,) in the systolic component scenario (see Fig. SVII.1).  

The experiments summarized in Table SVII.1 show that any of the two components significantly 
contributes to the baseline model (cardiovascular risk factors, basic patient characteristics and 
established CMR markers), as the LDA stepwise selection demonstrates. This is particularly interesting 
in the systolic component case study, where the mode Vt-SAI2 is significantly related to MACE in 
combination with other variables but not if analyzed individually (p = 0.148, see Fig. SVII.1). 
Nevertheless, only the diastolic component contributes to a significant improvement in prediction 
performance. This is in line with the results of the entire transient analysis (VtAI), presented in the main 
manuscript (see Table 3), where the two modes that contributed the most to the multivariate models 
were related to diastolic function, that is, VtAI3 and VtAI5. It is also sensible that the inclusion of the 
entire transient provides more additional prognostic value than any of the two components 
individually analyzed.  

 

Fig. SVII.1 –AI-derive volume transient features relevant to MACE occurrence prediction, resulting 
from diastolic component unsupervised learning (Vt-DAI2, Vt-DAI 4, and Vt-DAI 5) and systolic 

component analysis (Vt-SAI5). The MACE (red, class 1) and No MACE (blue, class 0) representations 
correspond to the 10th and 90th percentiles in the LDA direction. This allows to visualize the particular 
pattern or change encode by each of the unsupervised variables (RR-interval, diastasis, etc.) as well 

as to describe how a representative MACE and No-MACE volume transient components would 
theoretically look like according to each of these four unsupervised variables. The P value, re-
substitution and leave-one-out AUCs are presented along each mode as MACE and No-MACE 

distributions, further stratified into infarct aetiology (STEMI and NSTEMI). 
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Table SVII.1 – Additional prognostic contribution of AI volume transient components 

MODEL LINEAR SELECTION AUCk AUCRS 

ALL ESV, EDV, Age, Killip 0.729 (0.727 - 0.733) 0.745 
ALL + VtAI ESV, EDV, Age, Killip, VtAI3, VtAI5 0.746 (0.743 - 0.749) 0.769 

ALL + Vt-DAI ESV, EDV, Age, Killip, Vt-DAI4 0.736 (0.733 - 0.738) 0.751 
ALL + Vt-SAI ESV, EDV, Age, Killip, Vt-SAI2 0.726 (0.723 - 0.730) 0.743 

Backward stepwise LDA results of the additional prognostic contribution of the AI-derived volume 
transient metrics, considering the entire transient (VtAI), the diastolic component (Vt-DAI) or the 
systolic component (Vt-SAI), on top of all the cardiovascular risk factors and patient characteristics of 
the study (ALL). The resulting significant selection of variables is reported along with the predictive 
performance, expressed as AUC re-substitution (RS) and 10-fold cross-validated (K), computed for a 
100 random data splits and presented as median (interquartile range). Killip indicates Killip class on 
admission. 
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SUPPLEMENTAL MATERIAL VIII – TRIPOD and STROBE Checklists 

Table SVIII.1 – TRIPOD Checklist 

DESCRIPTION ITEM CHECKLIST  MANUSCRIPT CHECK 

Title & abstract    
Title 1 Identify the study as developing and/or validating a multivariable prediction 

model, the target population, and the outcome to be predicted 
Title 

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions 

Abstract 

Introduction 
   

Background 
and objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, 
including references to existing models 

Introduction  
(par.1-3) 

3b Specify the objectives, including whether the study describes the development or 
validation of the model or both 

Introduction (par. 4) 

Methods 
   

Source of data 4a Describe the study design or source of data (e.g., randomized trial, cohort, or 
registry data), separately for the development and validation data sets, if 
applicable 

Methods (Study 
Population) 

4b Specify the key study dates, including start of accrual; end of accrual; and, if 
applicable, end of follow-up 

Methods (Study 
Population & Study 

Endpoints) 
Participants 5a Specify key elements of the study setting (e.g., primary care, secondary care, 

general population) including number and location of centers Methods (Study 
Population & CMR 
Imaging Protocol) 

5b Describe eligibility criteria for participants 

5c Give details of treatments received, if relevant 

Outcome 6a Clearly define the outcome that is predicted by the prediction model, including 
how and when assessed Methods (Study 

Endpoints) 6b Report any actions to blind assessment of the outcome to be predicted 

Predictors 7a Clearly define all predictors used in developing the multivariable prediction 
model, including how and when they were measured 

Methods 
(Prognostic Value 

Assessment & 
Statistical Analysis), 

Tables 1 and 2 

7b Report any actions to blind assessment of predictors for the outcome and other 
predictors 

Sample size  8 Explain how the study size was arrived at * 
Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single 

imputation, multiple imputation) with details of any imputation method 
Fig.1 and Results 

(Patients) 
Statistical 
analysis 
methods 

10a Describe how predictors were handled in the analyses 
Methods 

(Prognostic Value 
Assessment & 

Statistical Analysis) 

10b Specify type of model, all model-building procedures (including any predictor 
selection), and method for internal validation 

10d Specify all measures used to assess model performance and, if relevant, to 
compare multiple models 

Risk groups 11 Provide details on how risk groups were created, if done Methods (Study 
Endpoints) 

Results 
   

Participants  13a Describe the flow of participants through the study, including the number of 
participants with and without the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful Table 2, Table SIV.1, 

Fig.1 and Results 
(Patients) 13b Describe the characteristics of the participants (basic demographics, clinical 

features, available predictors), including the number of participants with missing 
data for predictors and outcome 

Model 
development 

14a Specify the number of participants and outcome events in each analysis 
Table 2, Fig.1 and 
Results (Patients) 14b If done, report the unadjusted association between each candidate predictor and 

outcome 
Model 
specification 

 15a Present the full prediction model to allow predictions for individuals (i.e., all 
regression coefficients, and model intercept or baseline survival at a given time 
point) 

Results and 
Supplemental 

Materia V 15b Explain how to use the prediction model 

Performance 16 Report performance measures (with CIs) for the prediction model Table3, Results, and 
Supplementary 

Data V 

Continued 
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Discussion 
   

Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events 
per predictor, missing data) 

Discussion 
(Limitations) 

Interpretation 19b Give an overall interpretation of the results, considering objectives, limitations, 
results from similar studies, and other relevant evidence 

Discussion 

Implications 20 Discuss the potential clinical use of the model and implications for future research Discussion (Impact 
and Clinical 
Translation) 

Other 
information 

   

Supplementary 
information 

21 Provide information about the availability of supplementary resources, such as 
study protocol, Web calculator, and data sets 

Supplemental 
Material 

Funding  22 Give the source of funding and the role of the funders for the present study Funding 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) checklist, adapted from (36). Only model development items are included. (*) The size of the 
study is usually determined based on the variables of interest and their standard deviation. The 
proposed study cannot benefit from this criterion since the variables (modes of variation) were not 
defined a priori. However, aiming at a margin of error of ≤0.05 in the overall outcome proportion 
estimate, a mean absolute prediction error of 0.05, a desired shrinkage ≤10% and conservative 
anticipated Cox-Snell R squared statistic of 0.2, and given the approximate MACE incidence of 7% and 
the number of predictors indicated in the manuscript, the actual size of the study is superior to the 
trial target size retrospectively determined by any of the 4 proposed calculation methods explained in 
Riley et al. (26). Par. indicates paragraph. 
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Table SVIII.2 – STROBE Checklist 

DESCRIPTION ITEM # RECOMMENDATION PAGE # 

Title and abstract 
Title & 
abstract 

1 (a) Indicate the study’s design with a commonly used term in the title or the abstract 1, 3 

(b) Provide in the abstract an informative and balanced summary of what was done and 
what was found 

3 

Introduction 
Background/ 
rationale 

2 Explain the scientific background and rationale for the investigation being reported 5 

Objectives 3 State specific objectives, including any prespecified hypotheses 3, 6 

Methods 
Study design 4 Present key elements of study design early in the paper 6 & Fig. 1 

Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, 
exposure, follow-up, and data collection 

7, 8 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of case ascertainment and 
control selection. Give the rationale for the choice of cases and controls 

7 

(b) For matched studies, give matching criteria and the number of controls per case - 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect 
modifiers. Give diagnostic criteria, if applicable 

7, 10 & Table 1 

Data sources/ 
measurement 

8  For each variable of interest, give sources of data and details of methods of assessment 
(measurement). Describe comparability of assessment methods if there is more than one 
group 

7-11 

Bias 9 Describe any efforts to address potential sources of bias 10, 11 

Study size 10 Explain how the study size was arrived at * 

Quantitative 
variables 

11 Explain how quantitative variables were handled in the analyses. If applicable, describe 
which groupings were chosen and why 

10, 11 

Statistical 
methods 

12 (a) Describe all statistical methods, including those used to control for confounding 10, 11 

(b) Describe any methods used to examine subgroups and interactions 11 

(c) Explain how missing data were addressed 11 

(d) If applicable, explain how matching of cases and controls was addressed - 

(e) Describe any sensitivity analyses 10, 11 

Results 
Participants 13 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, 

examined for eligibility, confirmed eligible, included in the study, completing follow-up, 
and analysed 

12 & Fig. 2 

(b) Give reasons for non-participation at each stage 12 

(c) Consider use of a flow diagram Fig. 2 

Descriptive 
data 

14 (a) Give characteristics of study participants (eg demographic, clinical, social) and 
information on exposures and potential confounders 

Table 2, Table 
SIV.1 

(b) Indicate number of participants with missing data for each variable of interest Table 2, Table 
SIV.1 

Outcome 
data 

15 Report numbers in each exposure category, or summary measures of exposure Table 2, Table 
SIV.1 

Continued 
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Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (eg, 95% confidence interval). Make clear which confounders were adjusted for 
and why they were included 

Table 2, Table 3, 
Table SIV.1 

(b) Report category boundaries when continuous variables were categorized Table 2, Table 3, 
Table SIV.1 

(c) If relevant, consider translating estimates of relative risk into absolute risk for a 
meaningful time period 

Table 2, Table 3, 
Table SIV.1, Fig. 5 

Other 
analyses 

17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity 
analyses 

 

Fig. 4 & 
Supplemental 

Material 

Discussion 
Key results 18 Summarise key results with reference to study objectives 15, 21 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 
imprecision. Discuss both direction and magnitude of any potential bias 

20 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 
multiplicity of analyses, results from similar studies, and other relevant evidence 

17-20 

Generalisation 21 Discuss the generalisability (external validity) of the study results 15-17 

Other information 
Funding 22 Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based 
22 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist for case-
control studies, adapted from (40). (*) The size of the study is discussed in Table SVIII.1. 

 


