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THE BIGGER PICTURE Recent advances in AI offer solutions to complex challenges in chemical and ma-
terials sciences, such as drug discovery and polymer synthesis. Traditional methods struggle due to the
vast and intricate chemical compound space. AI, especially generative models, provides a promising alter-
native by creating synthetic data, reducing the need for extensive labeling. Challenges, however, persist,
such as ensuring diverse structures. Improved methods could accelerate progress in fields such as drug
discovery and materials design.
SUMMARY
This study examines the effectiveness of generative models in drug discovery, material science, and polymer
science, aiming to overcome constraints associated with traditional inverse design methods relying on heu-
ristic rules. Generative models generate synthetic data resembling real data, enabling deep learning model
training without extensive labeled datasets. They prove valuable in creating virtual libraries of molecules
for material science and facilitating drug discovery by generating molecules with specific properties. While
generative adversarial networks (GANs) are explored for these purposes, mode collapse restricts their effi-
cacy, limiting novel structure variability. To address this, we introduce a masked language model (LM)
inspired by natural language processing. Although LMs alone can have inherent limitations, we propose a
hybrid architecture combining LMs and GANs to efficiently generate newmolecules, demonstrating superior
performance over standalone masked LMs, particularly for smaller population sizes. This hybrid LM-GAN ar-
chitecture enhances efficiency in optimizing properties and generating novel samples.
INTRODUCTION

Recent advances in artificial intelligence (AI) have laid the foun-

dation to provide promising solutions for overcoming inverse

design problems in the chemical and materials sciences,

such as drug discovery, polymer science, and other condensed

matter applications. Exploration of the vast chemical com-

pound space for designing new drug candidates or customized

molecules with desired functionality is challenging because of

the high dimensionality of the associated chemical space,

which makes searching for the appropriate novel compound

difficult. Traditional inverse design approaches based on struc-

tural optimization methods typically rely on heuristic rules or

domain-specific knowledge and might therefore encounter dif-

ficulties with novelty and generalizability. Although AI and ma-

chine learning (ML) techniques offer promise for overcoming

this challenge, the need for massive labeled datasets to train
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these models remains.1 Gathering and annotating such data-

sets can be time-consuming, expensive, and sometimes not

even feasible. Fortunately, recent advances in AI/ML, specif-

ically concerning surrogate and generative models, have

provided promising solutions by generating required synthetic

data to overcome the need for generating massive labeled

datasets using traditional, physics-based modeling and

simulations.2

In this context, generative models have shown great potential

in generating synthetic data that mimic the characteristics of real

data.3 This ability has opened up new possibilities for training

deep learning models without relying solely on large real or

experimental labeled datasets. By leveraging generativemodels,

researchers in material science, drug discovery, and polymer

science can generate new molecules with desired properties,

thus facilitating the exploration of novel chemicals and

materials.4
2024 Oak Ridge National Laboratory. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Generative models play a pivotal role in the chemical and ma-

terials sciences, particularly in the generation of new molecules

with tailored properties. In the chemical sciences, these models

facilitate the creation of virtual libraries of molecules, allowing re-

searchers to explore properties through simulations or experi-

mental validations. This accelerates the discovery of novel com-

pounds while reducing reliance on extensive labeled datasets.2

In drug discovery, generative models contribute by producing

molecules with desired properties, such as high potency and

low toxicity,5 expediting the process and lessening dependence

on large labeled datasets. Similarly, in polymer science, these

models aid in designing polymers with specific properties, miti-

gating the challenges posed by the need for massive labeled da-

tasets. By training on existing databases, researchers can

generate new polymer structures,6 advancing industries such

as materials engineering, coatings, and energy storage.7 The

use of generative models offers a promising solution in over-

coming the requirement for extensive labeled datasets, revolu-

tionizing the chemical and materials sciences and accelerating

the discovery and development of innovative materials, drugs,

and polymers.

In recent years, there has been a growing interest in devel-

oping data-driven generative models capable of predicting novel

molecular structures with desired functionalities, especially

those not reliant on labeled training data. Numerous approaches

have emerged, focusing on effective generative models for mo-

lecular structure prediction.

A graph-based method has been designed to generate mol-

ecules with exact property values while ensuring the presence

of desired scaffolds.8 A prominent category includes recurrent

neural network (RNN)-based architectures, which have

demonstrated considerable success in generating new mole-

cules.9–14 For instance, Segler et al. utilized long short-term

memory (LSTM) networks, showcasing the benefits of transfer

learning and fine-tuning on smaller populations to achieve

specific biological target activities.9 Previously, RNNs have

been employed to generate molecules by considering given

scaffolds.15 A comprehensive study by Arús-Pous et al. inves-

tigated the efficacy of different RNN models, such as LSTM

and gated recurrent unit, on diverse data populations, ranging

from 10,000 to 1 million molecules, using various simplified

molecular input line entry system (SMILES) representations.10

Conditional adversarially regularized autoencoder16 and con-

ditional RNNs9,17 are methods that sample molecules based

on exact values. The work of Flam-Shepherd et al. extended

the exploration of RNN-based language models (LMs) to learn

complex chemical rules based on different molecular repre-

sentations, such as SMILES or SELF-referencing embedded

strings.11 Furthermore, the application of bidirectional

encoder representations from transformers (BERT)-based

large LMs demonstrated advantages when tested on bench-

mark models or datasets.18 Researchers, including Awale

et al.,12 Zheng et al.,13 and Méndez-Lucio et al.,14 continued

to enhance RNN models and introduced conditional genera-

tive adversarial networks (GANs) to address the challenges

of generating diverse and novel molecular structures. Howev-

er, despite their efficacy in exploring chemical space, GANs

often face the issue of ‘‘mode collapse,’’ producing structures

too similar to the training data.19
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In response to these challenges, researchers have explored

integrating genetic algorithm (GA)-based techniques into gener-

ative models to promote structural diversity by emulating the

mutation and selection process in nature. GA-based methods

have shown superiority over modern AI/ML techniques in gener-

ating novel molecules with desired properties.20,21 Previous in-

vestigations employed an adaptive training method influenced

by GA, introducing valid and novel molecules through random

and guided replacements in the training data.21,22 Despite the

success of GA, there is a recognized need for a more efficient

mutation operator to eliminate manual mutation rules and enable

generalization, automation, and extension beyond single-atom

mutation.

To address this gap, a masked LM inspired by natural lan-

guage processing (NLP) has been implemented.21,23,24 This

innovative approach constructs a vocabulary fromcommon sub-

sequences within a given population, tokenizing the training data

for the LM to generate potential rearrangements or mutations.

The masked LM provides a promising solution to challenges in

manual mutation rules, aiming to enhance generalization and

automation in the generation of novel molecular structures with

desired properties.

Although LMs are effective generation tools that have proven

successful in novel molecule generation, they are not without

drawbacks and deficiencies. They lack common sense and

rely solely on statistical patterns, which can lead to the genera-

tion of plausible, yet incorrect, outputs. These models might

also perpetuate biases from the training data, overfit to specific

datasets, and lack the ability to verify response accuracy. In

addition, they are sensitive to changes in input, resulting in

inconsistent outputs, and struggle with comprehending context,

leading to confusion or repetitive results. Furthermore, LMs pose

challenges in terms of interpretation, making it difficult to under-

stand the reasoning behind their generated outputs.

In this work we go one step further to address some of the

aforementioned issues. We study whether and how an efficient

hybrid architecture can be built that can demonstrate higher ef-

ficacy in generating new molecules with desired properties by

combining our previous works based on GA approaches with

both LM and GAN as hybrid generative models. This new archi-

tecture combines advantages from both the LM and GANs while

learning the commonly occurring sequences from the training

dataset and being applied as an automated, generalized muta-

tion operator for generating new molecules. Implementing a

hybrid LM-GAN platform offers numerous advantages over us-

ing LMs or GANs separately. GANs enhance LMs by generating

realistic and creative new samples, while LMs enhance GANs by

producing informative and relevant samples. Hybrid models

improve generation quality, enhance creativity and novelty, pro-

vide better control over sample generation, address data scar-

city, capture contextual and structural information, and use

adversarial training for improvement. However, careful consider-

ation of training, model architecture, and optimization is neces-

sary because of the increased complexity. Therefore, striking a

balance between language modeling and GAN techniques is

crucial for successful implementation.

While the integration of transformers with GANs has seen

impressive success in computer vision and image generation,

its application in molecule generation is noticeably restricted.
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Traditionally, GANs rely on convolutional neural networks (CNNs)

for discriminator and generator networks, excelling in local rela-

tionships but struggling with global ones in feature spaces.

Transformer networks, recognized for their proficiency in exploit-

ing global relationships, when combined with GANs, recently

have shown substantial improvements in computer vision. Du-

bey and Singh25 provide a thorough survey on GAN develop-

ments, examining the use of both CNNs and transformer net-

works as GAN components, across various computer vision

applications. In addition to conducting a comprehensive

comparative survey, the authors have emphasized the ongoing

research trend in image and video synthesis, underscoring the

significant impact of transformer-based GANs on the advance-

ment of computer vision methods and applications. Although

many transformer-based GANs primarily employ CNN-based

discriminators, there are also endeavors to incorporate trans-

formers into the discriminator component in certain models. In

the pioneering work by Jiang et al.,26 who introduced

TransGAN, a novel approach relying solely on transformers

without convolutional components, they showcased

TransGAN’s competitive performance in computer vision and

image generation. Transformer-based GANs have proven suc-

cessful in diverse image and computer vision, signaling the po-

tential for future research in other domains, such as molecule

generation, where the application of TransGAN or similar trans-

former-GAN combinations is still in its early stages.

In the realm of molecule generation, Transmol27 by Zhuma-

gambetov et al. utilizes transformers exclusively for de novo

molecular generation. Transmol outperforms baseline methods,

including latentGAN, a GAN-based molecular generation strat-

egy, showcasing superior internal diversity and a higher pro-

portion of novel molecules. Another analogous contribution is

MolGPT,28 which competes favorably in terms of validity,

uniqueness, and novelty against various modern machine

learning frameworks, including LatentGAN, in de novo molecu-

lar generation for drug design. While MolGPT exhibits lower

novelty scores, it excels in managing long-term dependencies

and SMILES grammar through attention mechanisms. This

collective research highlights the promising yet underexplored

potential of combining transformers with GANs in molecule

generation. Despite encouraging results in computer vision

and image generation, this integration has not been extensively

applied in the domain of molecule generation. Nevertheless,

within the specific context of molecule generation tasks, trans-

formers have demonstrated success compared with alternative

models, including deep learning generative models based on

GANs. Ongoing research aims to enhance transformer-based

models by integrating them with GANs in the context of mole-

cule generation.

To test our hypothesis we performed a comparative study be-

tween LM and the new hybrid LM-GAN architecture (Figure 1) as

a generative model for different and specific optimization tasks.

To introduce diversity in the generated population, a simplified

GA strategy was adopted. This GA algorithm is identical in

both implementations in this study (i.e., standalone LM as well

as LM-GAN). This involved survivor selection through random

sampling across the population to choose parents, while muta-

tion was used solely for generating new molecules. Ultimately,

only unique molecules were kept in the population for the evolu-
tion of subsequent generations. The research addresses the lim-

itations of LMs in molecule generation by proposing a hybrid ar-

chitecture that combines genetic algorithm (GA) approaches

with both LMs and GANs. The primary contribution lies in the

development of an efficient hybrid LM-GAN platform that aims

to overcome the deficiencies of standalone LMs. The hybrid

model leverages the strengths of both LMs and GANs, utilizing

the former to learn common sequences from the training dataset

and serve as an automated mutation operator for molecule gen-

eration. This approach offers advantages over standalone LMs

or GANs, enhancing generation quality, creativity, novelty, con-

trol over sample generation, addressing data scarcity, and

capturing contextual and structural information. The research

emphasizes the need for careful consideration in training,

model architecture, and optimization to strike a balance between

language modeling and GAN techniques for successful

implementation.

The comparative study between a state-of-the-art LM and the

proposed LM-GAN hybrid architecture reveals several note-

worthy findings. The hybrid LM-GAN architecture demonstrates

superior performance in predicting a higher fraction of accept-

able molecules with improved target properties compared with

the standalone LM. The incorporation of GA-based mutation

strategies helpsmitigatemode-collapse issues commonly found

in GANs. The research also highlights that the hybrid LM-GAN

performs better with smaller population sizes, addressing the

challenge of requiring large amounts of data for model training.

In addition, the hybridmodel consistently outperforms the stand-

alone LM in terms of efficiency when computing the ratio of

accepted molecules to generated novel molecules with desired

optimized molecular properties across various population sizes.

The implications of this novel AI algorithm extend to diverse do-

mains, including drug discovery, polymer synthesis, and mate-

rials design.

RESULTS

LM vs. LM-GAN
Experimental design

As part of our study we selected our evaluation metrics to be

based on two different functions, namely different population

size and different masking scheme for mutations to be propa-

gated into the molecule population. The initial population size

was evaluated within a range from 5k to 50k, and the mutation

rates were modified from 10% to 100%. The evaluated metrics

were synthesizability, drug likeliness, solubility, number of

atoms, number of novel generated molecules, number of

accepted molecules, fitness function (composed of harmonic

mean of synthesizability and drug likeliness), and the efficiency

of the generative model as determined by computing the ratio

between accepted to novel molecules. An experiment was de-

signed where 50% of the samples are permitted to be mutated

(i.e., to be sent to the generator). Each run for each of the

methods, mutation rates, and population size is performed for

50 generations five times, independently from each other, to es-

timate the statistical error.

Fitness function

We first discuss the synthesizability score. Themethodwe follow

was proposed by Ertl and Schuffenhauer29 as applied in several
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Figure 1. Novel generalizable hybrid LM-based GAN architecture for efficient new molecule generation with desired properties

This describes a new architecture that combines the benefits of both LMs and GANs to generate new molecules. Upper: in the LM-only architecture, the input

molecules are provided as SMILES strings. A portion of each SMILES string ismasked, and an LMmodel is used to predict mutations or alternatives to the original

molecule. The newly generated molecules with mutated atoms are scored and selected based on a fitness function to create an optimized population of mol-

ecules. This process is repeated for multiple iterations to generate a final population. Lower: in the LM-GANmethod, a GAN is implemented by defining generator

and discriminator networks, designing a training loop, and using backpropagation for parameter updates. The generator randomly masks a portion of a SMILES

representation and uses a pretrained LM to fill in the missing molecular structure, creating a newmolecule. The discriminator, also a pretrained LM, classifies the

original and generated SMILES strings as real or fake, respectively. The generator and discriminator LMs are iteratively trained to ensure that the masked LM

generates molecules that can deceive the discriminator.
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of our previous works.21–24 Here, synthetic accessibility is

computed by an empirical technique via combining molecular

complexity with molecular fragment data that were collected

by processing a large set of chemical structures that were

already synthesized. This accessibility is then tested and vali-

dated with ‘‘ease of synthesis’’ ranks that were collected by

domain experts. In other words, this technique thus behaves

like a surrogate model trained, tested, and validated on historical

synthesizability data. The agreement is generally acceptable. In

our implementation, low synthesizability is indicated by scores

trending to zero, while high synthesizability is reflected in scores

trending to one. We also estimated the drug likeliness and solu-

bility of the molecules following the methods proposed by29–31

as also implemented in our previous works.21–24 Once these

metrics are computed, the fitness function is estimated by taking

the harmonic mean of synthesizability and drug likeliness. In Fig-

ure 2 we show the fitness score, both as a function of the initial

population size and of the mutation rate. We see that the perfor-

mance of LM and LM-GAN are close to each other, with LM

slightly and consistently performing better compared with LM-

GAN, especially for larger population sizes (>20k) or with higher

mutation rates (>0.5).
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Novel molecules

In Figure 3 we have plotted the comparison between these two

methods in terms of their ability to generate novel molecules not

contained in the original dataset. Straightforward LM is clearly

producing more novel molecules. In this case we also see a trend

of an initial increase in the number of novel molecules up to a mu-

tation rate of 50% and then gradually decreasing. For the hybrid

LM-GAN, the number of novel molecules is considerably smaller

and decreases gradually with increasing mutation rate.

Accepted molecules

In Figure 4we show the number of acceptedmolecules that were

included into the generated dataset. Not all of the generated,

novel molecules were accepted because only those with higher

fitness scores were eventually merged into the new population,

except at the beginning when novel molecules with positive

fitness scores would be selected until the population size rea-

ches a maximum; after that, molecules with higher scores are

accepted during survivor selection. We see that, for smaller pop-

ulation size (<20k) and lower mutation rates, the hybrid LM-GAN

performs slightly better with decreasing population size, while for

a higher mutation rate the pure LM performance gradually im-

proves as the population size becomes larger than 20k.



Figure 2. The fitness score is analyzed in relation to the population of the initial molecular dataset and the mutation rate

The performance of the LM and LM-GAN is similar, with the LM consistently performing slightly better than the LM-GAN. This difference becomes more pro-

nounced, particularly in larger populations (>20k) or with higher mutation rates (>0.5).
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Efficiency

Finally, we estimate the efficiency of both LM and LM-GAN

techniques in terms of their efficiency in generating new valid

molecules with desired fitness scores. To determine their effi-

ciency, we compute the fraction of novel molecules that were

accepted into the population of newly generated molecules.

As mentioned previously, we included only those novel mole-

cules with higher fitness scores than their parent molecules.

Therefore, in Figure 5, we plotted this ratio for the two

different techniques for all different population sizes and mu-

tation rates. It is clear that the hybrid LM-GAN consistently

performs better (almost twice as much) compared with the

simple LM. This finding is independent of population size,

and we note that for the hybrid LM-GAN there is a tendency

to deliver ‘‘better’’ molecules at higher masking rates than

the straightforward LM. This is because the number of novel

molecules generated by the LM-GAN is significantly lower

compared with pure LM because of the action of the discrim-

inator GAN network.

LM pretraining on different population sizes

To eliminate any uncertainty due to the population size on which

the LM was prepretrained, we performed our evaluation rungs

using two different LM models trained on two different popula-
tions—1million for one and 3 billion for the other—while keeping

other parameters unchanged. We did not see any difference in

outcome between these two models in fitness function, novel

molecules, accepted molecules, or efficiency estimation. These

results are plotted in Figures S1–S4.

Population distribution

Here, we compare the distribution of number density of different

metrics (i.e., fitness function, synthesizability, drug likeness, and

solubility) between LMand LM-GAN alongside the initial distribu-

tion for four different population sizes to show how much these

two methods (i.e., LM and LM-GAN) have been able to improve

the different metrics. The different metrics depict different

behavior in each population. For example, in terms of synthesiz-

ability (Figure 6), LM-GAN performs better for smaller population

sizes up to 10k compared with LM both in number density and

scoring values. A similar trend is observed in drug likeliness (Fig-

ure 7). In the case of solubility (Figure 8), we do not see much dif-

ference between LM and LM-GAN up to 10–20k population

sizes; however, in larger populations, the simple LM dominates.

Finally, when we compare the final fitness function (Figure 9), we

observe similar behaviors where LM-GAN performs better in

terms of scoring values up to 10k, after which we observe the

opposite trend.
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Figure 3. The comparison plot illustrates the ability of two methods to generate novel molecules not present in the original dataset

The LM method clearly outperforms the LM-GAN method in terms of producing a higher number of novel molecules. Specifically, in the case of the LM method,

there is an initial increase in the number of novel molecules up to a mutation rate of 50%, followed by a gradual decrease. In contrast, the LM-GAN method

generates considerably fewer novel molecules, and this number decreases gradually as the mutation rate increases.
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DISCUSSION

Sequence-based models for molecular design
In this work the used LM models take molecular sequence

(SMILES representation for molecular fingerprints) as input

data to generate new molecules based on scoring values or

desired properties. Recently, sequence-based approaches

have been used in contrast to time-consuming feature engi-

neering or curation that strongly depend on molecular proper-

ties and fingerprints at local or global scales.32 On the other

hand, classical techniques such as modeling and simulation

use 3D structures to estimate interactions with target proteins,

but they are restricted to small numbers of molecules because

of the computational complexity of physics-based evalua-

tions. This causes a high resource demand for very long pe-

riods of time, and at the same time the acquired information

is not transferable in most cases. Therefore, a sequence-

based method not only offers simplicity in terms of input to

the model training but also is able to train and predict desired

molecular structure without requiring 3D information and has

been shown to perform in a favorable manner compared

with the traditional techniques that require manual feature

characterization.33–35
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Mutation for molecule generation
In our works, the token-based mutation of molecular structure

is key for generating new molecule designs that have desired

properties. This mutation technique works differently from

traditional GANs22,30 or variational autoencoders.36,37 This is

because, rather than constructing entirely new molecules

from the latent space by introducing specific noise into the dis-

tribution, we employ a controlled mechanism. This mechanism

selects particular subsequences of molecules and introduces

mutations into these selections. The mutation technique pre-

serves specific structural components of the original molecule

while systematically exploring the chemical space. This explo-

ration is contingent upon various control parameters, such as

mutation rates, population replacement strategies, or selection

criteria based on scoring methodologies. Evidently, such a mu-

tation strategy has multiple benefits. First, mutation is applied

to a sampled population so each generation of a new molecule

population dataset affects the training process, leading to

providing solutions to the mode collapse problem. Second,

the vast chemical space could be explored38 in a controlled

way by selecting the mutation rate and frequency. Last,

because mutations in every generation of evolution or scoring

criteria can be manually examined or tuned, the interpretability



Figure 4. Plot showing the number of accepted molecules included in the generated dataset

The results indicate that, with smaller population sizes and lower mutation rates, the LM-GAN method performs slightly better. However, as the population size

and mutation rate increase, the performance of the standalone LM method gradually improves and surpasses that of the LM-GAN method.
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of the mutation strategy is higher than for latency space-based

generative models.

Figure 2 illustrates the relationship between the fitness score

and the population size of the initial molecular dataset, as well

as the mutation rate. Comparing the performance of LM and

LM-GAN, we observe that they are similar, with LM consistently

slightly outperforming LM-GAN. This difference is particularly

evident in larger populations (>20k) or with higher mutation rates

(>0.5).

A higher masking rate in LMs, requiring the model to predict

more missing tokens, enhances its proficiency in comprehend-

ing context, making predictions based on surrounding words,

and improving its ability to handle incomplete or partially

observed text. However, in the case of LMs integrated into

GANs, higher masking rates might not yield the same advan-

tages. GANs are specifically designed to capture the underlying

data distribution and generate realistic samples. The LM compo-

nent within the GAN focuses on generating text that adheres to

both learned language patterns and the data distribution

captured by the GAN. Higher masking rates can disrupt the co-

herency of the generated text since the LM has less information

available to guide the generation process. Producing coherent

and meaningful text becomes more challenging for the LM

when a significant portion of the input is masked.
Therefore, finding the right balance in themasking rate is crucial

within thecontextofGANs.Amasking rate that is too lowmightnot

provide sufficient training signal for the LM to learnmeaningful lan-

guage patterns. Conversely, a masking rate that is too high might

hinder the coherency and quality of the generated text. The

optimalmasking rate in aGANdepends on the specific task, data-

set, and interplay between the LM and GAN components.

Therefore, although higher masking rates can benefit stand-

alone LMs, LMs integrated into GANs require careful consider-

ation of the masking rate to maintain a balance between lan-

guage coherency and the data distribution captured by the GAN.

Combined LM and GAN approach
Large language models, such as GPT, utilize the transformer ar-

chitecture as their core foundation, enabling excellence in tasks

such as language translation, text summarization, and conversa-

tional agents. This proficiency is attained through pretraining on

extensive text data, leveraging the transformative role of the trans-

former architecture as the fundamental framework that enhances

their language processing capabilities. In terms of generative

models, the GANs and the transformers are two powerful ML

generative models. They have been used separately in various

diverse domain applications, although primarily for NLP and im-

age generation. However, as we have shown here in our novel
Patterns 5, 100947, April 12, 2024 7



Figure 5. Plot showing the efficiency values of two different techniques across various population sizes and mutation rates
The LM-GAN technique consistently outperforms the LM-only technique, with an efficiency value nearly twice as high. The population size does not appear to

have a significant effect on the efficiency values, but there is a slight trend indicating that LM-GAN performs slightly better at higher masking rates.
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implementation for molecular structure generation, when used

together they can produce even better results in a number of

cases, including designing new and improved molecules with

improved target properties. There are several reasons why this

specific combination ofGANs and transformers is able to produce

better results. First, the combined approach can deliver improved

generative capabilities. This is because GANs are generally de-

signed to generate new data that closely resemble the training

data, while transformers have the ability tomodel complex depen-

dencies in the heterogeneous data taking into account the context

and subsequently generate realistic outputs from that. Thus,

together, these twomodels can delivermore accurate and diverse

outputs than when compared individually. Second, coupled im-

plementations have better control over the generated output.

GANs are generally conditioned on specific input data, while the

use of transformers can be tuned to certain criteria or characteris-

tics of the generated output, such as specific properties. The next

advantage is efficient training where the training of GANs and the

transformers are performed separately, but then they can be fine-

tuned together with the pretrained model depending on the spe-

cific requirements, thus substantially reducing the need for exten-

sive training every single time. Last, a joint implementation of

GANs and transformers enables the generative model to learn

the high-level and low-level features, as well as the long-range
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and short-range relation in the data. This, in turn, results in a

more efficient and accurate prediction of material behavior and

properties. In summary, the joint approach of GANs and trans-

formers can provide advantages for more efficient molecular

and materials design with desired properties, with the condition

that the quality of the outcome will still depend on initial data qual-

ity and its respective diversity.

Population size and distribution formolecule generation
The impact of population size in generating customized novel

molecules using different algorithms is distinct. When consid-

ering the population size of the molecule data, the choice be-

tween using an LM or an LM implemented on a GAN (LM-GAN)

depends on the specific circumstances. With smaller population

sizes, LM-GAN is undoubtedly the better choice. However, as

the population size increases (typically exceeding 20k), the

advantage of using a GAN diminishes when examining individual

metrics.

When evaluating the efficacy of these two different ap-

proaches in terms of accepted molecules, LM-GAN is signifi-

cantly better compared with LM.We surmise that this is a conse-

quence of the general observation that the GAN approach works

generally better with smaller training data, while LM-like genera-

tive models require considerably larger datasets. Therefore, the



Figure 6. Plot comparing the distribution of number density for synthesizability between the LM (blue) and LM-GAN (orange) methods

The initial distribution is shown in green. The goal is to assess the improvement achieved by these methods. For synthesizability, LM-GAN exhibits better

performance in smaller populations (up to 10,000) comparedwith LM, both in terms of number density and scoring values. The plot illustrates how the LMand LM-

GAN methods have improved the different metrics, with varying effects depending on the specific matrix and population size.
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hybrid LM-GAN reported here provides a viable pathway to

generate novel structures when there is not a large amount of

data available to work with.

Population and molecule size

Handling of dataset sizes differs between LMs and GANs.

Generally, LMs tend to excel with larger datasets, while GANs

can be effective even with smaller ones.

LMs derive benefits from larger datasets because of their reli-

ance on statistical patterns and their ability to learn the underly-

ing language structure. With a substantial dataset, the model

gains access to a wide range of language patterns, vocabulary,

and context. This enables the LM to generalize better, capture

diverse linguistic nuances, and generate text that is more

coherent and contextually appropriate. The abundance of data

facilitates the learning of statistical regularities and depen-

dencies within the language, leading to improved performance.

In contrast, GANs, particularly in tasks such as image genera-

tion, can work well with smaller datasets. GANs are specifically

designed to learn the data distribution and produce realistic

samples. In some cases, having a smaller dataset can be advan-

tageous as GANs can better capture the unique characteristics
of the available data. With a limited dataset, GANs can focus

on learning the intricate details, textures, and specific patterns

that are distinctive to the data. This results in more accurate

and faithful generation of new samples. Furthermore, GANs

can be prone to overfitting when trained on larger datasets,

which might hinder their ability to capture fine-grained details

and generate realistic samples.

However, it is important to note that these observations are

general tendencies and not absolute rules. The performance of

both LMs and GANs can still vary depending on the specific

task, dataset quality, and model architecture. Dataset size is

just one of many factors that can influence the performance of

these models.

In terms of molecule size, i.e., number of atoms in a molecule,

as detailed in the molecular structure data within the experi-

mental procedures, our study initiated with an initial population

fromGDB9, consisting of molecules with up to nine heavy atoms

(CONF), excluding hydrogen. The application of both LM-based

models’ generative capabilities subsequently resulted in an

approximately 2-fold increase in the average molecule size in

the subsequent generations of newly generated molecules.
Patterns 5, 100947, April 12, 2024 9



Figure 7. Plot comparing the distribution of number density for the drug likeness matrix between the LM (blue) and LM-GAN (orange)

methods

The initial distribution is represented by the color green. The purpose of the plot is to evaluate the improvement achieved by these methods. In terms of drug

likeness, the LM-GANmethod performs better than LM in smaller populations (up to 10,000), as indicated by both the number density and scoring values. The plot

demonstrates how the LM and LM-GAN methods have improved the drug likeness matrix, with the effect varying depending on the specific matrix and pop-

ulation size.
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Specifically, the averagemolecule size increased from 8.8 atoms

in the starting population to 17.6 atoms when utilizing the LM as

the generative model, while, in contrast, employing the LM-GAN

as the generative model yielded a further increase to an average

molecule size of 19.2 atoms. The LM-GAN also favored heavier

atoms, as shown in Figure S5. Furthermore, the topological

accessible surface was increased in the LM-GAN compared

with the LM only approach, along with the maximum partial

charge and the number of valence electrons. Twenty molecules

from the population of 5k molecules generated using the LM-

GAN and LM only are shown in Figure S7.

Population distribution

The behavior of LMs and LMs integrated into GANs differs con-

cerning the population distribution of generated samples.

In a standalone LM, the generated samples are typically repre-

sentative of the language patterns and statistical properties pre-

sent in the training data. The LM learns to produce text that aligns

with the underlying data distribution on which it was trained.

Consequently, the population distribution of generated samples

from a standalone LM tends to resemble the distribution of the
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training data. The LM prioritizes generating coherent, fluent

text that is statistically similar to the training data, while maintain-

ing the learned language patterns.

On the other hand, when an LM is integrated into a GAN, the

population distribution of generated samples can be influenced

by both the LM component and the GAN component. GANs

aim to capture the overall data distribution and generate samples

that are realistic and indistinguishable from real data. The GAN

component introduces an additional factor that shapes the pop-

ulation distribution of generated samples.

The interaction between the LM and the GAN in a GAN-based

LM can result in a population distribution of generated samples

that differs from that of a standalone LM. The GAN component

might prioritize generating samples that align with the overall

data distribution captured by the GAN, which might diverge

from the distribution of the training data. This can lead to gener-

ated samples exhibiting realistic characteristics and conforming

to the data distribution captured by the GAN but deviating from

the precise language patterns and statistical properties of the

training data. We demonstrate this difference in Figure S6, which



Figure 8. Plot comparing the distribution of number density of solubility between LM (blue) and LM-GAN (orange), as well as the initial dis-

tribution (green)

The plot is shown for four different populations to demonstrate the improvement achieved by the LM and LM-GANmethods. The behavior of the different metrics

varies across the populations. For solubility, there is not much difference between LM and LM-GAN up to populations of 10–20k. However, in larger populations,

the LM method outperforms LM-GAN.
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shows the distribution of 5k molecules after 50 generations for a

small population size (5k molecules). In this chemical space, we

see distinct differences in the population diversity. The increased

diversity of the LM-GAN-generated molecules is consistent with

the chemical features shown in Figure S5.

In conclusion, although a standalone LM primarily focuses on

generating text that aligns with the language patterns and statis-

tical properties of the training data, an LM integrated into a GAN

takes into account both the learned language patterns and the

overall data distribution captured by the GAN. This interplay

can result in differences in the population distribution of gener-

ated samples, with GAN-based LMs potentially producing sam-

ples that are realistic and that conform to the GAN’s data distri-

bution but might deviate from the exact language patterns

observed in the training data.

Conclusions
In this work we present a comparative study on the efficacy of

two generative molecular structure models, namely a state-of-

the art LM on one hand, and a novel hybrid architecture where
the same LM is deployed on a GAN platform (i.e., LM-GAN).

The objective of performing various specific or user-defined op-

timizations tasks was accomplished in both models by taking

advantage of nature-inspired GA-based mutations strategy.

The obtained results have implications that aremultidimensional.

First, we show that the hybrid LM-GAN architecture predicts a

higher fraction of acceptable molecules from the set of newly

generated structures with improved target properties for any da-

taset size than the standalone LM, while the use of the GA ad-

dresses the problem of mode-collapse commonly found in

GANs. Second, the results show that, with smaller population

sizes, the hybrid LM-GAN performs better in generating desired

molecules both in terms of improved optimized properties and

larger number of atoms. This trend reverses when the population

size increases. This addresses another important issue of

requiring a large amount of data in model training for generating

new samples because the LM-GAN is able to work with compar-

atively smaller population sizes. Third, the LM method performs

better when counting generation of more numbers of novel mol-

ecules. But the most impactful observation is when estimating
Patterns 5, 100947, April 12, 2024 11



Figure 9. Plot comparing the distribution of number density for the fitness function between LM (blue) and LM-GAN (orange) methods, along

with the initial distribution (green)

The plot analyzes four different populations to assess the extent of improvement achieved by these two methods (LM and LM-GAN) across various metrics. The

behavior of the different metrics varies depending on the population size. In terms of the fitness function, LM-GAN outperforms LM in scoring values up to 10,000.

However, beyond this point, there is an opposite trend observed, indicating a shift in performance between the two methods.
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the efficiency of respective algorithms (i.e., when computing the

ratio of the number of accepted molecules to the number of

generated novel molecules with desired optimized molecular

properties, LM-GAN performance is consistently better

compared with LM among all population sizes of the molecule

dataset). This novel AI algorithm will enable researchers to

design new molecules with desired properties with different

sizes of available training datasets in a wide range of domains

from drug discovery to synthesizing novel polymers to building

new materials.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and data should be directed to

and will be fulfilled by the lead contact, Debsindhu Bhowmik (bhowmikd@

ornl.gov).

Materials availability

The materials employed in this study are openly accessible and outlined in the

following molecular structure data section. For requests regarding the newly

generated molecular structures and properties data, please find published

data at Zenodo39 or contact the lead author.
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Data and code availability

Source code for this work is published and can be found at Zenodo.40

LM-based GAN architecture

The primary focus of this study is to investigate, within the GAN paradigm,41

LMs trained on text-basedmolecular representations (SMILES) both as gener-

ator and discriminator networks. For this purpose we compute the boost in ef-

ficiency in generating valid molecules while simultaneously demonstrating a

comparative study on fitness optimization. As in our previous work, we use

a masked LM21,23,24 for our automated mutation operator driven by a GA. In

Figure 1 we have shown the major components of the two architectures

used in this study. In the LM-only architecture, the input population of mole-

cules is provided as a SMILES string format. A part of this SMILES string rep-

resenting each of the molecules is then masked, and subsequently an LM

model is used to predict mutation or alternative to the original input molecule.

This newly generated molecule with mutated atom(s) is then scored and

selected based on a specific fitness function to generate a new dataset con-

sisting of a population of optimized molecules. This process of introducing a

mutation and the novel way of selection is repeated for multiple iterations to

generate the final molecule population. In our hybrid LM-GAN method, to

implement a GAN, the generator and discriminator networks are defined, a

training loop is designed, and backpropagation is used for parameter updates.

This involves initializing the networks, specifying loss functions, creating opti-

mizers, and implementing a training loop that alternates between updating the

generator and discriminator. In this GAN paradigm, as shown in Figure 1

mailto:bhowmikd@ornl.gov
mailto:bhowmikd@ornl.gov
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(lower), the generator creates a new molecule by randomly masking a portion

of a SMILES molecular representation and using a pretrained LM to fill in the

missing molecular structure. The discriminator network is a (pretrained) LM

that classifies the original or generated SMILES strings as real or fake, respec-

tively. One might think of training the discriminator as a fine-tuning task for the

LM and of training the generator as a masked language modeling task. The

generator and discriminator LMs are iteratively trained such that the masked

LM generates molecules that can fool the discriminator.

Implementing an LM on a GAN platform entails several differences

compared with using a GAN in isolation. First, the architecture incorporates

both the GAN components (generator and discriminator) and the LM, inte-

grating the LM into the generator. This integration allows the generator to

generate context and sequence based on learned language patterns.

The training process combines adversarial training and language modeling.

Adversarial training involves the generator and discriminator competing to

enhance the quality of generated samples, while the LM learns statistical pat-

terns in the training data. This joint training empowers the generator to produce

samples that align with both the GANs data distribution and the language pat-

terns learned by the LM.

In a GAN, the objective function includes the generator’s loss for promoting

realistic text generation and the discriminator’s loss for distinguishing real and

generated sequences. Integrating an LM introduces an additional language

modeling loss, encouraging the generator to generate sequences that are

aligned with the language patterns captured by the LM. By combining these

distinct loss components, the training process optimizes overall sequence

generation quality, considering realism and pattern coherence.

The integration of an LM within a GAN platform enhances sequence gener-

ation quality compared with using a standalone GAN. LMs excel at capturing

language patterns and generating coherent sequences, while GANs effectively

capture data distribution and generate realistic ones. Leveraging the strengths

of both approaches enables higher-quality sample generation that exhibits

both realistic characteristics and adherence to language patterns. The result

is an LM-based generator that produces realistic molecules for a broad scope

of potential tasks.

GA

As mentioned previously and following our previous works,22–25 we have

adopted in both LM- and LM-GAN-based generative models a simplified GA

strategy to introduce diversity in the generated population. To this end, we

have implemented an algorithm that follows a ðm + 5mÞ survivor selection.

We deploy random sampling uniformly applied over the population to select

m parents, and mutation was used only to generate new molecules as

described in our earlier work.21 An initial population ranging in size from 5k

to 50kmolecules was used for comparing different scenarios, and mutated

molecules were created by taking the top 5 predictions of themodel for a given

set of applied masks. The validity and uniqueness of the generated molecules

were evaluated using functionalities in the rdkit42 library to convert SMILES

representation into a canonical form. In the end, only unique molecules were

retained in the population for subsequent structure evolution.

Mask generation and fitness calculations

The use of various masking ratios in an LM holds great significance for multiple

reasons.21 It enhances the model’s capability to handle incomplete or noisy

data by leveraging contextual cues to predict missing tokens. The incorpora-

tion of diverse masking ratios fosters generalization, empowering the model to

effectively handle different levels of missing information, thereby improving its

real-world performance. Moreover, it facilitates transfer learning by capturing

distinct contextual dependencies across different ratios. Thesemasking ratios

also serve as a means of data augmentation, effectively mitigating overfitting

and bolstering generalization on unseen data. The flexibility to adjust the

masking ratio allows the model to cater to specific task requirements, whether

it involves inferring missing words or generating coherent text. Therefore, in

this comparative study we used different mutation rates for mask generation,

or, in other words, we used a series of various probabilities for which a given

token in a molecular sequence would be masked. These mutation rates range

from 0.10 to 1.00 with a gap of 0.10. Furthermore, these mutations were de-

ployed in three different ways: replacement, insertion, and deletion. At least

one mask was applied on each molecule with a randomly chosen masking
location. As for the replacement strategy, the token location was replaced

with the mask; for insertion, a mask was inserted on the token location and,

for deletion token, location was deleted following the mask. For insertion or

deletion, any remaining locations followed replacement strategy.

The optimized fitness property was determined by taking the harmonic

mean of multiple molecular metrics. As an example for metric x1 and x2, the

resultant fitness function F will be Fðx1;x2Þ = 2x1x1
x1+x2

. We took the drug likeness,

synthesizability, and solubility as individual metrics for quantitative estimation

of optimized fitness function as done in many earlier works on molecular

optimization.22,29–31

Molecular structure data

For this study, we chose an initial population derived from a subset of 105 mol-

ecules sourced from the QM9 dataset,43 referred to as GDB9 in this investiga-

tion. The QM9 dataset is recognized as the gold standard for ML predictions in

various chemical properties, given its calculated geometric, energetic, elec-

tronic, and thermodynamic properties for 134k stable small organic molecules

composed of CHONF elements. Notably, the QM9 dataset is grounded in the

exploration of the chemical space. GDB9 molecules constitute a subset of

133,885 species within the GDB-17 chemical universe, encompassing 166

billion organic molecules with up to 9 heavy atoms (CONF), excluding

hydrogen. This forms a comprehensive and diverse foundation for our

comparative analysis. Importantly, our approach utilizes only the SMILES

structure as the starting point to generate new molecules in subsequent

iterations.

LM training

The pretraining phase of the LM involves two key stages: tokenization and

mask prediction. In the tokenization process, a vocabulary is constructed

based on frequently occurring subsequences found in the SMILES represen-

tation of molecules. SMILES sequences are split using punctuation, following

the default setting of the BERTWordPiece tokenizer in theHugging Face trans-

formers library.44 This results in the creation of a vocabulary for the entire data-

set, comprising 3:631010 molecules, as mentioned earlier. The vocabulary

size is set to 32,768. Simultaneously, in the mask prediction stage, PyTorch

and Hugging Face Transformers, along with DeepSpeed for distributed

training,45 are employed. The transformer architecture utilized for the molecule

LM is BERT based, boasting approximately 109 million learnable parameters.

The pretraining process adopts data parallelism, where each GPU is trained

with the model on distinct data. DeepSpeed’s fused LAMB optimizer is used

for efficient training at scale on a dataset consisting of 3 billion molecules

(i.e., the first 6,000 partitions of the complete molecule dataset). The pretrain-

ing is executed on the Summit supercomputer using 1,000 nodes, each equip-

ped with 6 Nvidia 16 GB V100 GPUs. Each GPU is assigned a partition of the

dataset, and a batch size of 80 molecules with 3 gradient accumulation steps

per GPU is utilized, resulting in a global batch size of 1.44 million. Despite the

need for a large number of GPUs for training, once the LM is pretrained it can

be employed with just one GPU for fine-tuning or downstream tasks on smaller

datasets. The pretraining phase spans 7 epochs, taking approximately 2.5 h,

with model validation conducted using mask prediction on a hold-out set of

molecules. The best validation accuracy is achieved in the final epoch, and

the resulting model weights are frozen for subsequent LM mutations.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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(2020). De novo generation of hit-like molecules from gene expression sig-

natures using artificial intelligence. Nat. Commun. 11, 10. https://doi.org/

10.1038/s41467-019-13807-w.

15. Aru�s-Pous, A.J., and Patronov, A. (2020). Smiles-based deep generative

scaffold decorator for de-novo drug design. J. Cheminf. 12, 1–18.

https://doi.org/10.1186/s13321-020-00441-8.

16. Hong, S.H., Ryu, S., Lim, J., and Kim, W.Y. (2020). Molecular generative

model based on an adversarially regularized autoencoder. J. Chem. Inf.

Model. 60, 29–36. https://doi.org/10.1021/acs.jcim.9b00694.
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36. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M.,

Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D.,

Adams, R.P., and Aspuru-Guzik, A. (2018). Automatic Chemical Design

Using a Data-Driven Continuous Representation of Molecules. ACS

Cent. Sci. 4, 268–276. https://doi.org/10.1021/acscentsci.7b00572.

37. Jacobs, S.A., Moon, T., McLoughlin, K., Jones, D., Hysom, D., Ahn, D.H.,

Gyllenhaal, J., Watson, P., Lightstone, F.C., Allen, J.E., et al. (2021).
Enabling rapid COVID-19 small molecule drug design through scalable

deep learning of generative models. Int. J. High Perform. Comput. Appl.

35, 469–482. https://doi.org/10.1177/10943420211010930.

38. Virshup, A.M., Contreras-Garcı́a, J., Wipf, P., Yang, W., and Beratan, D.N.

(2013). Stochastic voyages into uncharted chemical space produce a

representative library of all possible drug-like compounds. J. Am. Chem.

Soc. 135, 7296–7303. https://doi.org/10.1021/ja401184g.

39. Bhowmik, D., Zhang, P., Fox, Z., Irle, S., and Gounley, J. (2023a). molec-

ular data for Genetic Algorithm Mutations for Molecules with a Hybrid

Language Model-Based GAN Architecture. Zenodo. URL:. https://doi.

org/10.5281/zenodo.10623789

40. Bhowmik, D., Zhang, P., Fox, Z., Irle, S., and Gounley, J. (2023b). Genetic

Algorithm Mutations for Molecules with a Hybrid Language Model-Based

GAN Architecture. Zenodo. URL:. https://doi.org/10.5281/zenodo.

8387351

41. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial net-

works. Preprint at arXiv. https://doi.org/10.48550/arXiv.1406.2661.

42. Landrum, G., Tosco, P., Kelley, B., Ric, Cosgrove, D., sriniker, gedeck,

Vianello, R., NadineSchneider, Kawashima, E., Jones, G., N, D., Dalke,

A., et al. (2023). jasondbiggs, and strets123. RDKit: Open-source chem-

informatics. Zenodo. URL:. https://doi.org/10.5281/zenodo.10099869

43. Ramakrishnan, R., Dral, P.O., Rupp, M., and Von Lilienfeld, O.A. (2014).

Quantum chemistry structures and properties of 134 kilo molecules. Sci.

Data 1, 140022–140027. https://doi.org/10.1038/sdata.2014.22.

44. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,

P., Rault, T., Louf, R., Funtowicz, M., et al. (2020). Transformers: State-of-

the-art natural language processing. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing:

System Demonstrations, pp. 38–45. https://doi.org/10.18653/v1/2020.

emnlp-demos.6.

45. Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory

optimizations toward training trillion parameter models. Int. Conf. High

Perform. Comput. Netw. Storage Anal. 1–24. https://doi.org/10.1109/

SC41405.2020.00024.
Patterns 5, 100947, April 12, 2024 15

https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.48550/arXiv.1805.11973
https://doi.org/10.48550/arXiv.1805.11973
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1021/acs.jcim.9b01053
https://doi.org/10.1145/3307339.3342186
https://doi.org/10.1101/2020.12.23.424259
https://doi.org/10.1101/2020.12.23.424259
https://doi.org/10.1038/s41598-021-90259-7
https://doi.org/10.1038/s41598-021-90259-7
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1177/10943420211010930
https://doi.org/10.1021/ja401184g
https://doi.org/10.5281/zenodo.10623789
https://doi.org/10.5281/zenodo.10623789
https://doi.org/10.5281/zenodo.8387351
https://doi.org/10.5281/zenodo.8387351
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.5281/zenodo.10099869
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024


Patterns, Volume 5
Supplemental information
Enhancing molecular design

efficiency: Uniting language models

and generative networks with genetic algorithms

Debsindhu Bhowmik, Pei Zhang, Zachary Fox, Stephan Irle, and John Gounley



 1 

Supplemental information  

    

 
 

 

Fig. S1: Plot showing the fitness scores concerning the population size of the initial 
molecular dataset and mutation rate. The LM and LM-GAN methods exhibit similar 
performance, with the LM consistently outperforming the LM-GAN, albeit by a small 
margin. However, this performance gap becomes more significant, especially when dealing 
with larger populations (above 20,000) or higher mutation rates (above 0.5). 
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Fig. S2: Plot showcasing the capability of two methods to generate novel molecules not 
found in the original dataset. The LM method outperforms the LM-GAN method, producing 
a greater quantity of novel molecules. For the LM method, there is an initial rise in the 
number of novel molecules until a mutation rate of 50\%, after which there is a gradual 
decline. Conversely, the LM-GAN method generates significantly fewer novel molecules, 
and this count decreases gradually as the mutation rate increases. 
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Fig. S3: Plot demonstrating the number of accepted molecules included in the generated 
dataset. The findings demonstrate that the LM-GAN method performs slightly better than 
the LM method when the population sizes are smaller and the mutation rates are lower. 
However, as the population size and mutation rate increase, the performance of the LM 
method gradually improves and eventually surpasses that of the LM-GAN method.    
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Fig. S4: Plot comparing the efficiency values of two different techniques across different 
population sizes and mutation rates. The LM-GAN technique consistently outperforms the 
LM-only technique, with an efficiency value that is nearly double. The effect of population 
size on efficiency values is not significant. However, there is a slight trend suggesting that 
LM-GAN performs slightly better at higher masking rates.    
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Fig. S5: Distributions of TPSA, Number of Valence electrons, Heavy atom molecular weight, and 
max partial charge across the initial population (green) and the final populations for the LM-
GAN and LM based approaches.  

Fig. S6: Density maps showing the difference between the LM (left) and LM-GAN 
(right) molecular distributions. The ECFP's for each molecule in each population were 
projected onto the first two principal components of the LM-only population of 
molecules, which are denoted φ1 and φ2.  
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Fig S7: Molecules sampled from the population after 50 generations for the LM-GAN 
and LM generated molecules.   
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