Supporting Information

Tertiary Amine Coupling by Oxidation for Selective Labeling of Dimethyl Lysine Posttranslational Modifications

Benjamin Emenike¹, Patrick Czabala¹, Jonathan Farhi², Jagannath Swaminathan³, Eric V Anslyn³, Jennifer Spangle², Monika Raj^{1*}

Table of content

I.	General	2	
II.	Materials	2	
III.	Purification	2	
IV.	Analytical Methods	2-3	
V .	Fmoc Solid-Phase Peptide Synthesis		
VI.	General procedure 1 for oxidative transformation of Kme ₂ peptides		
VII.	Figure 1. Evaluation of oxidizing agents		
VIII.	Figure 2. Proposed mechanism for TACO		
IX.	Figure 3. Evaluation of bases	7-12	
Х.	Figure 4. Characterization of aldehyde products	13-15	
XI.	Figure 5. Chemoselectivity studies	15-27	
XII.	Figure 6. Effect of adducts on enrichment of Kme ₂ -generated aldehyde	28-42	
XIII.	Figure 7. Pan-specificity evaluation of TACO	42-50	
XIV.	Figure 8. Oxime chemistry on histone aldehyde peptides	51-52	
XV.	Figure 9. Reductive amination of histone aldehyde peptides	52-54	
XVI.	Figure 10. Hydrazone chemistry on histone aldehyde peptides	54-55	
XVII.	Figure 11. Dansyl hydrazone with peptide aldehydes	56-57	
XVIII.	Figure 12. Biotin hydrazone with peptide aldehydes	57-58	
XIX.	Figure 13. Thiazolidine formation using histone aldehyde peptides	58-61	
XX.	Figure 14. Modification of histone peptide spiked cancer cell lysates A549	62-63	
XXI.	Figure 15. Modification of histone peptide spiked cancer cell lysates H1792	63-64	
XXII.	Figure 16. Single molecule protein sequencing	64-67	
XXIII.	Figure 17. Modification of Kme ₂ proteins using TACO	67-75	
XXIV.	Figure 18. Modification of Kme ₂ proteins with fluorophore	75-82	
XXV.	Figure 19. Modification of Kme ₂ proteins in cell lysate	82-84	
XXVI.	Figure 20. Solid-support enrichment of peptide aldehydes	84-85	
XXVII.	Figure 21. Solid-support enrichment of nuclesomes from prostate cancer cells	85-86	
XXVIII	Figure 22. TACO modification of nuclear extract and proteomics analysis	86-104	
XXIX.	Figure 23. Biotin enrichment of TACO modified Kme ₂ sites	105-111	
XXX.	References	111	

I. General. All commercial materials (Sigma-Aldrich, Fluka and Novabiochem) were used without further purification. All solvents were reagent or HPLC (Fisher) grade. All reactions were performed under air in glass vials. Yields refer to chromatographically pure compounds; % yields were obtained by comparing HPLC peak areas of products and starting materials. HPLC and MS were used to monitor reaction progress, and product elucidation was done using MS and NMR.

II. Materials. Fmoc-amino acids, Rink amide resin, 3-[bis(dimethylamino)methyliumyl]-3Hbenzotriazol-1-oxide hexafluorophosphate (HBTU), 1-hydroxy-7-azabenzotriazole (HOAt), N,N'iisopropylcarbodiimide(DIC), and N,N-diisopropylethylamine (DIEA) were obtained from CreoSalus (Louisville, Kentucky). Piperidine, trifluoroacetic acid (TFA), were obtained from Alfa Aesar (Ward Hill, Massachusetts). N,Ndimethylformamide (DMF), dichloromethane (DCM), methanol (MeOH), acetonitrile (ACN), were obtained from VWR (100 Matsonford Road Radnor, Pennsylvania). Selectfluor (1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)), 4-Dimethylaminopyridine and pyridine were obtained from Sigma.

III. Purification. HPLC: Purification of peptide starting materials was performed using high performance liquid chromatography (HPLC) on an Agilent 1100 series HPLC equipped with a C-18 reverse phase column with a particle size of 5 μ m. All separations involved a mobile phase of water (solvent A) and acetonitrile (solvent B). The HPLC method used a linear gradient of 0-80% solvent B over 30 minutes at ambient temperature with a flow rate of 1 mL min⁻¹. The eluent was monitored by absorbance at 220 nm.

IV. Instrumentation and sample analysis. NMR. ¹H and ¹³C spectra were acquired at 25 °C in DMSO-d₆, CDCl₃ using an Agilent DD2 (600 MHz) spectrometer with a 3-mm He triple resonance (HCN) cryoprobe. All ¹H NMR chemical shifts (δ) were referenced relative to the residual DMSO-d₆ peak at 2.50 ppm, CDCl₃ peak at 7.26 ppm or internal tetramethylsilane (TMS) at 0.00 ppm. ¹³C NMR chemical shifts were referenced to DMSO-d₆ at 39.52 ppm and CDCl₃ at 77.2 ppm. ¹³C NMR spectra were proton decoupled. NMR spectral data are reported as chemical shift (multiplicity, coupling constants (*J*), integration). Multiplicity is reported as follows: singlet (s), broad singlet (br s), doublet (d), doublet of doublets (dd), doublet of triplets (td), triplet (t) and multiplet (m). Coupling constant (J) in hertz (Hz).

Analytical HPLC. Analytical HPLC chromatography (HPLC) was performed on an Agilent 1200 series HPLC equipped with a 5 mm C-18 reversed-phase column. The reaction was monitored by analytical reverse phase HPLC using a gradient of water versus acetonitrile. All separations involved mobile phase with 0.1 % formic acid in water (solvent A) and 0.1 % formic acid in acetonitrile (solvent B). Analytical HPLC method used for purification of peptides a linear gradient of 0-80% solvent B over 30 min at room temperature with a flow rate of 1.0 mL min⁻¹. The oxidative tertiary amine reactions were analyzed by HPLC, and MS. HPLC was carried out with 0.1% formic acid: water (solvent A): acetonitrile (solvent B) at detection wavelength 220 nm. HPLC **METHOD A:** Gradient: 0 to 80 % **B** (0.1% formic acid in ACN) in 30 min; 80-100 % B in 31-35 min at a flow rate of 1 mL/min.

HPLC METHOD B: Gradient: 0 to 50 % **B** (0.1% formic acid in ACN) in 30 min; 50-100 % B in 31-35 min at a flow rate of 0.5 mL/min.

LC/MS. High resolution LC-MS conditions for all purified peptides: Analyses were performed on an ultraperformance LC system (ACQUITY, Waters Corp., USA) coupled with a quadrupole

time-of-flight mass spectrometer (Q-ToF Premier, Waters) with electrospray ionization (ESI) in positive mode using Mass lynx software (V4.1) or high-performance LC system (Agilent, 1100 series) coupled with triple quadrupole.

LC-MS (Agilent technologies 6460) with electrospray ionization (ESI) in positive mode using Agilent mass hunter (10.0). Unless otherwise mentioned a sample was injected either onto a C4 column (Phenomenex AerisTM 3.6 µm WIDEPORE C4 200 Å, LC Column 50 x 2.1 mm) with a 400 µL/min flow rate of mobile phase of solution A (90 % H₂O, 10 % acetonitrile and 0.1 % formic acid (FA)) and solution B (95 % acetonitrile, 5 % H₂O, and 0.1 % formic acid) beginning gradient- Time- 0 min 10 % B; 5 min 28 % B; 20 min 38 % B; 22 min 90 % B; C18 column (ACQUITY UPLC BEH 1.7 µm 1x 50 mm) with a 200 µL/min flow rate of mobile phase of solution A (90 % H₂O, and 0.1 % formic acid) beginning gradient- X (90 % H₂O), 10 % acetonitrile and 0.1 % formic acid) and solution B (90 % acetonitrile, 10 % H₂O, and 0.1 % formic acid) beginning gradient- Time- 1 min 0% B; 1-10 min 100% B for chromatography analysis (or) directly injected with mobile phase 90 % H₂O: 10 % ACN, 0.1% formic acid at 400 µL/min flow rate in ESI positive mode. HPLC and MS of the cyclized products were performed without the addition of formic acid to the eluting solvent because the triazene compound is acid labile.

HRMS. High resolution MS data were acquired on Thermo Exactive Plus using a heated electrospray source. The solution was infused at a rate of 10-25 μ L/min/electrospray using 3.3 KV. The typical settings were Capillary temp 320 °C. S-lens RF level was between 30-80 with an AGC setting of 1 E6. The maximum injection time was set to 50 ms. Spectra were taken at 140,000 resolutions at m/z 200 using Tune software and analyze with Thermo's Freestyle software.

V. Fmoc Solid-Phase Peptide Synthesis (Fmoc-SPPS).¹ Peptides were synthesized manually on a 0.25 mm scale using Rink amide resin. Resin was swollen with DCM for 1 h at room temperature. Fmoc was deprotected using 20% piperidine–DMF for 5 min to obtain a deprotected peptide-resin. First, Fmoc protected amino acid (1.25 mm/5 equiv.) was coupled using HOAt (1.25 mm/5 equiv.) and DIC (1.25 mm/5 equiv.) in DMF for 15 min at room temperature. Fmoc-protected amino acids (0.75 mm/3 equiv.) were sequentially coupled on the resin using HBTU (0.75 mm/3 equiv.) and DIEA (1.5 mm/6 equiv.) in DMF for 5 min at room temperature. Peptides were synthesized using standard protocols. Peptides were cleaved from the resin using a cocktail of 95:5, trifluoroacetic acid: water for 2 h. The resin was removed by filtration and the resulting solution was concentrated. The residue was diluted with ACN/water mixture. The resulting solution was purified by HPLC.

VI. General procedure 1: Tertiary amine coupling by Oxidation (TACO) of dimethyllysine peptides to generate aldehyde-peptide products.

To 1 mg (6-10mM) of unprotected dimethyllysine peptide dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h and subsequently injected into the HPLC for determining the % conversion of dimethyllysine peptides to the aldehyde peptide product and the mass confirmed with LC-MS. HPLC was carried out with 0.1% formic acid: water (solvent A): acetonitrile (solvent B) at detection wavelength 220 nm.

HPLC METHOD A: HPLC METHOD A: Gradient: 0 to 80 % B (0.1% formic acid in ACN) in 30 min; 80-100 % B in 31-35 min at a flow rate of 1 mL/min.

HPLC METHOD B: Gradient: 0 to 50 % **B** (0.1% formic acid in ACN) in 30 min; 50-100 % B in 31-35 min at a flow rate of 0.5 mL/min.

VII. Supplementary Figure 1: Evaluation of oxidizing reagents for conversion of Kme₂ to aldehyde

To 1.0 mg (8mM) of FKme₂V peptide **1a** in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0) was added different oxidizing reagents such selectfluor, tropylium, NBS, DEAD, and FeCl₃/t-BuOOH (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of aldehyde product FKme₂(CHO)V **2a**. The reaction mixture was analyzed by HPLC using method A and the % conversion to aldehyde-peptide product **2a** was determined and compiled in the table below.

FKme₂V linear peptide 1a. LCMS: *m/z* 420.29315 (calcd [M+H]+ = 420.2896), (HPLC analysis at 220 nm). Retention time in HPLC: 4.824

FKme₂(CHO)V peptide aldehyde product 2a. LCMS: *m/z* 391.23049 (calcd [M+H]+ = 391.2340), (HPLC analysis at 220 nm). Retention time in HPLC: 7.017

HPLC Trace of aldehyde generation reaction from 1a using selectfluor

MS-Trace of peak 4.824

5

Oxidizing agents	Selectfluor	DEAD	NBS	Tropylium	FeCl₃/t- BuOOH
% Conversion (2a)	9	0	0	0	0

VIII. Supplementary Figure 2: Plausible mechanism for the formation of peptide aldehyde and monomethyllysine peptides.

IX. Supplementary Figure 3: Evaluation of various bases for the oxidative tertiary amine transformation of dimethyllysine peptide **1a** to peptide aldehyde **2a**.

To 1.0 mg of FKme₂V **1a** dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added varying **base** such as pyridine, piperidine, DMAP and proton-sponge (1-5 eq) and selectfluor (2 eq). The reaction mixtures were stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of peptide aldehyde **2a**. The reaction mixtures were analyzed by HPLC using method A to determine the % conversion to peptide aldehyde **2a** and monomethyllysine peptide **2a**'.

FKme₂(CHO)V peptide-aldehyde product 2a. LCMS: m/z 391.23049 (calcd [M+H]⁺ = 391.2340), m/z 413.21223 (calcd [M+Na]+ =413.21), (HPLC analysis at 220 nm). Retention time in HPLC: 6.905

FKmeV monomethyllysine peptide product 2a'. LCMS: m/z 406.18372 (calcd [M+H]⁺ = 391.23049), m/z 811.59185 (calcd [2M+1]+ = 811.15), (HPLC analysis at 220 nm). Retention time in HPLC: 5.259

Evaluation of pyridine:

HPLC Trace of aldehyde generation reaction from 1a using pyridine

MS-Trace of 2a' (peak 5.259)

Evaluation of in-situ base generated from selectfluor without any external base.

MS-Trace of peak 4.824

Evaluation of piperidine:

HPLC Trace of aldehyde generation reaction from 1a using piperidine

Evaluation of DMAP:

Evaluation of proton-sponge:

HPLC Trace of aldehyde generation reaction from 1a using proton-sponge

Bases	Equivalence	% Conversion (2a)
No base	1	4
(IIISILU-Dase)	3	5
	5	9
	1	5
Piperidine	3	4
	5	2
	1	48
DMAP	3	66
	5	77
	1	61
Pyridine	3	69
	5	83
	1	12
Proton-	3	21
sponge	5	24

X. Supplementary Figure 4: Characterization of peptide-aldehyde product **2b** and monomethyllysine peptide **2b**'.

(OAc)FKme₂(CHO)V 2b: ¹H NMR (600 MHz, DMSO-d₆) δ 9.61 (t, J = 1.6 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.23 (d, J = 7.1 Hz, 3H), 7.21 – 7.18 (m, 3H), 4.40 (td, J = 8.6, 5.1 Hz, 1H), 4.18 (td, J = 8.0, 5.3 Hz, 1H), 4.10 (dd, J = 8.4, 6.7 Hz, 1H), 2.98 (dd, J = 13.8, 5.1 Hz, 1H), 2.82 (dd, J = 13.9, 8.8 Hz, 1H), 2.40 – 2.34 (m, 2H), 1.92 (q, J = 6.8 Hz, 1H), 1.87 (s, 3H), 1.57 – 1.40 (m, 5H), 0.80 (dd, J = 6.8, 2.4 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 203.68, 173.07, 171.69, 171.46, 169.99, 138.22, 129.58, 128.47, 126.67, 58.42, 54.10, 52.93, 43.04, 37.93, 31.62, 30.64, 22.96, 19.72, 18.65.

(OAc)FKmeV 2b': ¹H NMR (600 MHz, DMSO-d₆) δ 8.02 (d, J = 7.7 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.22 – 7.17 (m, 3H), 4.40 (td, J = 8.6, 5.0 Hz, 1H), 4.16 (td, J = 8.3, 5.3 Hz, 1H), 4.09 (dd, J = 8.3, 6.7 Hz, 1H), 3.00 (dd, J = 13.9, 5.0 Hz, 1H), 2.86 – 2.82 (m, 1H), 2.61 (d, J = 1.9 Hz, 2H), 2.61 (t, J = 7.4 Hz, 2H), 2.40 (s, 3H), 1.93 (h, J = 6.7 Hz, 2H), 1.88 (s, 3H), 1.59 – 1.48 (m, 2H), 1.47 – 1.41 (m, 2H), 1.25 – 1.16 (m, 2H), 0.81 (dd, J = 6.9, 1.2 Hz, 6H). ¹³**C** NMR (151 MHz, DMSO) δ 173.19, 171.76, 171.63, 170.09, 138.27, 129.59, 128.47, 126.67, 58.58, 54.16, 53.14, 49.75, 37.90, 34.39, 31.72, 30.60, 22.94 (d, J = 7.5 Hz), 19.74, 18.70.

¹H NMR (600 MHz, DMSO-d₆) of aldehyde-peptide 2b

¹³C NMR (151 MHz, DMSO-d6) of aldehyde-peptide 2b

¹H NMR (600 MHz, DMSO-d₆) of monomethyl lysine peptide (OAc)FKmeV 2b'

¹³C NMR (151 MHz, DMSO-d₆) of of monomethyl lysine peptide (OAc)FKmeV 2b'

XI. Supplementary Figure 5: Chemoselectivity studies for aldehyde-peptide formation.

1.0 mg of serine containing tripeptide FSV was modified using **general procedure 1**. The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FSV linear peptide. LCMS: *m/z* 351.15584 (calcd [M+H]+ = 351.2027), *m/z* 373.16921 (calcd [M+Na] = 373.16), *m/z* 389.13582 (calcd [M+K] = 389.1591), *m/z* 701.44533 (calcd [2M+H]+ = 701.3981), *m/z* 723.43486 (calcd [2M+Na] = 723.2800), (HPLC analysis at 220 nm). Retention time in HPLC: 6.029

1.0 mg of asparagine containing tripeptide FNV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FNV linear peptide. LCMS: m/z 378.19993 (calcd [M+H]+ = 378.2136), m/z 400.20011 (calcd [M+Na]+ = 400.1955), m/z 416.14965 (calcd [M+K]+ = 416.1695), m/z 755.46067 (calcd [2M+H]+ = 755.4199), m/z 777.44211 (calcd [2M+Na]+ = 777.4018), (HPLC analysis at 220 nm). Retention time in HPLC: 5.664

HPLC Trace of chemoselectivity evaluation of asparagine

Exact Mass: 419.2645

1.0 mg of arginine containing peptide FRV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FRV linear peptide. LCMS: m/z 420.12929 (calcd [M+H]⁺ = 420.2718), m/z 210.56289 (calcd [M+2/2]⁺ = 210.5659), m/z 839.39032 (calcd [2M+H]⁺ = 839.5363), (HPLC analysis at 220 nm). Retention time in HPLC: 4.574

HPLC Trace of chemoselectivity evaluation of arginine

1.0 mg of tyrosine containing tripeptide FYV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FYV linear peptide. LCMS: m/z 427.22984 (calcd [M+H]+ =427.2340), m/z 449.18843 (calcd [M+Na]+ = 449.2159), m/z 465.23626 (calcd [M+K]+ = 465.1899), (HPLC analysis at 220 nm). Retention time in HPLC: 5.614

HPLC Trace of chemoselectivity evaluation of tyrosine

1.0 mg of aspartic acid containing tripeptide FDV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed

FDV linear peptide. LCMS: m/z 379.09165 (calcd [M+H]+ = 379.1976), m/z 401.02190 (calcd [M+Na]+ = 401.1795), m/z 417.03049 (calcd [M+K]+ = 417.1535), (HPLC analysis at 220 nm). Retention time in HPLC: 6.446

HPLC Trace of chemoselectivity evaluation of aspartic acid

1.0 mg of lysine containing tripeptide FKV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FKV linear peptide. LCMS: m/z 392.15067 (calcd [M+H]+ = 392.2656), m/z 392.15067 (calcd [M+2/2]+ = 196.6291), m/z 783.37022 (calcd [2M+H]+ = 783.5240), (HPLC analysis at 220 nm). Retention time in HPLC: 4.960

HPLC Trace of chemoselectivity evaluation of lysine

1.0 mg of monomethyllysine containing tripeptide FKmeV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. No modification of the starting peptide was observed.

FKmeV linear peptide **2b**. LCMS: m/z 406.29870 (calcd [M+H]+ = 406.54), m/z 811.59185 (calcd [2M+H]+ = 811.59), (HPLC analysis at 220 nm). Retention time in HPLC: 4.872

HPLC Trace of chemoselectivity evaluation of monomethyllysine

1.0 mg of methionine containing tripeptide FMV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. The conversion of the sulfoxide product was determined to be (97%).

FMV linear peptide. LCMS: m/z 395.06721 (calcd [M+H]+ = 395.2111), (HPLC analysis at 220 nm). Retention time in HPLC: 6.839

FMV sulfoxide peptide product. LCMS: m/z 411.06721 (calcd [M+H]+ = 411.2061), m/z 821.22852 (calcd [2M+H]+ = 821.4048), m/z 843.19960 (calcd [2M+Na]+ = 843.3868), (HPLC analysis at 220 nm). Retention time in HPLC: 6.001

HPLC Trace of chemoselectivity evaluation of methionine

1 mg of histidine containing tripeptide FHV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. The conversion of the fluorinated product was determined to be (14%).

FHV linear peptide. LCMS: m/z 401.06929 (calcd [M+H]+ = 401.2296), m/z 201.03720 (calcd [M+2/2]+ = 201.1148), m/z 801.27315 (calcd [2M+H]+ = 801.4519), m/z 823.24819 (calcd [2M+Na]+ = 823.4338), (HPLC analysis at 220 nm). Retention time in HPLC: 4.356

FHV flourination peptide product. LCMS: m/z 419.06721 (calcd [M+H]+ = 419.2201), m/z 210.03720 (calcd [M+2/2]+ = 210.1100), (HPLC analysis at 220 nm). Retention time in HPLC: 7.295

HPLC Trace of chemoselectivity evaluation of histidine

MS-Trace of peak 7.295

1.0 mg of tryptophan containing tripeptide FWV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. The conversion of the fluorinated product was determined to be (57%).

FWV linear peptide. LCMS: m/z 450.26093 (calcd [M+H]+ = 450.2500), LCMS: m/z 472.21833 (calcd [M+Na]+ = 472.2319), (HPLC analysis at 220 nm). Retention time in HPLC: 9.763

FWV flourinated peptide product. LCMS: m/z 484.10143 (calcd [M+H]+ = 484.2355), (HPLC analysis at 220 nm). Retention time in HPLC: 10.463

1.0 mg of cysteine containing tripeptide FCV was modified using **general procedure 1.** The reaction mixture was analyzed by HPLC using method A to determine the % conversion. The disulfide product was observed to be (54%).

FCV linear peptide. LCMS: m/z 367.12273 (calcd [M+H]+ = 367.1435), m/z 389.11641 (calcd [M+H]+ = 389.1254), m/z 405.11966 (calcd [M+H]+ = 405.0993), (HPLC analysis at 220 nm). Retention time in HPLC: 8.473

FCV disulfide peptide product. LCMS: m/z 731.46219 (calcd [M+H]+ = 731.2640), m/z 366.36320 (calcd [M+2/2]+ = 366.1327), m/z 753.44483 (calcd [M+Na]+ = 753.2459), (HPLC analysis at 220 nm). Retention time in HPLC: 10.932

HPLC Trace of chemoselectivity evaluation of cysteine

XII. Supplementary Figure 6. Evaluation of effect of adducts on enrichment of Kme₂-generated aldehyde.

To 1.0 mg of FKme₂M peptide dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of peptide aldehyde and sulfoxide product. The reaction mixture was analyzed by HPLC using method A and product peak purified by preparative HPLC.

FKmeM(sulfoxide). LCMS: *m*/*z* 454.36388 (calcd [M+H]+ = 454.2483), *m*/*z* 476.34103 (calcd [M+Na]+ = 476.2302), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 3.982

FK(CHO)M(sulfoxide). LCMS: *m/z* 439.05783 (calcd [M+H]+ = 439.2010), *m/z* 877.11566 (calcd [2M+1]+ = 877.3947), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 4.451

HPLC Trace of reaction

29

To 1 mg of aldehyde-sulfoxide peptide **FK(CHO)M(sulfoxide)** in 300 μ L of NaP buffer was added 4 equivalences of O-2-Propynylhydroxylamine hydrochloride. The reaction was stirred for 6 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the peptide **FK(CHO)M(sulfoxide)** to the oxime propargyl peptide product. The reaction mixture was analyzed by HPLC using method B and the % conversion to the oxime propargyl peptide product (>98%).

FK(CHO)M(sulfoxide) propargyl oxime. LCMS: m/z 492.27461 (calcd [M+H]+ = 492.2275), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 5.384

HPLC Trace of reaction

m/z (Da)

To 1 mg of aldehyde-sulfoxide peptide **FK(CHO)M(sulfoxide)** in 300 μ L of NaP buffer and isopropyl alcohol (IPA) was added 5 equivalences of cysteine methylester. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product was >99%.

FK(CHO)M(sulfoxide) thiazolidine. LCMS: *m/z* 556.22810 (calcd [M+H]+ = 556.2258), *m/z* 578.28747 (calcd [M+Na]+ = 578.2077), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 5.985

HPLC Trace of reaction

To 1.0 mg of $FKme_2H$ peptide dissolved in 300 µL of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of fluorinated peptide aldehyde product. The reaction mixture was analyzed by HPLC using method A and product peak purified by preparative HPLC.

FK(CHO)H. LCMS: *m*/*z* 429.20121 (calcd [M+H]+ = 429.2245), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 6.346

FK(CHO)H(flourine). LCMS: *m*/*z* 447.26419 (calcd [M+H]+ = 447.2151), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 7.686

MS-Trace of peak 7.686 (FK(CHO)H(flourine))

To 1 mg of aldehyde-flourinated peptide **FK(CHO)H(flourine)** in 300 μ L of NaP buffer was added 4 equivalences of O-2-Propynylhydroxylamine hydrochloride. The reaction was stirred for 6 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the peptide **FK(CHO)H(flourine)** to the oxime propargyl peptide product. The reaction mixture was analyzed by HPLC using method B and the % conversion to the oxime propargyl peptide product (>98%).

FK(CHO)H(flourine) propargyl oxime. LCMS: m/z 500.27292 (calcd [M+H]+ = 500.2416), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 6.549

MS-Trace of peak 6.549 (FK(CHO)H(flourine) propargyl oxime)

To 1 mg of aldehyde-flourinated peptide **FK(CHO)H(flourine)** in 300 μ L of NaP buffer and isopropyl alcohol (IPA) was added 5 equivalences of cysteine methylester. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product was >99%.

FK(CHO)H(flourine) thiazolidine. LCMS: *m/z* 564.25421 (calcd [M+H]+ = 564.2399), *m/z* 1149.71489 (calcd [2M+H]+ = 1149.4545), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 9.646

MS-Trace of peak 9.646 (FK(CHO)H(flourine) thiazolidine)

To 1.0 mg of FKme₂W peptide dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of fluorinated peptide aldehyde product. The reaction mixture was analyzed by HPLC using method A and product peak purified by preparative HPLC.

FK(CHO)W. LCMS: *m*/*z* 478.35721 (calcd [M+H]+ = 478.2449), *m*/*z* 955.67990 (calcd [2M+H]+ = 955.4825), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 4.300

FK(CHO)W(fluorine). LCMS: *m/z* 512.22616 (calcd [M+H]+ = 512.2304), *m/z* 256.53616 (calcd [M+2/2]+ = 256.6115), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 5.773

MS-Trace of peak 4.300 (FK(CHO)W)

To 1 mg of aldehyde-flourinated peptide **FK(CHO)W(flourine)** in 300 μ L of NaP buffer was added 4 equivalences of O-2-Propynylhydroxylamine hydrochloride. The reaction was stirred for 6 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the peptide **FK(CHO)W(flourine)** to the oxime propargyl peptide product. The reaction mixture was analyzed by HPLC using method B and the % conversion to the oxime propargyl peptide product (>98%).

FK(CHO)W(flourine) propargyl oxime. LCMS: m/z 565.42033 (calcd [M+H]+ = 565.2569), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 9.216

To 1 mg of aldehyde-flourinated peptide **FK(CHO)W(flourine)** in 300 μ L of NaP buffer and isopropyl alcohol (IPA) was added 5 equivalences of cysteine methylester. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product was >99%.

FK(CHO)W(flourine) thiazolidine. LCMS: m/z 629.30498 (calcd [M+H]+ = 629.2552), m/z 1257.04556 (calcd [2M+H]+ = 1257.5031), m/z 1149.71489 (calcd [2M+H]+ = 1149.4545), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 12.083

To 1.0 mg of FKme₂C peptide dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of peptide aldehyde disulfide product. The reaction mixture was analyzed by HPLC using method A and product peak purified by preparative HPLC.

FK(Kme)(Kme)C(disulfide). LCMS: *m/z* 817.39377 (calcd [M+H]+ = 817.4211), *m/z* 839.96313 (calcd [M+Na]+ = 839.4031), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 5.491

FK(CHO)(Kme)C(disulfide). LCMS: *m/z* 802.15983 (calcd [M+H]+ = 802.3739), *m/z* 1063.22263 (calcd [2M+H]+ = 1603.3404), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 6.038

FK(CHO)(CHO)C(disulfide). LCMS: *m/z* 787.34160 (calcd [M+H]+ = 787.3266), *m/z* 809.30939 (calcd [M+Na]+ = 809.3085), *m/z* 394.10974 (calcd [M+2/2]+ = 394.1596), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 7.604

To 1 mg of aldehyde-disulfide peptide **FK(CHO)(Kme)C(disulfide)** in 300 μ L of NaP buffer was added 4 equivalences of O-2-Propynylhydroxylamine hydrochloride. The reaction was stirred for 6 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the peptide **FK(CHO)(Kme)C(disulfide)** to the oxime propargyl peptide product. The reaction mixture was analyzed by HPLC using method B and the % conversion to the oxime propargyl peptide product (>98%).

FK(CHO)(Kme)C(disulfide) propargyl oxime. LCMS: *m/z* 855.37139 (calcd [M+H]+ = 855.4004), (HPLC analysis at 220 nm, method A). Retention time in HPLC: 10.525

MS-Trace of peak 10.525

To 1 mg of aldehyde-disulfide peptide **FK(CHO)(Kme)C(disulfide)** in 300 μ L of NaP buffer and isopropyl alcohol (IPA) was added 5 equivalences of cysteine methylester. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product was >99%.

FK(CHO)(Kme)C(disulfide) thiazolidine. LCMS: m/z 919.40159 (calcd [M+H]+ = 919.3987), m/z 941.45094 (calcd [M+Na]+ = 941.3804), m/z 460.15611 (calcd [M+2/2]+ = 460.2030), (HPLC analysis at 220 nm, **method A**). Retention time in HPLC: 13.308

MS-Trace of peak 13.308

XIII. Supplementary Figure 7: Pan-specificity evaluation of dimethyllysine containing histone peptide fragments to generate histone peptide aldehydes.

Kme₂4K9 (ARTKme₂QTARKS) 1c:

To 1.0 mg of histone peptide fragment Kme₂4K9 (ARTKme₂QTARKS) **1c** dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of histone peptide aldehyde product **2c**. The reaction mixture was analyzed by HPLC using method B and % conversion to peptide aldehyde **2c** was >95%.

Kme₂4K9 (ARTKme₂QTARKS) 1c. LCMS: m/z 1215.72037 (calcd [M+H]+ = 1215.7280), m/z 608.36361 (calcd [M+2/2]+ = 608.3641), m/z 405.91159 (calcd [M+3/3]+ = 405.9093), m/z 304.68563 (calcd [M+4/4]+ = 304.6826).

Kme₂(CHO)4K9 (ARTKme₂(CHO)QTARKS) 2c. LCMS: m/z 1186.65866 (calcd [M+H]+ = 1186.6651), m/z 593.83341 (calcd [M+2/2]+ = 593.8326), m/z 396.21955 (calcd [M+3/3]+ = 396.2217), (HPLC analysis at 220 nm, **method B**). Retention time in HPLC: 6.421

MS-Trace of histone aldehyde peptide product 2c

Modification of histone peptide fragment 1d:

To 1.0 mg of histone peptide fragment Kme₂4Kme₂9 (ARTKme₂QTARKme₂S) **1d** dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of histone peptide aldehyde product **2d**. The reaction mixture was analyzed by HPLC using method B and % conversion to peptide aldehyde **2d** was >98%.

Kme₂4Kme₂9 (ARTKme₂QTARKme₂S) 1d. LCMS: m/z 1243.75401 (calcd [M+H]+ = 1243.7593), m/z 622.37994 (calcd [M+2/2]+ = 622.3796), m/z 415.25601 (calcd [M+3/3]+ = 415.2531), m/z 311.69388 (calcd [M+4/4]+ = 311.6898).

Kme₂(CHO)4Kme₂(CHO)9 (ARTKme₂(CHO)QTARKme₂(CHO)S) 2d. LCMS: *m*/*z* 1185.62600 (calcd [M+H]+ = 1185.6335), *m*/*z* 593.31680 (calcd [M+2/2]+ = 593.3167), (HPLC analysis at 220 nm, **method B**). Retention time in HPLC: 8.768

MS-Trace of 1d

MS-Trace of product 2d

Modification of histone peptide fragment 1e:

To 1.0 mg of Kme₂9K14 (ARTKme₂STGGKA) **1e** dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of histone peptide aldehyde product Kme₂(CHO)9K14 (ARTKme₂(CHO)STGGKA) **2e**. The reaction mixture was analyzed by HPLC using method B and % conversion to peptide aldehyde **2e** was >98%.

Linear peptide of histone peptide fragment 1e. LCMS: m/z 1045.60359 (calcd [M+H]+ = 1045.6113), m/z 523.30550 (calcd [M+2/2]+ = 523.30565), m/z 349.20630 (calcd [M+3/3]+ = 349.2037).

Histone aldehyde peptide product 2e. LCMS: m/z 1016.54144 (calcd [M+H]+ = 1016.5483), m/z 508.77432 (calcd [M+2/2]+ = 508.7741), (HPLC analysis at 220 nm, **method B**). Retention time in HPLC: 7.239

MS-Trace of 1e

Modification of peptide fragment 1f:

Linear peptide 1f: To 1.0 mg of a peptide fragment $AKme_2GSKAF(PrG)A$ (where PrG = propargyl glycine) dissolved in 300 µL of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. The reaction mixture was analyzed by HPLC using method A and % conversion to aldehyde product **2f** (>98%).

Peptide aldehyde product 2f. LCMS: *m/z* 873.43885 (calcd [M+H]+ = 873.4392), *m/z* 895.59729 (calcd [M+Na]+ = 895.4284), (HPLC analysis at 220 nm). Retention time in HPLC: 9.170

HPLC Trace of peptide aldehyde product 2f

Modification of histone negative control peptide fragment 1g without Kme₂:

To 1.0 mg of histone peptide fragment, ARTKQTARKS **1g** dissolved in 300 μ L of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. The reaction mixture was analyzed by HPLC using method B. No modification of peptide **1g** was observed.

K4K9 (ARTKQTARKS) 1g. LCMS: *m/z* 1017.57249 (calcd [M+H]+ = 1017.5800), *m/z* 509.28979 (calcd [M+2/2]+ = 509.2900), *m/z* 339.86256 (calcd [M+3/3]+ = 339.8600), (HPLC analysis at 220 nm, **method B**). Retention time in HPLC: 6.253

XIV. Supplementary Figure 8: Derivatization of di-aldehyde

ARTKme₂(CHO)QTARKme₂(CHO)S **2d** with benzyl hydroxylamine to generate oxime adducts.

To 1 mg of aldehyde peptide **2d** in 300 μ L of NaP buffer was added 4 equivalences of obenzylhydroxylamine. The reaction was stirred for 6 h. The samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the peptide **2d** to the oxime peptide product **3a**. The reaction mixture was analyzed by HPLC using method B and the % conversion to the double oxime peptide product **3a** (>98%).

Kme₂(CHO)4Kme₂(CHO)9 (ARTKme₂(CHO)QTARKme₂(CHO)S) 2d. LCMS: *m*/*z* 1185.62600 (calcd [M+H]+ = 1185.6335), *m*/*z* 593.31680 (calcd [M+2/2]+ = 593.3167), (HPLC analysis at 220 nm). Retention time in HPLC: 8.768

Doubly modified oxime histone peptide product 3a. LCMS: m/z 1395.73547 (calcd [M+H]+ = 1395.7592), m/z 698.37195 (calcd [M+2/2]+ = 698.3796), (HPLC analysis at 220 nm). Retention time in HPLC: 11.339

Benzylhydroxylamine. (HPLC analysis at 220 nm). Retention time in HPLC: 4.754

To 1 mg of aldehyde peptide **2d** in 300 μ L of NaP buffer was added 5 equivalences of propargylamine. The reaction was stirred for 1 h, followed by the addition of 10 equivalence of sodium cyanoborohydride. Reaction was stirred for 8 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of dialdehyde peptide ARTKme₂(CHO)QTARKme₂(CHO)S **2d**. The reaction mixture was analyzed by HPLC using

method B and % conversion to single alkynylated peptide product **3b**' was 62% and double alkynylated **3b**'' was 34%.

Kme₂(CHO)4Kme₂(CHO)9 (ARTKme₂(CHO)QTARKme₂(CHO)S) 2d. LCMS: *m*/*z* 1185.62600 (calcd [M+H]+ = 1185.6335), *m*/*z* 593.31680 (calcd [M+2/2]+ = 593.3167), (HPLC analysis at 220 nm). Retention time in HPLC: 8.768

Single-modified propargylamine histone peptide 3b'. LCMS: *m/z* 1224.67163 (calcd [M+H]+ = 1224.6807), (HPLC analysis at 220 nm). Retention time in HPLC: 8.060

Double-modified propargylamine histone peptide fragment 3b". LCMS: m/z 1263.71790 (calcd [M+H]+ = 1263.7280), m/z 632.36218 (calcd [M+2/2]+ = 632.3640), m/z 421.91077 (calcd [M+3/3]+ = 421.9093), (HPLC analysis at 220 nm). Retention time in HPLC: 7.000

MS-Trace of peak 8.060

XVI. Supplementary Figure 10. Derivatization of Kme₂4K9-aldehyde (ARTKme₂(CHO)QTARKS) **2c** peptide aldehyde with hydrazone.

To 1 mg of aldehyde peptide **2c** in 300 μ L of NaP buffer and acetonitrile was added 5 equivalences of N-3-butyn-1-yl-4-hydrazinyl-, hydrochloride. The reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of aldehyde peptide Kme₂4K9-aldehyde (ARTKme₂(CHO)QTARKS) **2c**. The reaction mixture was analyzed by HPLC using method B and % conversion to alkynylated peptide product **3c** was >97%.

Kme₂(CHO)4K9 (ARTKme₂(CHO)QTARKS) 2c. LCMS: m/z 1186.65866 (calcd [M+H]+ = 1186.6651), m/z 593.83341 (calcd [M+2/2]+ = 593.8225), m/z 396.21955 (calcd [M+3/3]+ = 396.2217), (HPLC analysis at 220 nm). Retention time in HPLC: 6.421

Alkyne-modified hydrazone peptide 3c. LCMS: m/z 686.37823 (calcd [M+2/2]+ = 686.3802), m/z 457.91166 (calcd [M+3/3]+ = 457.9201), (HPLC analysis at 220 nm). Retention time in HPLC: 12.319

N-3-butyn-1-yl-4-hydrazinyl-hydrochloride. (HPLC analysis at 220 nm). Retention time in HPLC: 7.121.

HPLC Trace of reaction of hydrzone modification of 2c with alkyne hydrazine

XVII. Supplementary Figure 11: Derivatization of Kme₂4K9-aldehyde (ARTKme₂(CHO)QTARKS) **2c** with dansyl sulfonylhydrazine.

To 1 mg of Kme₂4K9-aldehyde (ARTKme₂(CHO)QTARKS) aldehyde **2c** in 150 μ L of NaP buffer and acetonitrile was added 5 equivalences of dansyl sulfonylhydrazine. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the histone peptide aldehyde **2c**. The reaction mixture was analyzed by HPLC using method B and % conversion to dansyl hydrazone peptide product **3d** was >98%.

Kme₂(CHO)4K9 (ARTKme₂(CHO)QTARKS) 2c. LCMS: m/z 1186.65866 (calcd [M+H]+ = 1186.6651), m/z 593.83341 (calcd [M+2/2]+ = 593.8325), m/z 396.21955 (calcd [M+3/3]+ = 396.2217), (HPLC analysis at 220 nm). Retention time in HPLC: 6.421

Dansyl sulfonylhydrazine-modified histone peptide 3d. LCMS: m/z 717.36963 (calcd [M+2/2]+ =717.3715), m/z 478.58221 (calcd [M+3/3]+ =478.5810), (HPLC analysis at 220 nm). Retention time in HPLC: 12.206

MS-Trace of peak 12.206

XVIII. Supplementary Figure 12: Derivatization of (ARTKme₂(CHO)STGGKA) **2e** with biotinhydrazide.

To 1 mg of aldehyde peptide (ARTKme₂(CHO)STGGKA) **2e** in 100 μ L of NaP buffer and 200 μ L acetic acid was added 10 equivalences of biotinhydrazine. The reaction was stirred at room temperature for 6 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of the histone peptide aldehyde ARTKme₂(CHO)STGGKA) **2e**. The reaction mixture was analyzed by HPLC using method B and % conversion to biotin-hydrazone peptide product **3e** was >99%.

Histone aldehyde peptide product 2e. LCMS: m/z 1016.54144 (calcd [M+H]+ = 1016.5483), m/z 508.77432 (calcd [M+2/2]+ = 508.7741), (HPLC analysis at 220 nm). Retention time in HPLC: 7.239

Biotin-hydrazide modified histone peptide product 3e. LCMS: m/z 1256.87647 (calcd [M+H]+ = 1256.6528), m/z 1278.98010 (calcd [M+Na]+ = 1278.6348), m/z 628.46888 (calcd [M+2/2]+ = 628.8227), (HPLC analysis at 220 nm). Retention time in HPLC: 9.151

XIX. Supplementary Figure 13: Modification of peptide aldehydes with cysteine-derivatives to thiazolidine products.

Labeling of peptide aldehyde 2f by FITC-cysteine: To 1 mg of peptide aldehyde $AKme_2(CHO)GSKAF(PrG)A$ (where PrG = propargyl glycine) 2f in 300 µL of NaP buffer and isopropyl alcohol (IPA) was added 3 equivalences of FITC-Cysteine. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine 3f. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product 3f was >97%.

Peptide aldehyde product 2f. LCMS: *m/z* 873.43885 (calcd [M+H]+ = 873.4284), *m/z* 895.59729 (calcd [M+Na]+ = 895.4284), (HPLC analysis at 220 nm). Retention time in HPLC: 9.170

FITC-Thiazolidine peptide product 3f. LCMS: *m/z* 1407.54264 (calcd [M+H]+ = 1407.5497), *m/z* 704.31022 (calcd [M+2/2]+ = 704.7748), (HPLC analysis at 220 nm). Retention time in HPLC: 12.451

HPLC Trace of thiazolidine product 3f

To 1 mg of peptide aldehyde Fkme₂(CHO)V **2a** in 300 μ L of NaP buffer and isopropyl alcohol (IPA) was added 5 equivalences of cysteine methylester. Reaction was stirred at room temperature for 5 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the formation of thiazolidine. The reaction mixture was analyzed by HPLC using method A and % conversion to thiazolidine product was >99%.

FKme₂(CHO)V 2a. LCMS: *m/z* 391.23049 (calcd [M+H]+ = 391.2340), (HPLC analysis at 220 nm). Retention time in HPLC: 6.681

Thiazolidine peptide product of aldehyde 3g. LCMS: m/z 508.25449 (calcd [M+H]+ = 508.2588), m/z 254.63107 (calcd [M+2/2]+ = 254.6294), m/z 530.23617 (calcd [M+Na]+ = 530.2408), (HPLC analysis at 220 nm). Retention time in HPLC: 7.661

XX. Supplementary Figure 14: Oxidative tertiary amine transformation of dimethyllysine containing histone peptides fragments (**1c-1e**) spiked into a complex mixture of epithelial carcinoma A549 whole cell lysate.

To 100 μ g of A549 whole cell lysate in 200 μ L of NaP buffer pH 7.0 was added 0.1 mg of histone peptide (ARTKme₂QTARKS) **1c**, 0.1 mg of histone peptide Kme₂4Kme₂9 (ARTKme₂QTARKme₂S) **1d**, and 0.1 mg of histone peptide Kme₂9K14 (ARTKme₂STGGKA) **1e**. To this mixture of lysate and histone peptides was added pyridine (30 eq with respect to peptides) and selectfluor (10 eq. with respect to peptides). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of dimethyllysine containing histone peptides into aldehyde products. The reaction mixture was analyzed by HPLC using method B.

MS-Trace of the Cell lysate after the reaction

XXI. Supplementary Fig. 15: Oxidative tertiary amine transformation of dimethyllysine containing histone peptides fragments (**1c, 1d and 1g**) spiked into a complex mixture of H1792-lung cancer cell lysate.

To 100 μ g of H1792 whole cell lysate in 200 μ L of NaP buffer pH 7.0 was added 0.1 mg of histone peptide (ARTKme₂QTARKS) **1c**, 0.1 mg of histone peptide Kme₂4Kme₂9

(ARTKme₂QTARKme₂S) **1d**, and 0.1 mg of histone peptide Kme₂9K14 (ARTKme₂STGGKA) **1g**. To this mixture of lysate and histone peptides was added pyridine (30 eq with respect to peptides) and selectfluor (10 eq. with respect to peptides). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the modification of dimethyllysine containing histone peptides into aldehyde products. The reaction mixture was analyzed by HPLC using method B.

MS-Trace of the Cell lysate after the reaction

XXII. Supplementary Figure 16. Single-molecule sequencing for identification of Kme₂ sites by TACO

Aldehyde generation: To 1.0 mg of fluorosequencing peptide fragment $AKme_2GSKAF(PrG)A$ (where PrG = propargyl glycine) dissolved in 300 µL of 10 mM sodium phosphate buffer (NaP, pH 7.0), was added pyridine (5 eq) and selectfluor (2 eq). The reaction mixture was stirred for 1 h. Samples were taken from the reaction mixture, injected into LC-MS to monitor the generation of peptide aldehyde product $AKme_2(CHO)GSKAF(PrG)A$ **2f** (>98%).

AKme₂(CHO)GSKAF(PrG)A **2f.** LCMS: *m/z* 873.43885 (calcd [M+H]+ = 508.4465), *m/z* 895.59729 (calcd [M+Na]+ = 895.4284), (HPLC analysis at 220 nm). Retention time in HPLC: 9.17

Fluorophore labeling of Kme₂ peptide: Atto647N-LA (Lipoic acid) was custom synthesized by Atto-tec (Germany), by reacting 1 mg of Atto647N-Amine (Cat# AD 647N-91) with 2 eq. lipoic acid (Cas # 1077-28-7; Sigma (Cat # T5625-1G)) and 2 eq. of triethylamine in dimethylformamide for 2 h at RT. Standard HPLC purification was performed to isolate the Atto647N-LA compound and lyophilized. Atto647N-LA was coupled to modified Kme₂ peptide (AKme₂(CHO)GSKAF(PrG)A) **2f** by reacting with 1.5 eq of Atto647N-LA, 2 eq. TCEP (tris(2-carboxyethyl)phosphine) in solution of 5% TFA in methanol/water (1:1 vv) solution for 16 h. The labeled peptide was purified using standard HPLC method and lyophilized.

Atto647N-peptide product. LCMS: *m*/*z* 876.0 (calcd [M+2/2]+ = 867.4679), *m*/*z* 578.5 (calcd [M+3/3]+ =578.6452), (HPLC analysis at 220 nm). Retention time in HPLC: 6.0

Surface immobilization of peptide. For single molecule peptide sequencing, a 40 mm German Desag 263 borosilicate glass coverslip (Bioptechs) surface was first cleaned by UV/ozone (Jelight Company) and then functionalized by chemical vapor deposition of 3-azidopropyltriethoxysilane (Gelest, Cat # SIA0770.0) under vacuum at 70 °C for 1 h. Atto647N labeled Kme₂ peptides were covalently coupled to the coverslip surface *via* copper catalyzed click chemistry between the propargyl amino acid on peptide and the azido silane. A fresh solution of of 2 mM copper sulfate, 1 mM Tris(3-hydroxypropyltriazolylmethyl)amine (Sigma, Cat # 762342), 100 mM HEPES (pH 8.5), 5mM sodium ascorbate with Atto647N labeled Kme₂ peptides was incubated for 10 minutes at room temperature on the azido silane functionalized coverslip, washed with water to remove unbound peptides, and dried under a nitrogen gas stream.

Fluorosequencing.² Single molecule sequencing was performed as described with minor modifications in the solvents use, incubation times and use of a different camera (Orca Fusion BT, Hamamatsu). The wash solvent ethyl acetate was substituted with acetonitrile and the phenyl isothiocyanate solution is now 20% vv in pyridine. Incubation time for cleavage step (use of trifluoroacetic acid) is reduced to 5mins. Fluorosequencing datasets were analyzed using the SigProc available of the Plaster software tool. as part package at https://github.com/erisyon/plaster v1. Further details of the experimental methods and analysis are available on request.

XXIII. Supplementary Figure 17. Modification of Kme₂ proteins using TACO

General procedure for dimethylation of proteins: To 2 mg of protein in 1 mL of NaP buffer (pH 7), was added 500 μ L of 10 % formaldehyde solution in water. The reaction was vortexed for 2 min, followed by the addition of 500 μ L of 600 mM NaBH₃CN solution in water, and vortexed for additional 2 min. The reaction was incubated at room temperature for 6 min, filtered through a molecular weight cut off (3 kDa) to remove small molecules and the resulting purified protein was analyzed by MS.

Mass spectrum of unmodified aprotinin protein Molecular weight: 6511 (4 lysines, 1 N-terminus) Sequence: RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

67

Mass spectrum of dimethylated lysine aprotinin protein Molecular weight: 6511 (4 lysines, 1 N-terminus) Sequence:

(me2)RPDFCLEPPYTGPCKme₂ARIIRYFYNAKme₂AGLCQTFVYGGCRAKme₂RNNFKme₂SAE DCMRTCGGA

TACO modification of Kme₂ containing proteins: To 2 mg Kme₂ proteins in 1 mL of NaP buffer pH 7, was added 10 mg of selectfluor and 50 μ L of pyridine. The reaction was stirred at room temperature for 30 min and filtered through a molecular weight cutoff to remove chemical

reagents at the end of reaction. Protein samples were digested using the thermofischer scientific lysine/Lys C protein digestion kit. Digested samples were analyzed using LC-MS/MS.

APROTININ

Fragment 1 mass spectrum data for aprotinin

MYOGLOBIN

Fragment mass spectrum data for myoglobin

TRANSFERRIN Fragment 1 mass spectrum data for transferrin

Modification

Fragment 2 mass spectrum data for transferrin

XXIV. Supplementary Figure 18. Modification of Kme₂ proteins with FITC-cysteine fluorophore.

Synthetic scheme for FITC-Cysteine probe synthesis.

Synthesis of tert-butyl (R)-(1-((2-aminoethyl)amino)-1-oxo-3-(tritylthio)propan-2yl)carbamate (A). To 1 g of N-Boc-S-trityl-L-cysteine in 10 mL of DMF was added 420 mg (2.6 mmol) of carbonyl diimidazole and reaction stirred at room temperature for 30 min. After 30 min, ethylenediamine (1.4 mL, 21.6 mmol) was added in a single portion to the reaction mixture and stirred for an additional 2 h at room temperature. Upon completion, DMF was removed in vacuo, and residue was dissolved in 50 mL of dichloromethane and washed with water (3 x 50 mL), and saturated brine (50 mL). The resulting extracted solution was dried with anhydrous magnesium sulfate, and solvent was reduced to 1 mL in vacuo and solid was collected by filtration and dried in vacuo.

¹**H NMR** (600 MHz, CD₃OD) δ 7.48 – 7.31 (m, 15H), 4.01 (t, 1H), 3.43 (d, *J* = 2.7 Hz, 2H), 3.40

(d, J = 22.7 Hz, 2H), 2.78 (q, J = 5.3, 4.6 Hz, 2H), 2.62 – 2.51 (m, 2H), 1.51 (s, 9H). ¹³**C NMR** (151 MHz, CD₃OD) δ 172.15, 156.02, 144.55, 129.35, 127.72, 126.63, 79.62, 66.63, 54.01, 40.78, 40.33, 33.86, 27.41.

MS-Trace of tert-butyl (R)-(1-((2-aminoethyl)amino)-1-oxo-3-(tritylthio)propan-2yl)carbamate (A) (compound A)

Synthesis of tert-butyl (1-((2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)thioureido)ethyl)amino)-1-oxo-3-(tritylthio)propan-2-yl)carbamate (B). To 100 mg of tert-butyl (R)-(1-((2-aminoethyl)amino)-1-oxo-3-(tritylthio)propan-2-yl)carbamate in 10 mL of dichloromethane was added 77 mg (1.98 mmol) of fluorescein isothiocyanate dissolved in 1 mL of DMSO. Reaction was stirred at room temperature for 30 min. After 30 min, dichloromethane was removed in vacuo and acetonitrile was added to the residue and purified by preparative HPLC.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.05 (d, J = 32.7 Hz, 2H), 8.18 (d, J = 2.0 Hz, 1H), 8.03 (s, 1H), 7.96 (d, J = 5.4 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.36 – 7.21 (m, 15H), 7.15 (d, J = 8.3 Hz, 1H), 6.81 (s, 1H), 6.68 (d, J = 2.2 Hz, 2H), 6.59 (d, J = 8.6 Hz, 2H), 6.56 (dd, J = 8.6, 2.2 Hz, 2H), 3.95 (d, J = 7.6 Hz, 1H), 3.56 (d, 2H), 2.45 – 2.31 (m, 2H), 1.36 (s, 9H).

MS-Trace of tert-butyl (1-((2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'xanthen]-5-yl)thioureido)ethyl)amino)-1-oxo-3-(tritylthio)propan-2-yl)carbamate (compound B)

Synthesis of 2-amino-N-(2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)thioureido)ethyl)-3-mercaptopropanamide (compound C) (FITC-Cysteine). To 100 mg of tert-butyl (1-((2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)thioureido)ethyl)amino)-1-oxo-3-(tritylthio)propan-2-yl)carbamate in 5 mL of dichloromethane was added 5 mL of trifluoroacetic acid, 300μ L of triethyl silane, and 100μ L of water. Reaction was stirred at room temperature for 2 h. After 2 h, the reaction was dried in vacuo and residue

washed with hexane (3x). Solid was dried in vacuo to obtain the title compound C, **FITC-Cysteine** as yellow oil.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.13 (s, 2H), 8.58 (t, J = 5.7 Hz, 1H), 8.21 (d, 1H), 8.19 (t, J = 2.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.33 – 7.20 (m, 1H), 7.24 – 7.07 (m, 2H), 6.68 (d, J = 2.2 Hz, 2H), 6.63 – 6.57 (m, 2H), 6.57 – 6.53 (m, 1H), 3.95 (t, J = 12.7 Hz, 1H), 3.67 (t, J = 6.4 Hz, 2H), 3.53 – 3.30 (m, 2H), 3.03 – 2.88 (m, 2H), 2.56 (t, 1H).

¹³**C** NMR (151 MHz, DMSO-d₆) δ 181.14, 168.64, 167.64, 167.43, 161.71, 153.33, 142.11, 130.11, 127.68, 125.56, 120.58, 117.43, 114.31, 111.15, 102.69, 54.68, 51.55, 43.05, 38.49, 25.41.

¹H of 2-amino-N-(2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5yl)thioureido)ethyl)-3-mercaptopropanamide (compound C, FITC-Cysteine)

¹³C of 2-amino-N-(2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)thioureido)ethyl)-3-mercaptopropanamide (compound C, FITC-Cysteine)

Mass spectrum of 2-amino-N-(2-(3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)thioureido)ethyl)-3-mercaptopropanamide (compound C, FITC-Cysteine)

TACO modification of Kme₂ proteins and conjugation with FITC-cysteine: To 2 mg Kme₂ proteins transferrin (T), BSA (B), creatine kinase (C) and myoglobin (M) in 1 mL of NaP buffer pH 7, was added 10 mg of selectfluor and 50 μ L of pyridine. The reaction was stirred at room temperature for 30 min and filtered through a molecular weight cutoff to remove small molecules to obtain pure protein. Reaction was filtered with a 3 kDa molecular weight cutoff, and proteins resuspended in 300 μ L of PBS buffer. To the sample was added 200 μ L of 100 μ M solution of

FITC-cysteine and incubated for 2 h. Excess fluorophores were washed off through the molecular weight cuttoff. Labelled proteins were then analyzed through in gel fluorescence imaging and coomassie blue staining.

TACO modification of Kme₂ proteins and conjugation with Hydroxylamine-647 dye: To 2 mg Kme₂ proteins transferrin (T), BSA (B), creatine kinase (C) and myoglobin (M) in 1 mL of NaP buffer pH 7, was added 10 mg of selectfluor and 50 µL of pyridine. The reaction was stirred at room temperature for 30 min and filtered through a molecular weight cutoff to remove small molecules to obtain pure protein. Reaction was filtered with a 3 kDa molecular weight cutoff, and proteins resuspended in 300 µL of PBS buffer. To the sample was added 200µL of 100 µM solution of hydroxylamine-647 and incubated for 2 h. Excess fluorophores were washed off through the molecular weight cutoff. Labelled proteins were then analyzed through in gel fluorescence imaging and coomassie blue staining.

TACO modification of Kme₂ proteins and conjugation with Amine-680 dye: To 2 mg Kme₂ proteins transferrin (T), BSA (B), creatine kinase (C) and myoglobin (M) in 1 mL of NaP buffer pH 7, was added 10 mg of selectfluor and 50 μ L of pyridine. The reaction was stirred at room temperature for 30 min and filtered through a molecular weight cutoff to remove small molecules to obtain pure protein. Reaction was filtered with a 3 kDa molecular weight cutoff, and proteins resuspended in 300 μ L of PBS buffer. To the sample was added 200 μ L of 100 μ M solution of Amine-680 dye and incubated for 2 h. Excess fluorophores were washed off through the

molecular weight cuttoff. Labelled proteins were then analyzed through in gel fluorescence imaging and coomassie blue staining.

XXV. Supplementary Figure 19. TACO modification of Kme₂ proteins in cell lysates

Dose Dependent labeling of cell lysate with Kme₂ (4%): To 300 µg Lncap cell lysate in 200 µL of NaP buffer (pH 7), was added 50 µL of 4% formaldehyde solution in water. The reaction was vortexed for 2 min, followed by the addition of 50 µL of 600 mM NaBH₃CN solution in water, and vortexed for additional 2 min. The reaction was incubated at room temperature for 16 min, and subjected to acetone precipitated to obtain Kme₂ containing proteins. Lysates were resuspended in 500 µL NaP buffer pH 7.

Dose Dependent labeling of cell lysate with Kme₂ (10%): To 300 µg Lncap cell lysate in 200 µL of NaP buffer (pH 7), was added 50 µL of 10% formaldehyde solution in water. The reaction was vortexed for 2 min, followed by the addition of 50 µL of 600 mM NaBH₃CN solution in water, and vortexed for additional 2 min. The reaction was incubated at room temperature for 16 min, and subjected to acetone precipitated to obtain Kme₂ containing proteins. Lysates were resuspended in 500 µL NaP buffer pH 7.

Dose Dependent labeling of cell lysate with Kme₂ (37%): To 300 µg Lncap cell lysate in 200 µL of NaP buffer (pH 7), was added 50 µL of 37% formaldehyde solution in water. The reaction was vortexed for 2 min, followed by the addition of 50 µL of 600 mM NaBH₃CN solution in water, and vortexed for additional 2 min. The reaction was incubated at room temperature for 16 min, and subjected to acetone precipitated to obtain Kme₂ containing proteins. Lysates were resuspended in 500 µL NaP buffer pH 7.

TACO modification of Kme₂ containing lysates and conjugation of FITC-cysteine: To 300 μ g of Kme₂-lysate in 500 μ L of NaP buffer was added 2 mg of selectfluor and 10 μ L of pyridine. The reaction was stirred at room temperature for 30 min. Samples were subjected to acetone precipitation to remove small molecules and obtain pure proteins, dissolved in 200 μ L of PBS buffer pH 7.5 and incubated with 200 μ L of 15 mM of iodoacetamide in the dark for 30 min. Proteins in cell lysate were acetone precipitated, resuspended in 100 μ L PBS buffer. 200 μ L of 100 μ M solution of FITC-cysteine (compound C) was added and incubated for 2 h. Excess fluorophores were removed by another round of acetone precipitation, followed by analysis of proteins through in gel fluorescence imaging and Coomassie blue staining. Quantification of gel lanes using Invitrogen ibright FL-1500 image processing software clearly showed a dose-

dependent response (37% lane = 1.0, 10% lane = 0.582, 4% lane = 0.420).

TACO modification of Kme₂ containing lysates and conjugation of Hydroxylamine-647 dye: To 300 µg of Kme₂-lysate in 500 µL of NaP buffer was added 2 mg of selectfluor and 10 µL of pyridine. The reaction was stirred at room temperature for 30 min. Samples were subjected to acetone precipitation to remove small molecules and obtain pure proteins, dissolved in 200 µL of PBS buffer pH 7.5 and incubated with 200 µL of 15 mM of iodoacetamide in the dark for 30 min. Proteins in cell lysate were acetone precipitated, resuspended in 100 µL PBS buffer. 200 µL of 100 µM solution of hydroxylamine-647 dye was added and incubated for 2 h. Excess fluorophores were removed by another round of acetone precipitation, followed by analysis of proteins through in gel fluorescence imaging and Coomassie blue staining. Quantification of gel lanes using Invitrogen ibright FL-1500 image processing software clearly showed a dosedependent response (37% lane = 1.0, 10% lane = 0.513, 4% lane = 0.459).

TACO modification of Kme₂ **containing lysates and conjugation of Amine-680:** To 300 µg of Kme₂-lysate in 500 µL of NaP buffer was added 2 mg of selectfluor and 10 µL of pyridine. The reaction was stirred at room temperature for 30 min. Samples were subjected to acetone precipitation to remove small molecules and obtain pure proteins, dissolved in 200 µL of PBS buffer pH 7.5 and incubated with 200 µL of 15 mM of iodoacetamide in the dark for 30 min. Proteins in cell lysate were acetone precipitated, resuspended in 100 µL PBS buffer. 200 µL of 100 µM solution of amine-680 dye was added and incubated for 2 h. Excess fluorophores were removed by another round of acetone precipitation, followed by analysis of proteins through in gel fluorescence imaging and Coomassie blue staining. Quantification of gel lanes using Invitrogen ibright FL-1500 image processing software clearly showed a dose-dependent response (37% lane = 1.0, 10% lane = 0.672, 4% lane = 0.373).

XXVI. Supplementary Figure 20. Solid support mediated enrichment of dimethyllysine containing peptide aldehyde OAcFKme₂(CHO)V **2b** by using hydroxylamine solid-support.

For optimizing the enrichment of aldehyde peptides, we carried out enrichment with a model peptide. To 5 mg of peptide aldehyde $OAcFKme_2(CHO)V$ **2b** in 200 µL of NaP buffer pH 7.0 was added hydroxylamine resin. 5% acetic acid in water (500 µL) was added to the resin and reaction was incubated for 12 h. The resin was filtered and washed with methanol (3x), and DMF (3x). Resin was dried and cleaved using 95:5 (TFA:Water) for 2 h at room temperature to release the enriched peptides **2b** and oxime-modified **2b'**. Eluate was concentrated and analyzed using LC-MS.

MS-Trace after the release of peptide aldehyde 2b from resin

XXVII. Supplementary Figure 21. Solid support mediated enrichment of dimethyllysine containing proteins from nucleosomes obtained from prostate cancer cell lysate.

Cell culture and drugs. Cells were maintained at 37 °C and 5% CO₂. LNCaP cells were cultured in RPMI supplemented with 10% (V/V) fetal bovine serum (FBS) and 1% (V/V) penicillin/streptomycin (100 μ g/mL).

Cell lysis and western blotting. Whole cell lysate was generated by lysing cells on ice in RIPA buffer (50 mM TrisHCI [pH 8], 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease and phosphatase inhibitors. Lysates were centrifuged 6,500 x g, 10 m at 4°C, and soluble lysate was collected. Whole cell lysate proteins were separated using 16% SDS-PAGE. SDS-PAGE gels were stained with coomassie brilliant blue dye and visualized (Odyssey, Li-Cor). Primary antibodies used were as follows: H3 (Abcam).

Nucleosome isolation. Purified nucleosomes were generated by resuspending pelleted cells in lysis buffer (20 mM HEPES [pH 7.5], 0.25 M sucrose, 3 mM MgCl₂, 0.5% V/V NP-40, supplemented with protease inhibitors) and Dounce homogenization prior to centrifugation at 3,000 x g, 15 m. Nuclei were subsequently washed twice with lysis buffer, once with Buffer B (20 mM HEPES [pH 7.5], 3 mM MgCl₂, 0.2 mM EDTA), once with 0.6 M KCI + 10% glycerol in Buffer B, and pelleted 5,000 x g. Nuclei were then washed in MSB (20 mM HEPES [pH 7.5], 0.4 M NaCl, 1 mM EDTA, 5% V/V glycerol), centrifuged 10,000 x g, 10 m, and resuspended in HSB (20 mM HEPES [pH 7.5], 0.65 M NaCl, 1 mM EDTA, 0.34 M sucrose, supplemented with protease inhibitors) and Dounce homogenized to release oligonucleosome fragments.

Oligonucleosomes were then centrifuged 10,000 x g, 20 m and supernatant dialyzed o/n against LSB (20 mM HEPES [pH 7.5], 0.1 M NaCl, 1 mM EDTA,) with 6-8 kDa MWCO membranes. The next day, dialysate was collected and CaCl₂ was added to a final concentration of 3 mM and incubated at 37 °C for 5 m, after which micrococcal nuclease (Sigma) was added to a final concentration of 10 U/mL and incubated for 10 m at 37 °C. Digestion was stopped with 0.1 volumes of 0.5 M EDTA on ice, and NaCl was added to a final concentration of 0.6 M. Mononucleosomes were separated via ultracentrifugation by layering 1 mL of material onto equilibrated linear gradients in 1 x 3.5-inch polyallomer centrifuge tubes (Beckman) with 1 mL each of HSB + 10% V/V glycerol, HSB + 20% V/V glycerol, HSB + 30% V/V glycerol, HSB + 40% V/V glycerol, from top to bottom. Samples were centrifuged 100,000 x g, 16 h, in an ultracentrifuge equipped with a SW-55Ti rotor (Beckman). 500 µL fractions were harvested from top to bottom and nucleosomes were assessed via 16% SDS PAGE followed by coomassie stain. Fractions containing nucleosomes were pooled for subsequent experimentation.

TACO modification and enrichment of modified nucleosome. To 100 μ g of prostate cancer cell nucleosome extract in 200 μ L NaP buffer (pH 7), was added 2 mg of selectfluor and 10 μ L of pyridine. The reaction mixture was stirred for 1 h. Reaction mixture was filtered using a 3 kDa molecular weight cut off to remove small molecules. To rest of the solution was added hydroxylamine solid support resin, 5% acetic acid in water (500 μ L) and reaction incubated for 12 h. The resin was filtered and washed with methanol (3x), and DMF (3x). Resin was dried and cleaved using 95:5 (TFA: Water) to release the enriched nucleosomes. Eluate was concentrated followed by acetone precipitation. The eluate and filtrate were analyzed using SDS PAGE. This reaction was performed in duplicates.

XXVIII. Supplementary Figure 22. TACO modification of nuclear extract and proteomics analysis.

Nuclear extract isolation. Nuclear extracts were generated using a modified protocol of Active Motif Nuclear Extract Kit. Pelleted cells were resuspended in hypotonic lysis buffer (20 mM TrisHCI [pH 7.5], 150 mM NaCl, 5 mM MgCl₂, 1% V/V NP-40, supplemented with protease inhibitors) and incubated on ice for 15 min. 50 μ L of detergent was added and vortexed for 10 seconds. Samples were dounce homogenized prior to centrifugation at 14,000 x g (5415 rotor)

for 1 m. Cytoplasmic extracts (supernatant) were transferred and nuclear extract (pellet) resuspended in complete lysis buffer and 15 μ L of detergent. Sample was dounce homogenized and vortexed for 10 seconds and incubated on ice for 30 m, followed by centrifugation at 14,000 x g (12200 rpm for 5415 rotor) for 10 m to obtain the nuclear extract (supernatant).

TACO modification and propargylation of nuclear extract: To 500 µg of nuclear extract in 500 µL of NaP buffer pH 7 was added 5 mg of selectfluor and 20 µL of pyridine. The reaction was stirred at room temperature for 1 h. Samples were subjected to acetone precipitation to remove small molecules to obtain pure proteins. To proteins resuspended in 500 µL of NaP buffer pH 5.0 was added 5 µL of propargylamine and stirred for 1 h, followed by the addition of 5 mg sodium cyanoborohydride. Reaction was stirred for 5 h followed by acetone precipitation.

Proteomics analysis of proteins: Proteins were digested using Thermo scientific EasyPep Mini MS sample Prep Kit. Digested peptides were analyzed by LC/MS. Samples were analyzed by LC-MS using a Q-Exactive Plus orbitrap mass spectrometer equipped with Dionex UltiMate 3000 LC system (Thermo). Briefly, lyophilized digested peptides were resuspended in 0.1% formic acid in 10% acetonitrile and loaded onto a trap column (PepMap[™] NEO 5 µm C18 300 µm X 5 mm Trap Cartridge) and resolved through a custom analytical column packed with ReproSil-Pur 120 C18-AQ 3 µm beads (Dr. Maisch GmbH) at a flow rate of 0.3 µL/min with a gradient solvent A (0.1% formic acid in 2% acetonitrile) and a gradient solvent B (0.1% formic acid in 80% acetonitrile) for 150 minutes. MS analysis was conducted in a data-dependent manner with full scans in the range from 400 to 1800 m/z using an Orbitrap mass analyzer set as follows: MS1: resolution = 70,000, AGC target = 3e6, Max IT = 100ms; MS2: resolution = 17,500, AGC target 1e5, Max IT = 50ms. The top fifteen most intense precursor ions were selected for MS2 with an isolation window of 4 m/z. Isolated precursors were fragmented by high energy collisional dissociation (HCD) with normalized collision energy (NCE) of 27. LC-MS RAW files were searched against the human proteome sequence database from UniProt using the Sequest HT search engine embedded in Proteome Discoverer 3.0 (Thermo) with 10 ppm MS1 precursor mass tolerance, 0.02 Da MS2 fragment mass tolerance, 0.01 false discovery rate. Search included the following modifications: Methionine oxidation (+15.99492 Da), asaparagine and glutamine deamidation (+0.98402 Da) and protein N-terminal acetylation (+42.03670), histidine fluorination (+17.9906), tryptophan fluorination (+33.9855), lysine propargylation (+38.0157), and lysine-to-aldehyde (-1.0316) were variable modifications (up to 3 allowed per peptide); cysteine was assigned a fixed carbamidomethyl modification (+57.021465 Da).

Representative peptide spectra of modified peptides (propargyl and aldehyde sites, +38 on lysine)

+TACO modified peptides: <u>All these peptides were identified after the TACO chemistry on</u> the nuclear extract obtained from LnCap.

A5A3E0 (POTE ankyrin domain family member F)

Sequence: VAPEEHPVLLTEATLNPKANR, K18-Ben_K1 (38.01570 Da) (position: lysine 813)

	b+	b ²⁺	b3+	Seq.	y ⁺	y ²⁺	y ³⁺	#2
1	100.07569	50.54148	34.03008	V				21
2	171.11280	86.06004	57.70912	А	2238.187	1119.597	746.73410	20
3	268.16557	134.58642	90.06004	Р	2167.150	1084.078	723.05507	19
4	397.20816	199.10772	133.07424	E	2070.097	1035.552	690.70414	18
5	526.25075	263.62902	176.08844	E	1941.055	971.03128	647.68995	17
6	663.30967	332.15847	221.77474	Н	1812.012	906.50998	604.67575	16
7	760.36243	380.68485	254.12566	Р	1674.953	837.98053	558.98944	15
8	859.43084	430.21906	287.14847	V	1577.901	789.45415	526.63852	14
9	972.51491	486.76109	324.84315	L	1478.832	739.91994	493.61572	13
10	1085.598	543.30312	362.53784	L	1365.748	683.37791	455.92103	12
11	1186.646	593.82696	396.22040	Т	1252.664	626.83588	418.22634	11
12	1315.689	658.34826	439.23460	E	1151.616	576.31204	384.54378	10
13	1386.726	693.86682	462.91364	А	1022.574	511.79074	341.52959	9
14	1487.774	744.39066	496.59620	Т	951.53709	476.27218	317.85055	8
15	1600.858	800.93269	534.29088	L	850.48941	425.74834	284.16799	7
16	1714.901	857.95415	572.30519	Ν	737.40535	369.20631	246.47330	6
17	1811.953	906.48053	604.65611	Ρ	623.36242	312.18485	208.45899	5
18	1978.064	989.53586	660.02634	K-Ben	526.30966	263.65847	176.10807	4
19	2049.101	1025.054	683.70537	А	360.19899	180.60314	120.73785	3
20	2163.144	1082.075	721.71968	Ν	289.16188	145.08458	97.05881	2
21				R	175.11895	88.06311	59.04450	1
100 100 100 100 100 100 100 100 100 100	y1' 175.11858 y2 b7	ys* 360.19772 bs* 268.16#92 4	y ₁₀ ²*-H 567.321 y ₈ ²* 76.27121	627.35583 20 663.3 166	* 95 10334 859. 760.36310	ys* 951.53400 2.53632 9s* 43011 9rs*-NH ₃ 934.51019 b_2	b ₉ * 1.51080 3 / y ₉ * 1151 22.57166 10	6175 6175 6175
0		b ₁₁ 3	عاريه بالعر	al had h		b ₁₇ 2		Π.
0			500			10	000	

A0A1W2PQ09 (TATA-box-binding protein-associated factor 11-like protein 11)

Sequence: SVSENTAIAMAGIAK, K15-Ben_K1 (38.01570 Da) (position: lysine 147)

#1	b+	b ²⁺	b3+	Seq.	y *	y ²⁺	y ³⁺	#2
1	88.03930	44.52329	30.01795	S				15
2	187.10772	94.05750	63.04076	V	1413.740	707.37398	471.91841	14
3	274.13975	137.57351	92.05143	S	1314.672	657.83977	438.89561	13
4	403.18234	202.09481	135.06563	Е	1227.640	614.32376	409.88493	12
5	517.22527	259.11627	173.07994	Ν	1098.597	549.80246	366.87073	11
6	618.27295	309.64011	206.76250	Т	984.55471	492.78100	328.85642	10
7	689.31006	345.15867	230.44154	А	883.50704	442.25716	295.17386	9
8	802.39412	401.70070	268.13623	I	812.46992	406.73860	271.49482	8
9	873.43124	437.21926	291.81526	Α	699.38586	350.19657	233.80014	7
10	1004.471	502.73950	335.49543	М	628.34874	314.67801	210.12110	6
11	1075.508	538.25806	359.17446	Α	497.30826	249.15777	166.44094	5
12	1132.530	566.76879	378.18162	G	426.27115	213.63921	142.76190	4
13	1245.614	623.31082	415.87631	I	369.24968	185.12848	123.75475	3
14	1316.651	658.82938	439.55534	Α	256.16562	128.58645	86.06006	2
15				K-Ben	185.12850	93.06789	62.38102	1
30	1							
(10/3)	b ₆ ³⁺ -NH 201.0856	5				b ₆ + 69 618.28180	y7⁺ 9.37610	
y [counts] -		303.1 92*-H2O 59.09676	17682 y₇2*	5 486.3013	03.25476 ³ b ₆ ⁺-NH₃	96* 628.34009	689.31854	762.4 /y 812 ·
Intensity 0	b43+-H2 b53	12759 b.3+ H	350.19150 ye ²⁺	DEGGE V921	601.25763			ba*
50		b ₅ ²	314.67255 428.4 by2	442.273	41		8)2.40
0	1 1 20	n na manga Maralla. Xo	40 (11) (11) (11) (11) (11) (11) (11) (11		ili biglat	-) - , , , , , , , , , , , , ,	1 II	800

P12259 (Coagulation factor V)

Sequence: WIISSLTPKHLQAGMQAYIDIK, M15-Ben_Met2 (15.99490 Da), K22-Ben_K1 (38.01570 Da) (position: lysine 327)

#1	b+	b ²⁺	b ³⁺	Seq.	y ⁺	y ²⁺	y ³⁺	#2
1	187.08659	94.04693	63.03371	W				22
2	300.17065	150.58897	100.72840	I	2381.289	1191.148	794.43477	21
3	413.25472	207.13100	138.42309	I	2268.205	1134.606	756.74008	20
4	500.28675	250.64701	167.43377	S	2155.121	1078.064	719.04540	19
5	587.31877	294.16303	196.44444	S	2068.089	1034.548	690.03472	18
6	700.40284	350.70506	234.13913	L	1981.057	991.03243	661.02404	17
7	801.45052	401.22890	267.82169	Т	1867.973	934.49040	623.32936	16
8	898.50328	449.75528	300.17261	Р	1766.925	883.96656	589.64680	15
9	1026.598	513.80276	342.87093	K	1669.873	835.44017	557.29588	14
10	1163.657	582.33222	388.55724	Н	1541.778	771.39269	514.59755	13
11	1276.741	638.87425	426.25192	L	1404.719	702.86324	468.91125	12
12	1404.799	702.90354	468.93812	Q	1291.635	646.32121	431.21656	11
13	1475.836	738.42209	492.61715	А	1163.576	582.29192	388.53037	10
14	1532.858	766.93283	511.62431	G	1092.539	546.77336	364.85133	9
15	1679.893	840.45052	560.63610	M-Ben	1035.517	518.26263	345.84418	8
16	1807.952	904.47981	603.32230	Q	888.48259	444.74494	296.83238	7
17	1878.989	939.99836	627.00133	А	760.42402	380.71565	254.14619	6
18	2042.052	1021.530	681.35578	Y	689.38690	345.19709	230.46715	5
19	2155.136	1078.072	719.05047	Ι	526.32358	263.66543	176.11271	4
20	2270.163	1135.585	757.39278	D	413.23951	207.12339	138.41802	3
21	2383.247	1192.127	795.08747	Ι	298.21257	149.60992	100.07571	2
22				K-Ben	185.12850	93.06789	62.38102	1

Q09666 (Neuroblast differentiation-associated protein AHNAK)

Sequence: ISMPDVDLHVKGTK, M3-Ben_Met2 (15.99490 Da), K11-Ben_K1 (38.01570 Da) (position: lysine 707)

#1	b+	b ²⁺	b ³⁺	Seq.	y ⁺	y ²⁺	y ³⁺	#2
1	114.09134	57.54931	38.70196	I				14
2	201.12337	101.06532	67.71264	S	1480.746	740.87688	494.25368	13
3	348.15875	174.58302	116.72444	M-Ben	1393.714	697.36086	465.24300	12
4	445.21152	223.10940	149.07536	Р	1246.679	623.84317	416.23121	11
5	560.23846	280.62287	187.41767	D	1149.626	575.31679	383.88028	10
6	659.30687	330.15708	220.44048	V	1034.599	517.80332	345.53797	9
7	774.33382	387.67055	258.78279	D	935.53094	468.26911	312.51517	8
8	887.41788	444.21258	296.47748	L	820.50400	410.75564	274.17285	7
9	1024.476	512.74203	342.16378	Н	707.41993	354.21361	236.47816	6
10	1123.545	562.27624	375.18659	V	570.36102	285.68415	190.79186	5
11	1289.655	645.33157	430.55681	K-Ben	471.29261	236.14994	157.76905	4
12	1346.677	673.84230	449.56396	G	305.18195	153.09461	102.39883	3
13	1447.725	724.36614	483.24652	Т	248.16048	124.58388	83.39168	2
14				K	147.11280	74.06004	49.70912	1

O94760 (N(G),N(G)-dimethylarginine dimethylaminohydrolase 1)

Sequence: SAKGEEVDVAR, K3-Ben_K1 (38.01570 Da) (position: lysine 34)

#1	b+	b ²⁺	Seq.	y ⁺	y ²⁺	#2
1	88.03930	44.52329	S			11
2	159.07642	80.04185	А	1111.574	556.29077	10
3	325.18708	163.09718	K-Ben	1040.537	520.77221	9
4	382.20855	191.60791	G	874.42649	437.71688	8
5	511.25114	256.12921	E	817.40502	409.20615	7
6	640.29373	320.65050	Е	688.36243	344.68485	6
7	739.36215	370.18471	V	559.31984	280.16356	5
8	854.38909	427.69818	D	460.25142	230.62935	4
9	953.45750	477.23239	V	345.22448	173.11588	3
10	1024.494	512.75095	А	246.15607	123.58167	2
11			R	175.11895	88.06311	1

Representative peptide spectra of modified peptides (aldehydes on lysine, -1 on lysine) +TACO modified peptides:

P68431 (Histone H3.1)

Sequence: VTIMPKDIQLAR, M4-Ben_Met2 (15.99490 Da), K6-Ben_K2 (-1.03160 Da) (position: lysine 123)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	100.07569	50.54148	V			12
2	201.12337	101.06532	Т	1300.692	650.85012	11
3	314.20743	157.60735	I	1199.645	600.32628	10
4	461.24282	231.12505	M-Ben	1086.561	543.78425	9
5	558.29558	279.65143	Р	939.52584	470.26656	8
6	685.35894	343.18311	K-Ben	842.47308	421.74018	7
7	800.38589	400.69658	D	715.40971	358.20850	6
8	913.46995	457.23861	I	600.38277	300.69502	5
9	1041.528	521.26790	Q	487.29871	244.15299	4
10	1154.612	577.80993	L	359.24013	180.12370	3
11	1225.649	613.32849	А	246.15607	123.58167	2
12			R	175.11895	88.06311	1

P68431 (Histone H3.1)

Sequence: EIAQDFKTDLR, K7-Ben_K2 (-1.03160 Da) (position: lysine 80)

#1	b+	b ²⁺	Seq.	y ⁺	y ²⁺	#2
1	130.04987	65.52857	E			11
2	243.13393	122.07061	I	1205.616	603.31169	10
3	314.17105	157.58916	А	1092.532	546.76966	9
4	442.22962	221.61845	Q	1021.494	511.25111	8
5	557.25657	279.13192	D	893.43636	447.22182	7
6	704.32498	352.66613	F	778.40941	389.70835	6
7	831.38834	416.19781	K-Ben	631.34100	316.17414	5
8	932.43602	466.72165	Т	504.27764	252.64246	4
9	1047.462	524.23512	D	403.22996	202.11862	3
10	1160.547	580.77715	L	288.20302	144.60515	2
11			R	175.11895	88.06311	1

Q71DI3 (Histone 3.2)

Sequence: EIAQDFKTDLR, K7-Ben_K2 (-1.03160 Da) (position: lysine 80)

	b+	b ²⁺	Seq.	y+	y ²⁺	
1	130.04987	65.52857	E			11
2	243.13393	122.07061	I	1205.616	603.31169	10
3	314.17105	157.58916	А	1092.532	546.76966	9
4	442.22962	221.61845	Q	1021.494	511.25111	8
5	557.25657	279.13192	D	893.43636	447.22182	7
6	704.32498	352.66613	F	778.40941	389.70835	6
7	831.38834	416.19781	K-Ben	631.34100	316.17414	5
8	932.43602	466.72165	Т	504.27764	252.64246	4
9	1047.462	524.23512	D	403.22996	202.11862	3
10	1160.547	580.77715	L	288.20302	144.60515	2
11			R	175.11895	88.06311	1
200 200		y2' 288.20267	R	175.11895	88.06311	1
[counts] (10	215.1 y1* 175.11879	b ₂ *-H ₂ O	• •			
Itensity [y ₂ ²⁺ -NH ₃ 136.07568	225.12241 314	b ₃ * .17166 / 359.0277	y ₈ ²⁺ -H ₂ O 502.24918	ys*-H2O	
- 50		243.13332 b ₃ *-H 296.16	6 y ₃ * 010 403.2300	34* 504.27914 4	614.33490	67
0	مراجعاً، <mark>الحاليات الماقاً الماقاً.</mark> منظ					

m/z

P62805 (Histone H4)

Sequence: DNIQGITKPAIR, K8-Ben_K2 (-1.03160 Da) (position: lysine 32)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	116.03422	58.52075	D			12
2	230.07715	115.54221	Ν	1209.695	605.35115	11
3	343.16121	172.08424	I	1095.652	548.32969	10
4	471.21979	236.11353	Q	982.56804	491.78766	9
5	528.24125	264.62426	G	854.50946	427.75837	8
6	641.32532	321.16630	I	797.48800	399.24764	7
7	742.37299	371.69014	Т	684.40394	342.70561	6
8	869.43636	435.22182	K-Ben	583.35626	292.18177	5
9	966.48912	483.74820	Р	456.29289	228.65009	4
10	1037.526	519.26676	А	359.24013	180.12370	3
11	1150.610	575.80879	I	288.20302	144.60515	2
12			R	175.11895	88.06311	1

P68431 (Histone H2B type 1-K)

Sequence: LLLPGELAKHAVSEGTK, K9-Ben_K2 (-1.03160 Da) (position: lysine 109)

114.09134 57.54931 38.70196 L 227.17540 114.09134 76.39665 L 1648.890. 824.94889 550.3016 340.25947 170.63337 114.09134 L 1535.806- 768.40685 512.6070 437.31223 219.15975 146.44226 P 1422.722. 711.86482 474.9123 494.33370 247.67049 165.44942 G 1325.669. 663.33844 442.5613 623.37629 312.19178 208.46361 E 1268.648 634.82771 423.55422 736.46035 368.73381 246.15830 L 1139.605. 570.30641 380.54002 807.49747 404.25237 269.83734 A 1026.521. 513.76438 342.84533 934.56083 467.78405 312.19179 K-Ben 955.48437 478.24582 319.1663 1071.619. 536.31351 357.87810 H 828.42101 414.71412 276.81188 1142.656. 571.83207 381.55714 A 691.36210 346.18469 231.12552 1241.725. 621.36627 414.57994 V 620.32498 310.66613 207.4465 1328.757. 664.88229 443.59062 S 521.2657 261.13192 174.4237 1457.799. 729.40358 486.60481 E 434.22454 217.61591 145.41303 1514.821. 757.91432 505.61197 G 305.18195 153.09461 102.39883 1615.869. 808.43815 539.29453 T 248.16048 124.58388 83.39161 199.18027 19		b+	b2+	b3+	Seq.	y+	y ²⁺	y ³⁺	
2 227.17540 114.09134 76.39665 L 1648.890 824.94889 550.30168 3 340.25947 170.63337 114.09134 L 1535.806. 768.40685 512.60700 4 437.31223 219.15975 146.44226 P 1422.722. 711.86482 474.91231 5 494.33370 247.67049 165.44942 G 1325.669. 663.33844 442.56139 6 623.37629 312.19178 208.46361 E 1268.648. 634.82771 423.55423 7 736.46035 368.73381 246.15830 L 1139.605. 570.30641 380.54003 8 807.49747 404.25237 269.83734 A 1026.521. 513.76438 342.84535 9 934.56083 467.78405 312.19179 K-Ben 955.48437 478.24582 319.16631 10 1071.619. 536.31351 357.87810 H 828.42101 414.71414 276.81185 12 1241.725. 621.36627 414.57994 V 620.32498 310.66613 207.44651 13 1328.757. 664.88229 443.59062 S 521.25657 261.13192 174.42371 14 1457.799 729.40358 486.60481 E 434.22454 217.61591 1454.1303 15 1514.821 757.91432 505.61197 G 305.18195 153.09461 102.39883 16 1615.869. 808.43815 539.29453 T 248.16048 124.58388 83.39168 17 K 147.11280 74.06004 49.70912 19 19 .18027 19 19 .18027 10 107.619. 536.31351 557.87819 K 447.11280 74.06004 49.70912 10 107.619. 548.4315 539.29453 T 248.16048 124.58388 83.39168 17 K 147.11280 74.06004 49.70912 10 107.819. 536.31391 54.43103 15 1514.821 757.91432 505.61197 G 305.18195 153.09461 102.39883 16 1615.869. 808.43815 539.29453 T 248.16048 124.58388 83.39168 17 K 147.11280 74.06004 49.70912 10 107.819. 505.8199 521.25287 691.33919 8284.1791 9 10 100.8000 497.7912 10 100.90000 497.7912 10 100.8000 497.7912 10 100.90000 497.7912 10 100.8000 497.791	1	114.09134	57.54931	38.70196	L				
3 340.25947 170.63337 114.09134 L 1535.806. 768.40685 512.60700 1 4 437.31223 219.15975 146.44226 P 1422.722. 711.86482 474.91231 1 5 494.33370 247.67049 165.44942 G 1325.669. 663.33844 442.56139 1 6 623.37629 312.19178 208.46361 E 1268.648. 634.82771 423.55423 1 7 736.46035 368.7381 246.15830 L 1139.605. 570.30641 380.54003 1 8 807.49747 404.25237 269.83734 A 1026.521. 513.76438 342.84535 1 9 934.56083 467.78405 312.19179 K-Ben 955.48437 478.24582 319.16631 9 10 1071.619 536.31351 357.87810 H 828.42101 414.71414 276.81185 5 11 1142.655. 571.8027 381.55714 A 691.36210 346 18469 231.12555 7 12 1241.725 621.36627 414.57994 V 620.32498 310.66613 207.44651 6 13 1328.757 664.88229 443.59062 S 521.25657 261.13192 174.42371 5 14 1457.799 729.40358 486.60481 E 434.22454 217.61591 145.41303 4 15 1514.821 757.9132 505.61197 G 305.18195 153.09461 102.3988 2 17	2	227.17540	114.09134	76.39665	L	1648.890	824.94889	550.30168	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	340.25947	170.63337	114.09134	L	1535.806	768.40685	512.60700	15
$ \begin{array}{c} 5 & 494.33370 & 247.67049 & 165.44942 & G \\ 623.37629 & 312.19178 & 208.46361 & E \\ 7 & 736.46035 & 368.73381 & 246.15830 & L \\ 8 & 807.49747 & 404.25237 & 269.83734 & A \\ 9 & 934.56083 & 467.78405 & 312.19179 & K-Ben. \\ 9 & 934.56083 & 467.78405 & 312.19179 & K-Ben. \\ 9 & 934.56083 & 467.78405 & 312.19179 & K-Ben. \\ 9 & 10 & 1071.619. \\ 536.31351 & 357.87810 & H \\ 1142.656. & 571.83207 & 381.55714 & A \\ 11142.656. & 571.83207 & 381.55714 & A \\ 11122.6567 & 261.13192 & 174.42371 & 5 \\ 11142.657.99 & 729.40358 & 486.60481 & E \\ 1112.2667 & 261.3192 & 174.42371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.36024 & 197.91132 & 505.61197 & G \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3192 & 174.2371 & 5 \\ 1112.2667 & 261.3271 & 264.1201 & 174.2371 & 5 \\ 1112.2667 & 261.3271 & 264.1201 & 174.2371 & 5 \\ 1112.2667 & 261.3271 & 264.1201 & 274$	4	437.31223	219.15975	146.44226	Р	1422.722	711.86482	474.91231	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	494.33370	247.67049	165.44942	G	1325.669	663.33844	442.56139	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	623.37629	312.19178	208.46361	E	1268.648	634.82771	423.55423	12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	736.46035	368.73381	246.15830	L	1139.605	570.30641	380.54003	11
$ \begin{array}{c} 9 & 934.56083 \\ 9 & 934.56083 \\ 467.78405 \\ 312.19179 \\ K-Ben. \\ 955.48437 \\ 478.24582 \\ 319.16631 \\ 9 \\ 10 \\ 1071.619. \\ 536.31351 \\ 357.87810 \\ H \\ 828.42101 \\ 414.71414 \\ 276.81185 \\ 8 \\ 11 \\ 1142.656. \\ 571.83207 \\ 381.55714 \\ A \\ 691.36210 \\ 346.18469 \\ 231.1255 \\ 7 \\ 12 \\ 1241.725. \\ 621.36627 \\ 414.57994 \\ V \\ 620.32498 \\ 310.66613 \\ 207.44651 \\ 6 \\ 13 \\ 1328.757. \\ 664.88229 \\ 443.59062 \\ S \\ 521.2567 \\ 261.13192 \\ 174.42371 \\ 5 \\ 174.42371 \\ 5 \\ 1514.821. \\ 757.91432 \\ 505.61197 \\ G \\ 305.18195 \\ 153.09461 \\ 102.39883 \\ 3 \\ 16 \\ 1615.869. \\ 808.43815 \\ 539.29453 \\ T \\ 248.16048 \\ 124.58388 \\ 83.39168 \\ 2 \\ 7 \\ \hline \\ y_{1}^{*} \\ y_{1}^{*} \\ y_{2}^{*} \\ y_{1}^{*} \\ y_{1}^{*} \\ y_{2}^{*} \\ y_{1}^{*} \\ y_{2}^{*} \\ y_{1}^{*} \\ y_{$	8	807.49747	404.25237	269.83734	А	1026.521	513.76438	342.84535	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	934.56083	467.78405	312.19179	K-Ben	955.48437	478.24582	319.16631	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1071.619	536.31351	357.87810	Н	828.42101	414.71414	276.81185	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	1142.656	571.83207	381.55714	А	691.36210	346.18469	231.12555	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1241.725	621.36627	414.57994	V	620.32498	310.66613	207.44651	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	1328.757	664.88229	443.59062	S	521.25657	261.13192	174.42371	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	1457.799	729.40358	486.60481	E	434.22454	217.61591	145.41303	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	1514.821	757.91432	505.61197	G	305.18195	153.09461	102.39883	3
17 K 147.11280 74.06004 49.70912 1 100 00 00 00 00 00 00 00 00 00 00 00 00	16	1615.869	808.43815	539.29453	Т	248.16048	124.58388	83.39168	2
140 140 150 100 100 100 100 100 100 10	17				К	147.11280	74.06004	49.70912	1
= 20 y 305.18301 44.49/12/96 y 12 y 12	14 12 [counts] (10^3) 19 19 18 10 12	10 10 10 199.18027 10 130.08630 0 0 0 130.08630 0 0 130.08630	^b 2* 227.17485 434.2	 4^e y_θ^{2e}-H₂O, 12351 469.3 y₁₀^{2e} y₁₀^{2e} 	. y ₁₄ 3*-NH ₃ 24295 521.25287	ye* 620.32452 691	y₅* .35919 8	3 9: ^{ys+} 3 328.41791 9:	st-NH 38.477€ st-H₂C
	드 21	0	b ₇ 3 305.18	301 474.91296	521.2520/	y13 ²	y142+-NH	829.4242	
AUU 900 800 800	a			400	<u>њ. </u>	600		10	1.

P07910 (Heterogeneous nuclear ribonucleoproteins C1/C2)

Sequence: MIAGQVLDINLAAEPKVNR, M1-Ben_Met2 (15.99490 Da), K16-Ben_K2 (-1.03160 Da) (position: lysine 89)

#1	b+	b ²⁺	Seq.	y *	y ²⁺	#2
1	148.04266	74.52497	M-Ben			19
2	261.12673	131.06700	T	1920.054	960.53111	18
3	332.16384	166.58556	А	1806.970	903.98907	17
4	389.18530	195.09629	G	1735.933	868.47052	16
5	517.24388	259.12558	Q	1678.912	839.95979	15
6	616.31229	308.65979	V	1550.853	775.93050	14
7	729.39636	365.20182	L	1451.785	726.39629	13
8	844.42330	422.71529	D	1338.701	669.85426	12
9	957.50736	479.25732	I	1223.674	612.34079	11
10	1071.550	536.27878	Ν	1110.590	555.79875	10
11	1184.634	592.82082	L	996.54730	498.77729	9
12	1255.671	628.33937	А	883.46324	442.23526	8
13	1326.708	663.85793	А	812.42613	406.71670	7
14	1455.751	728.37923	E	741.38901	371.19814	6
15	1552.803	776.90561	Р	612.34642	306.67685	5
16	1679.867	840.43729	K-Ben	515.29366	258.15047	4
17	1778.935	889.97150	V	388.23029	194.61879	3
18	1892.978	946.99296	Ν	289.16188	145.08458	2
19			R	175.11895	88.06311	1

P63261 (Actin cytoplasmic 2)

Sequence: VAPEEHPVLLTEAPLNPKANR, K18-Ben_K2 (-1.03160 Da) (position: lysine 113)

100.0756 171.1126 268.1655 397.2081 526.2507 663.3096 760.3624 859.4306 972.5149 1186.646 1186.646 1315.688 1386.726 1483.775	569 5 280 8 557 13 316 19 075 26 967 33 243 38 084 43 491 48 98 54 440 59 399 65	50.54148 86.06004 134.58642 199.10772 263.62902 332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 558.34826	34.03008 57.70912 90.06004 133.07424 176.08844 221.77474 254.12566 287.14847 324.84315 362.53784 396.22040 439.23460	V A E E H P V L L T	2195.145 2124.108 2027.055 1898.013 1768.970 1631.911 1534.858 1435.790 1322.706 1322.706.	1098.076 1062.557 1014.031 949.51017 884.98888 816.45942 767.93304 718.39883 661.85680	732.38670 708.70766 676.35674 633.34254 590.32834 544.64204 512.29112 479.26831	
171.1128 268.1655 397.2081 526.2507 663.3096 760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	280 8 557 13 3316 19 075 26 967 338 2243 38 084 43 491 48 98 54 46 59 339 65	86.06004 134.58642 199.10772 263.62902 332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 558.34826	57.70912 90.06004 133.07424 176.08844 221.77474 254.12566 287.14847 324.84315 362.53784 396.22040	A P E H V L L T	2195.145 2124.108 2027.055 1898.013 1768.970 1631.911 1534.858 1435.790 1322.706 1320.622	1098.076 1062.557 1014.031 949.51017 884.98888 816.45942 767.93304 718.39883 661.85680	732.38670 708.70766 676.35674 633.34254 590.32834 544.64204 512.29112 479.26831	20 19 18 17 16 15 14 13
268.1655 397.2081 526.2507 663.3096 760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	5557 13 3316 19 075 26 967 33 243 38 084 43 491 48 98 54 46 59 399 65	134.58642 199.10772 263.62902 332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 558.34826	90.06004 133.07424 176.08844 221.77474 254.12566 287.14847 324.84315 362.53784 396.22040 439.23460	P E H V L L T	2124.108 2027.055 1898.013 1768.970 1631.911 1534.858 1435.790 1322.706 1209.622	1062.557 1014.031 949.51017 884.98888 816.45942 767.93304 718.39883 661.85680	708.70766 676.35674 633.34254 590.32834 544.64204 512.29112 479.26831	19 18 17 16 15 14 13
397.2081 526.2507 663.3096 760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	316 19 075 26 067 33 243 38 084 43 491 48 098 54 46 59 339 65	199.10772 263.62902 332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 558.34826	133.07424 176.08844 221.77474 254.12566 287.14847 324.84315 362.53784 396.22040	E H P V L L T	2027.055 1898.013 1768.970 1631.911 1534.858 1435.790 1322.706 1209.622	1014.031 949.51017 884.98888 816.45942 767.93304 718.39883 661.85680	676.35674 633.34254 590.32834 544.64204 512.29112 479.26831	18 17 16 15 14 13
526.2507 663.3096 760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	075 26 967 33 243 38 084 43 491 48 98 54 46 59 39 65	263.62902 332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 558.34826	176.08844 221.77474 254.12566 287.14847 324.84315 362.53784 396.22040 439.23460	E H V L L T	1898.013 1768.970 1631.911 1534.858 1435.790 1322.706 1209.622	949.51017 884.98888 816.45942 767.93304 718.39883 661.85680	633.34254 590.32834 544.64204 512.29112 479.26831	17 16 15 14 13
663.3096 760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	967 33 243 38 984 43 491 48 98 54 46 59 39 65	332.15847 380.68485 430.21906 486.76109 543.30312 593.82696 58.34826	221.77474 254.12566 287.14847 324.84315 362.53784 396.22040 439.23460	H P V L L T	1768.970 1631.911 1534.858 1435.790 1322.706 1209.622	884.98888 816.45942 767.93304 718.39883 661.85680	590.32834 544.64204 512.29112 479.26831	16 15 14 13
760.3624 859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	243 38 084 43 191 48 08 54 16 59 39 65	380.68485 430.21906 486.76109 543.30312 593.82696 58.34826	254.12566 287.14847 324.84315 362.53784 396.22040 439.23460	P V L L T	1631.911 1534.858 1435.790 1322.706 1209.622	816.45942 767.93304 718.39883 661.85680	544.64204 512.29112 479.26831	15 14 13
859.4308 972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	084 43 491 48 08 54 46 59 39 65	430.21906 486.76109 543.30312 593.82696 558.34826	287.14847 324.84315 362.53784 396.22040 439.23460	V L L T	1534.858 1435.790 1322.706 1209.622	767.93304 718.39883 661.85680	512.29112 479.26831	14 13
972.5149 1085.598 1186.646 1315.689 1386.726 1483.779	491 48 98 54 46 59 39 65	486.76109 543.30312 593.82696 558.34826	324.84315 362.53784 396.22040 439.23460	L L T	1435.790 1322.706 1209.622	718.39883 661.85680	479.26831	13
1085.598 1186.646 1315.689 1386.726 1483.779	98 54 46 59 39 65	543.30312 593.82696 558.34826	362.53784 396.22040	L T	1322.706	661.85680		
1186.646 1315.689 1386.726 1483.779	46 59 39 65	593.82696 558.34826	396.22040	Т	1200 622		441.57363	12
1315.689 1386.726 1483.779	89 65 06. 00	558.34826	430 23460		1200.022	605.31477	403.87894	11
1386.726 1483.779	00 00		433.23400	E	1108.574	554.79093	370.19638	10
1483.779	20 05	693.86682	462.91364	А	979.53199	490.26963	327.18218	9
	79 74	742.39320	495.26456	Р	908.49488	454.75108	303.50314	8
1596.863	63 79	798.93523	532.95925	L	811.44211	406.22469	271.15222	7
1710.906	06 85	855.95669	570.97355	N	698.35805	349.68266	233.45753	6
1807.958	58 90	904.48308	603.32448	Р	584.31512	292.66120	195.44322	5
1935.022	22 96	968.01476	645.67893	K-Ben	487.26236	244.13482	163.09230	4
2006.059	59 10	1003.533	669.35797	А	360.19899	180.60314	120.73785	3
2120.102	02 10	1060.554	707.37228	N	289.16188	145.08458	97.05881	2
				R	175.11895	88.06311	59.04450	1
	1710.90 1807.95 1935.02 2006.05 2120.10	1710.906 a 1807.958 9 1935.022 9 2006.059 2120.102	1710.900 855.95059 1807.958 904.48308 1935.022 968.01476 2006.059 1003.533 2120.102 1060.554	1710.906. 855.95669 570.97355 1807.958. 904.48308 603.32448 1935.022. 968.01476 645.67893 2006.059. 1003.533. 669.35797 2120.102. 1060.554. 707.37228	1710.906 855.95699 570.97355 N 1807.958 904.48308 603.32448 P 1935.022 968.01476 645.67893 K-Ben 0006.055 1003.533 669.35797 A 2120.102 1060.554 707.37228 N	1710.905. 85.93669 57.0.9735 N 698.3805 1807.958. 904.48308 603.32448 P 864.31512 1935.022. 968.01476 645.67893 K-Ben 487.26236 006.059 1003.533. 669.35797 A 360.19899 2120.102 1060.554 707.37228 N 289.16188 R 175.11895	17/10.905 855.95669 57/0.9735 N 698.3505 349.08205 1807.958 904.48308 603.32448 P 584.31512 292.66120 1935.022 966.01476 645.67893 K-Ben 487.26236 244.13482 206.059 1003.533 669.35797 A 360.19899 180.60314 2120.102 1060.554 707.37228 N 289.16188 145.08458 R 175.11895 88.06311	17/10.906 855.95669 57/09735 N 698.35805 349.08200 233.45753 1807.958 904.48308 603.32448 P 584.31512 292.66120 195.44322 1935.022 966.01476 645.67893 K-Ben 487.2623 244.13482 163.09230 006.059 1003.553 669.35797 A 360.19899 180.60314 120.73765 2120.102 1060.554 707.37228 N 289.16188 145.08458 97.05881 R 175.11895 88.06311 59.04450 59.04450

P62979 (Ubiquitin-ribosomal protein eS31 fusion protein)

Sequence: LIFAGKQLEDGR, K6-Ben_K2 (-1.03160 Da) (position: lysine 48)

Q15149 (Plectin)

Sequence: LQLEETDHQKNLLDEELQR, K10-Ben_K2 (-1.03160 Da) (position: lysine 2339)

Q562R1 (Beta-actin-like protein 2)

Sequence: VAPDEHPILLTEAPLNPKINR, K18-Ben_K2 (-1.03160 Da) (position: lysine 114)

#1	b+	b ²⁺	b3+	Seq.	y +	y ²⁺	y ³⁺	#2
1	100.07569	50.54148	34.03008	V				21
2	171.11280	86.06004	57.70912	А	2237.192	1119.099	746.40235	20
3	268.16557	134.58642	90.06004	Р	2166.155	1083.581	722.72331	19
4	383.19251	192.09989	128.40235	D	2069.102	1035.054	690.37239	18
5	512.23510	256.62119	171.41655	E	1954.075	977.54147	652.03007	17
6	649.29402	325.15065	217.10286	Н	1825.033	913.02018	609.01588	16
7	746.34678	373.67703	249.45378	Р	1687.974	844.49072	563.32957	15
8	859.43084	430.21906	287.14847	I	1590.921	795.96434	530.97865	14
9	972.51491	486.76109	324.84315	L	1477.837	739.42231	493.28396	13
10	1085.598	543.30312	362.53784	L	1364.753	682.88028	455.58928	12
11	1186.646	593.82696	396.22040	Т	1251.669	626.33824	417.89459	11
12	1315.689	658.34826	439.23460	E	1150.621	575.81440	384.21203	10
13	1386.726	693.86682	462.91364	А	1021.578	511.29311	341.19783	9
14	1483.779	742.39320	495.26456	Р	950.54183	475.77455	317.51879	8
15	1596.863	798.93523	532.95925	L	853.48906	427.24817	285.16787	7
16	1710.906	855.95669	570.97355	Ν	740.40500	370.70614	247.47318	6
17	1807.958	904.48308	603.32448	Р	626.36207	313.68467	209.45887	5
18	1935.022	968.01476	645.67893	K-Ben	529.30931	265.15829	177.10795	4
19	2048.106	1024.556	683.37362	I	402.24594	201.62661	134.75350	3
20	2162.149	1081.578	721.38793	N	289.16188	145.08458	97.05881	2
21				R	175.11895	88.06311	59.04450	1

Q9BPW5 (Ras-like protein family member 11B)

Sequence: QALSAKVR, K6-Ben_K2 (-1.03160 Da) (position: lysine 241)

Q15233 (Non-POU domain-containing octamer-binding protein)

Sequence: QQEGFKGTFPDAR, K6-Ben_K2 (-1.03160 Da) (position: lysine 371)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	129.06585	65.03657	Q			13
2	257.12443	129.06585	Q	1351.627	676.31751	12
3	386.16702	193.58715	E	1223.569	612.28822	11
4	443.18849	222.09788	G	1094.526	547.76692	10
5	590.25690	295.63209	F	1037.505	519.25619	9
6	717.32027	359.16377	K-Ben	890.43669	445.72198	8
7	774.34173	387.67450	G	763.37333	382.19030	7
8	875.38941	438.19834	Т	706.35187	353.67957	6
9	1022.457	511.73255	F	605.30419	303.15573	5
10	1119.510	560.25893	Р	458.23577	229.62152	4
11	1234.537	617.77240	D	361.18301	181.09514	3
12	1305.574	653.29096	А	246.15607	123.58167	2
13			R	175.11895	88.06311	1

P04908 (Histone H2A type 1-B/E)

Sequence: NDEELNKLLGR, K7-Ben_K2 (-1.03160 Da) (position: lysine 96)

Representative peptide spectra of modified peptides (propargyl sites, +38 on lysine) -TACO modified peptides: All these peptides are identified from nuclear extract of LnCap without treatment with TACO chemistry.

Q6ZMV9 (Kinesin-like protein KIF6)

Sequence: LSSAPSQAQDFSILGK, K16-Ben_K1 (38.01570 Da) (position: lysine 538)

#1	b+	b ²⁺	Seq.	y *	y ²⁺	#2
1	114.09134	57.54931	L			16
2	201.12337	101.06532	S	1573.785	787.39649	15
3	288.15540	144.58134	S	1486.753	743.88048	14
4	359.19251	180.09989	А	1399.721	700.36447	13
5	456.24527	228.62628	Р	1328.684	664.84591	12
6	543.27730	272.14229	S	1231.631	616.31953	11
7	671.33588	336.17158	Q	1144.599	572.80351	10
8	742.37299	371.69014	А	1016.541	508.77422	9
9	870.43157	435.71942	Q	945.50406	473.25567	8
10	985.45851	493.23290	D	817.44548	409.22638	7
11	1132.526	566.76710	F	702.41854	351.71291	6
12	1219.558	610.28312	S	555.35012	278.17870	5
13	1332.643	666.82515	Ι	468.31810	234.66269	4
14	1445.727	723.36718	L	355.23403	178.12065	3
15	1502.748	751.87791	G	242.14997	121.57862	2
16			K-Ben	185.12850	93.06789	1

Q12955 (Ankyrin-3)

Sequence: TLPVYVSFVQVGK, K13-Ben_K1 (38.01570 Da) (position: lysine 3102)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	102.05496	51.53112	Т			13
2	215.13902	108.07315	L	1373.782	687.39504	12
3	312.19178	156.59953	Р	1260.698	630.85301	11
4	411.26020	206.13374	V	1163.645	582.32662	10
5	574.32353	287.66540	Y	1064.577	532.79242	9
6	673.39194	337.19961	V	901.51423	451.26075	8
7	760.42397	380.71562	S	802.44582	401.72655	7
8	907.49238	454.24983	F	715.41379	358.21053	6
9	1006.560	503.78404	V	568.34537	284.67632	5
10	1134.619	567.81332	Q	469.27696	235.14212	4
11	1233.687	617.34753	V	341.21838	171.11283	3
12	1290.709	645.85826	G	242.14997	121.57862	2
13			K-Ben	185.12850	93.06789	1
Internsity [counts] (10^3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b ₁ * b ₂ 102.05550 215.1 y ₂ * 171.11421	, 3983 yz' 31 42.15024 by 312.19238	57.27930 y3* 341.21680	628.3	34119 649.47809 73 7m ² 582.33563 667.50	7 8.50598 616
0	200		400		600	

P50454 (Serpin H1)

Sequence: SAGLAFSLYQAMAK, K14-Ben_K1 (38.01570 Da) (position: lysine 60)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	88.03930	44.52329	S			14
2	159.07642	80.04185	А	1408.729	704.86833	13
3	216.09788	108.55258	G	1337.692	669.34977	12
4	329.18195	165.09461	L	1280.670	640.83904	11
5	400.21906	200.61317	А	1167.586	584.29701	10
6	547.28747	274.14738	F	1096.549	548.77845	9
7	634.31950	317.66339	S	949.48121	475.24425	8
8	747.40357	374.20542	L	862.44919	431.72823	7
9	910.46689	455.73709	Y	749.36512	375.18620	6
10	1038.525	519.76637	Q	586.30179	293.65454	5
11	1109.562	555.28493	А	458.24322	229.62525	4
12	1240.603	620.80517	М	387.20610	194.10669	3
13	1311.640	656.32373	А	256.16562	128.58645	2
14			K-Ben	185.12850	93.06789	1

Representative peptide spectra of modified peptides (aldehydes on lysine, -1 on lysine) -TACO modified peptides: All these peptides are identified from nuclear extract of LnCap without treatment with TACO chemistry.

Q9NYQ6 (Cadherin EGF LAG seven-pass G-type receptor 1)

Sequence: SVVVGGASEDKVSVR, K11-Ben_K2 (-1.03160 Da) (position: lysine 1830)

#1	b+	b ²⁺	Seq.	y+	y ²⁺	#2
1	88.03930	44.52329	S			15
2	187.10772	94.05750	V	1400.738	700.87265	14
3	286.17613	143.59170	V	1301.669	651.33844	13
4	385.24455	193.12591	V	1202.601	601.80423	12
5	442.26601	221.63664	G	1103.532	552.27003	11
6	499.28747	250.14738	G	1046.511	523.75929	10
7	570.32459	285.66593	А	989.48985	495.24856	9
8	657.35662	329.18195	S	918.45274	459.73001	8
9	786.39921	393.70324	E	831.42071	416.21399	7
10	901.42615	451.21671	D	702.37811	351.69270	6
11	1028.489	514.74840	K-Ben	587.35117	294.17922	5
12	1127.557	564.28260	V	460.28781	230.64754	4
13	1214.589	607.79862	S	361.21939	181.11334	3
14	1313.658	657.33282	V	274.18737	137.59732	2
15			R	175.11895	88.06311	1

Q9C0D3 (Protein zyg-11 homolog B)

Sequence: TKPEILK, K2-Ben_K2 (-1.03160 Da) (position: lysine 360)

List of MCF-10A Kme₂ modification sites and proteins

Representative peptide spectra of modified peptides (propargyl and aldehydes on lysine, +38, -1 on lysine). <u>All these peptides are identified from cell lysate of MCF-10A after</u> treatment with TACO chemistry.

Q13162 (Peroxiredoxin-4)

Sequence: VCPAGWkPGSETI, K10-Ben_K2 (-1.03160 Da) (position: lysine 250)

#1	b+	b ²⁺	b3+	b4+	Seq.	y+	y ²⁺	y ³⁺	y4+	#2
1	138.06619	69.53673	46.69358	35.27200	Н					23
2	195.08765	98.04746	65.70074	49.52737	G	2265.085	1133.046	755.70007	567.02687	22
3	324.13025	162.56876	108.71493	81.78802	E	2208.064	1104.535	736.69291	552.77150	21
4	423.19866	212.10297	141.73774	106.55512	V	2079.021	1040.014	693.67871	520.51085	20
5	583.22931	292.11829	195.08129	146.56278	C-Car	1979.953	990.48022	660.65591	495.74375	19
6	680.28207	340.64467	227.43221	170.82598	Р	1819.922	910.46490	607.31236	455.73609	18
7	751.31919	376.16323	251.11125	188.58525	А	1722.869	861.93852	574.96144	431.47290	17
8	808.34065	404.67396	270.11840	202.84062	G	1651.832	826.41996	551.28240	413.71362	16
9	994.41996	497.71362	332.14484	249.36045	W	1594.811	797.90923	532.27525	399.45825	15
10	1121.483	561.24530	374.49929	281.12629	K-Ben	1408.731	704.86957	470.24881	352.93843	14
11	1218.536	609.77168	406.85021	305.38948	Р	1281.668	641.33789	427.89435	321.17258	13
12	1275.557	638.28241	425.85737	319.64485	G	1184.615	592.81151	395.54343	296.90939	12
13	1362.589	681.79843	454.86804	341.40285	S	1127.594	564.30078	376.53628	282.65403	11
14	1491.632	746.31973	497.88224	373.66350	E	1040.562	520.78476	347.52560	260.89602	10
15	1592.679	796.84356	531.56480	398.92542	Т	911.51966	456.26347	304.51140	228.63537	9
16	1705.763	853.38560	569.25949	427.19644	I	810.47198	405.73963	270.82884	203.37345	8
17	1818.847	909.92763	606.95418	455.46745	T	697.38792	349.19760	233.13416	175.10244	7
18	1915.900	958.45401	639.30510	479.73064	Р	584.30385	292.65556	195.43947	146.83142	6
19	2030.927	1015.967	677.64741	508.48738	D	487.25109	244.12918	163.08855	122.56823	5
20	2127.980	1064.493	709.99833	532.75057	Р	372.22415	186.61571	124.74623	93.81149	4
21	2199.017	1100.012	733.67737	550.50985	А	275.17138	138.08933	92.39531	69.54830	3
22	2256.039	1128.523	752.68453	564.76521	G	204.13427	102.57077	68.71627	51.78902	2
23					K	147.11280	74.06004	49.70912	37.53366	1

P05556 (Integrin beta-1)

Sequence: GTAEKLkPEDITQ, K2-Ben_K2 (-1.03160 Da) (position: lysine 107)

-	1	b+	b2+	b3+	Seq.	y*	y ²⁺	y ³⁺	#2
	1	114.09134	57.54931	38.70196	L				17
	2	241.15470	121.08099	81.05642	K-Ben	1905.044	953.02566	635.68620	16
	3	338.20747	169.60737	113.40734	Р	1777.980	889.49398	593.33174	15
	4	467.25006	234.12867	156.42154	E	1680.927	840.96759	560.98082	14
1	5	582.27700	291.64214	194.76385	D	1551.885	776.44630	517.96662	13
(6	695.36107	348.18417	232.45854	1	1436.858	718.93283	479.62431	12
	7	796.40875	398.70801	266.14110	Т	1323.774	662.39079	441.92962	11
:	8	924.46732	462.73730	308.82729	Q	1222.726	611.86695	408.24706	10
	9	1037.551	519.27933	346.52198	1	1094.668	547.83767	365.56087	9
1	10	1165.609	583.30862	389.20817	Q	981.58399	491.29563	327.86618	8
1	11	1262.662	631.83500	421.55909	Р	853.52541	427.26634	285.17999	7
1	12	1390.721	695.86429	464.24529	Q	756.47265	378.73996	252.82907	6
1	13	1518.779	759.89358	506.93148	Q	628.41407	314.71067	210.14287	5
1	14	1631.863	816.43561	544.62617	L	500.35549	250.68139	167.45668	4
1	15	1730.932	865.96982	577.64897	V	387.27143	194.13935	129.76199	3
1	16	1844.016	922.51185	615.34366	L	288.20302	144.60515	96.73919	2
1	17				R	175.11895	88.06311	59.04450	1
	1.2	1							
046)	5 1.0	1					y7 853 5	+ 1892	
s1(10	2 0.8]	v.2.NH.				853.5.	1892 bs*	
count	0.6]	242.18402	y3" 387.26828	hit	b102+-H2O 574,29364 75	y6" 56.47107	924.45361	
sitvic	0.0	y1*	ys -NH3	/ 4	467.25427	/	b7*	vs*-NH ys	•
Intens	U.4	1/5.11/54	247.14272	(y ²⁺ 427.26328	ye a	ys* ys*-NI	H 796.39557	981.5	8057
	0.2		les habititud		,00.35205	bix	z National distribution		ul.
	3.0			50	00				1000

Q9Y2A7 (Nck-associated protein 1)

Sequence: MRTSFDkPDQMAA, K5-Ben_K2 (-1.03160 Da) (position: lysine 886)

#1	b+	b ²⁺	b ³⁺	Seq.	y+	y ²⁺	y ³⁺	#2
1	102.05496	51.53112	34.68984	Т				14
2	189.08698	95.04713	63.70051	S	1496.709	748.85815	499.57453	13
3	336.15540	168.58134	112.72332	F	1409.677	705.34214	470.56385	12
4	451.18234	226.09481	151.06563	D	1262.608	631.80793	421.54105	11
5	578.24570	289.62649	193.42009	K-Ben	1147.581	574.29446	383.19873	10
6	675.29847	338.15287	225.77101	Р	1020.518	510.76278	340.84428	9
7	790.32541	395.66634	264.11332	D	923.46551	462.23640	308.49336	8
8	918.38399	459.69563	306.79951	Q	808.43857	404.72292	270.15104	7
9	1049.424	525.21587	350.47968	М	680.37999	340.69364	227.46485	6
10	1120.461	560.73443	374.15871	А	549.33951	275.17339	183.78469	5
11	1191.498	596.25299	397.83775	А	478.30240	239.65484	160.10565	4
12	1304.582	652.79502	435.53244	L	407.26528	204.13628	136.42661	3
13	1451.651	726.32923	484.55524	F	294.18122	147.59425	98.73192	2
14				K	147.11280	74.06004	49.70912	1

Q562R1 (Beta-actin-like protein 2)

Sequence: IADRMQkEIITLA, K3-Ben_K2 (-1.03160 Da) (position: lysine 316)

P17540 (Creatine kinase S-type, mitochondrial)

Sequence: KDPRFSkILENLR, K3-Ben_K2 (-1.03160 Da) (position: lysine 344)

Q15154 (Pericentriolar material 1 protein)

Sequence: QLSENRkPFNFLP, K1-Ben_K2 (-1.03160 Da) (position: lysine 139)

#1	b+	b ²⁺	Seq.	y *	y ²⁺	#2
1	128.07064	64.53896	K-Ben			14
2	225.12340	113.06534	Р	1579.793	790.40050	13
3	372.19182	186.59955	F	1482.740	741.87412	12
4	486.23474	243.62101	Ν	1335.672	668.33991	11
5	633.30316	317.15522	F	1221.629	611.31845	10
6	746.38722	373.69725	L	1074.561	537.78424	9
7	843.43999	422.22363	Р	961.47714	481.24221	8
8	990.47539	495.74133	M-Oxi	864.42438	432.71583	7
9	1118.533	559.77062	Q	717.38898	359.19813	6
10	1231.618	616.31265	I	589.33040	295.16884	5
11	1345.660	673.33412	Ν	476.24634	238.62681	4
12	1446.708	723.85795	Т	362.20341	181.60534	3
13	1560.751	780.87942	Ν	261.15573	131.08150	2
14			К	147.11280	74.06004	1

Q15276 (Rab GTPase-binding effector protein 1)

Sequence: TRDQVKkLQLMLR, K1-Ben_K2 (-1.03160 Da) (position: lysine 559)

#1	b+	b ²⁺	Seq.	y *	y ²⁺	#2
1	128.07064	64.53896	K-Ben			7
2	241.15470	121.08099	L	773.47021	387.23874	6
3	369.21328	185.11028	Q	660.38614	330.69671	5
4	482.29734	241.65231	L	532.32756	266.66742	4
5	613.33783	307.17255	М	419.24350	210.12539	3
6	726.42189	363.71459	L	288.20302	144.60515	2
7			R	175.11895	88.06311	1

P68032 (Actin, alpha cardiac muscle 1)

Sequence: LCYVALDFENEMATAASSSSLEK, K23-Ben_K2 (-1.03160 Da) (position: lysine 240)

Q9H165 (B-cell lymphoma/leukemia 11A)

Sequence: LSAKGATDAGAKPPR, K4-Ben_K2 (+38.0157 Da) (position: lysine 559)

#1	b+	b ²⁺	b3+	Seq.	y*	y ²⁺	y ³⁺	#2
1	114.09134	57.54931	38.70196	L				15
2	201.12337	101.06532	67.71264	S	1325.680	663.34406	442.56513	14
3	272.16048	136.58388	91.39168	А	1238.648	619.82804	413.55445	13
4	399.22385	200.11556	133.74613	K-Ben	1167.611	584.30949	389.87542	12
5	456.24531	228.62629	152.75329	G	1040.548	520.77780	347.52096	11
6	527.28242	264.14485	176.43233	А	983.52687	492.26707	328.51381	10
7	628.33010	314.66869	210.11488	Т	912.48976	456.74852	304.83477	9
8	743.35704	372.18216	248.45720	D	811.44208	406.22468	271.15221	8
9	814.39416	407.70072	272.13624	А	696.41513	348.71121	232.80990	7
10	871.41562	436.21145	291.14339	G	625.37802	313.19265	209.13086	6
11	942.45274	471.73001	314.82243	А	568.35656	284.68192	190.12370	5
12	1070.547	535.77749	357.52075	K	497.31944	249.16336	166.44467	4
13	1167.600	584.30387	389.87167	Р	369.22448	185.11588	123.74634	3
14	1264.653	632.83025	422.22259	Р	272.17172	136.58950	91.39542	2
15				R	175.11895	88.06311	59.04450	1

XXIX. Supplementary Figure 23. TACO modification of nuclear extract, biotin enrichment of modified Kme₂ proteins from nuclear extract and identification of Kme₂ proteins and Kme₂ sites by proteomic analysis.

TACO modification and enrichment of Kme₂ proteins from nuclear extract: To 2 mg of nuclear extract in 2 mL of NaP buffer pH 7 was added 20 mg of selectfluor and 80 µL of pyridine. The reaction was stirred at room temperature for 1 h. Samples were subjected to acetone precipitation to remove small molecules. To proteins resuspended in 2 mL of NaP buffer pH 5.0 was added a solution of 0.5 mg of Biotin-dPEG®3-oxyamine hydrochloride in DMSO and stirred for 6 h, followed by acetone precipitation. TACO modified nuclear lysate was resuspended in 2 mL binding buffer (Tris-buffered saline, pH 7.5). 100 µL of prepped magnetic streptavidin beads were added to biotinylated nuclear lysate and incubated at 4 $^{\circ}$ C for 1 h. Beads were washed 3x with washing buffer (TBS, 2M urea, pH 7.5) and finally with PBS pH 7. After washing, captured proteins were eluted by adding 1X SDS sample buffer (200 uL) and heated at 98 $^{\circ}$ C for 10 m. Eluted proteins were passed through a 3 kDa MW-cut off filter, followed by digestion with Thermo scientific EasyPep Mini MS sample Prep Kit.

Proteomics analysis of enriched proteins: Proteins were digested using Thermo scientific EasyPep Mini MS sample Prep Kit. Digested peptides were analyzed by LC/MS. Samples were analyzed by LC-MS using a Q-Exactive Plus orbitrap mass spectrometer equipped with Dionex UltiMate 3000 LC system (Thermo). Briefly, lyophilized digested peptides were resuspended in 0.1% formic acid in 10% acetonitrile and loaded onto a trap column (PepMap[™] NEO 5 µm C18 300 µm X 5 mm Trap Cartridge) and resolved through a custom analytical column packed with ReproSil-Pur 120 C18-AQ 3 µm beads (Dr. Maisch GmbH) at a flow rate of 0.3 µL/min with a gradient solvent A (0.1% formic acid in 2% acetonitrile) and a gradient solvent B (0.1% formic acid in 80% acetonitrile) for 150 minutes. MS analysis was conducted in a data-dependent manner with full scans in the range from 400 to 1800 m/z using an Orbitrap mass analyzer set as follows: MS1: resolution = 70,000, AGC target = 3e6, Max IT = 100ms; MS2: resolution = 17,500, AGC target 1e5, Max IT = 50ms. The top fifteen most intense precursor ions were selected for MS2 with an isolation window of 4 m/z. Isolated precursors were fragmented by high energy collisional dissociation (HCD) with normalized collision energy (NCE) of 27. LC-MS RAW files were searched against the human proteome sequence database from UniProt using the Sequest HT search engine embedded in Proteome Discoverer 3.0 (Thermo) with 10 ppm MS1 precursor mass tolerance, 0.02 Da MS2 fragment mass tolerance, 0.01 false discovery rate. Search included the following modifications: Methionine oxidation (+15.99492 Da), asaparagine and glutamine deamidation (+0.98402 Da) and protein N-terminal acetylation (+42.03670), histidine fluorination (+17.9906), tryptophan fluorination (+33.9855), and lysine biotin-oxime (+415.1777) were variable modifications (up to 3 allowed per peptide); cysteine was assigned a fixed carbamidomethyl modification (+57.021465 Da).

Representative peptide spectra of modified peptides (Biotin-oxime sites, +415 on lysine) <u>All these peptides are identified from nuclear extract of LnCap after treatment with TACO chemistry.</u>

Q6R327 (Rapamycin-insensitive companion of mTOR) Sequence: LSSESKTSNR, K6-BenKPlus415 (415.17770 Da) (position: lysine 1125)

P17098 (Zinc finger protein 8) Sequence: LIFEQTPALTK, K11-BenKPlus415 (415.17770 Da) (position: lysine 441)

#1	b+	b ²⁺	Seq.	y *	y ²⁺	#2
1	114.09134	57.54931	L			11
2	227.17540	114.09134	I	1562.813	781.91036	10
3	374.24382	187.62555	F	1449.729	725.36833	9
4	503.28641	252.14684	E	1302.660	651.83412	8
5	631.34499	316.17613	Q	1173.618	587.31283	7
6	732.39267	366.69997	Т	1045.559	523.28354	6
7	829.44543	415.22635	Р	944.51212	472.75970	5
8	900.48254	450.74491	А	847.45936	424.23332	4
9	1013.566	507.28694	L	776.42225	388.71476	3
10	1114.614	557.81078	Т	663.33818	332.17273	2
11			K-Ben	562.29050	281.64889	1
• 1						
4	120.03037					
-1	ber -					

228.12892

480 30333

202.27242

100.00100

TTO AL 822

*** 21202

73963338

1040.00741 2."

Q9H270 (Vacuolar protein sorting-associated protein 11 homolog) Sequence: TIGKLEPSYVIR, K4-BenKPlus415 (415.17770 Da) (position: lysine 417)

Q99741 (Cell division control protein 6 homolog) Sequence: KAGSLYLSGAPGTGK, K15-BenKPlus415 (415.17770 Da) (position: lysine 208)

101801008

	-							
#1	b+	b ²⁺	b3+	Seq.	y +	y ²⁺	y ³⁺	#2
1	129.10224	65.05476	43.70560	К				15
2	200.13935	100.57331	67.38464	А	1693.846	847.42691	565.28703	14
3	257.16082	129.08405	86.39179	G	1622.809	811.90835	541.60799	13
4	344.19285	172.60006	115.40247	S	1565.787	783.39762	522.60084	12
5	457.27691	229.14209	153.09715	L	1478.755	739.88161	493.59016	11
6	620.34024	310.67376	207.45160	Y	1365.671	683.33957	455.89548	10
7	733.42430	367.21579	245.14628	L	1202.608	601.80791	401.54103	9
8	820.45633	410.73180	274.15696	S	1089.524	545.26588	363.84634	8
9	877.47779	439.24254	293.16412	G	1002.492	501.74986	334.83567	7
10	948.51491	474.76109	316.84315	А	945.47099	473.23913	315.82851	6
11	1045.567	523.28747	349.19407	Р	874.43387	437.72058	292.14948	5
12	1102.589	551.79821	368.20123	G	777.38111	389.19419	259.79855	4
13	1203.636	602.32205	401.88379	Т	720.35965	360.68346	240.79140	3
14	1260.658	630.83278	420.89094	G	619.31197	310.15962	207.10884	2
15				K-Ben	562.29050	281.64889	188.10169	1
							;	
102 M2								

Q6ZSZ5 (Rho guanine nucleotide exchange factor 18) Sequence: KFQNLIK, K1-BenKPlus415 (415.17770 Da) (position: lysine 573)

P62979 (Ubiquitin-ribosomal protein eS31 fusion protein) Sequence: MQIFVKTLTGK, M1-Oxidation (15.99492 Da), K6-BenKPlus415 (415.17770 Da) (position: lysine 6)

Q99832 (T-complex protein 1 subunit)

Sequence: AFFAKMVVDAVMMLDDLLQLK, M12-Oxidation (15.99492 Da), M13-Oxidation (15.99492 Da), K5-BenKPlus415 (415.17770 Da) (position: lysine 177)

#1	b+	b2+	b3+	Seq.	y*	y ²⁺	y ³⁺	#2
1	72.04439	36.52583	24.68631	А				21
2	219.11280	110.06004	73.70912	F	2774.388	1387.697	925.46775	20
3	366.18122	183.59425	122.73192	F	2627.320	1314.163	876.44495	19
4	437.21833	219.11280	146.41096	А	2480.251	1240.629	827.42215	18
5	980.49099	490.74914	327.50185	K-Ben	2409.214	1205.111	803.74311	17
6	1111.531	556.26938	371.18201	М	1865.942	933.47469	622.65222	16
7	1210.599	605.80358	404.20482	V	1734.901	867.95445	578.97206	15
8	1309.668	655.33779	437.22762	V	1635.833	818.42024	545.94925	14
9	1424.695	712.85126	475.56993	D	1536.764	768.88603	512.92645	13
10	1495.732	748.36982	499.24897	А	1421.737	711.37256	474.58413	12
11	1594.800	797.90403	532.27178	V	1350.700	675.85401	450.90510	11
12	1741.836	871.42173	581.28358	M-Oxi	1251.632	626.31980	417.88229	10
13	1888.871	944.93943	630.29538	M-Oxi	1104.596	552.80210	368.87049	9
14	2001.955	1001.481	667.99006	L	957.56152	479.28440	319.85869	8
15	2116.982	1058.994	706.33238	D	844.47746	422.74237	282.16400	7
16	2232.009	1116.508	744.67469	D	729.45052	365.22890	243.82169	6
17	2345.093	1173.050	782.36938	L	614.42357	307.71543	205.47938	5
18	2458.177	1229.592	820.06407	L	501.33951	251.17339	167.78469	4
19	2586.236	1293.621	862.75026	Q	388.25545	194.63136	130.09000	3
20	2699.320	1350.163	900.44495	L	260.19687	130.60207	87.40381	2
21				К	147.11280	74.06004	49.70912	1

Q8TDJ6 (DmX-like protein 2)

Sequence: TLATGYEVDGGK, K12-BenKPlus415 (415.17770 Da) (position: lysine 2068)

#1	b+	b ²⁺	Seq.	y ⁺	y ²⁺	#2
1	102.05496	51.53112	Т			12
2	215.13902	108.07315	L	1524.725	762.86615	11
3	286.17613	143.59170	А	1411.640	706.32412	10
4	387.22381	194.11554	Т	1340.603	670.80556	9
5	444.24527	222.62628	G	1239.556	620.28173	8
6	607.30860	304.15794	Y	1182.534	591.77099	7
7	736.35120	368.67924	E	1019.471	510.23933	6
8	835.41961	418.21344	V	890.42879	445.71803	5
9	950.44655	475.72691	D	791.36037	396.18383	4
10	1007.468	504.23765	G	676.33343	338.67035	3
11	1064.489	532.74838	G	619.31197	310.15962	2
12			K-Ben	562.29050	281.64889	1

O14686 (Histone-lysine N-methyltransferase 2D) Sequence: KGEAEGPGGK, K1-BenKPlus415 (415.17770 Da) (position: lysine 4832)

#1	b⁺	Seq.	y +	#2
1	544.27994	K-Ben		10
2	601.30140	G	801.37372	9
3	730.34400	E	744.35226	8
4	801.38111	А	615.30967	7
5	930.42370	E	544.27255	6
6	987.44517	G	415.22996	5
7	1084.497	Р	358.20850	4
8	1141.519	G	261.15573	3
9	1198.540	G	204.13427	2
10		К	147.11280	1
]	120 02071			
-		247.14242		
-	117,10101	D18.30003	417.24170 8* 472.	12421
	ier iner			121.244
- 1	ي أن أن أن الحمر والم الم الم الم الم	لىل <u>ە</u> تەتبە <mark>ل</mark> ىز	ليابط الألبا بدعاليا	Olay -

Representative peptide spectra of modified peptides (Biotin-oxime sites, +415 on lysine) <u>All these peptides are identified from nuclear extract of LnCap without treatment with</u> <u>TACO chemistry.</u>

-TACO modified peptides:

Q86YW9 (Mediator of RNA polymerase II transcription subunit 12-like protein)

Sequence: LDPAGSFVPTNTK, K13-BenKPlus415 (415.17770 Da) (position: lysine 1851)

b+	b ²⁺	Seq.	y ⁺	y ²⁺	#2			
114.09134	57.54931	L			13			
229.11828	115.06278	D	1648.788	824.89798	12			
326.17105	163.58916	Р	1533.761	767.38451	11			
397.20816	199.10772	А	1436.708	718.85813	10			
454.22962	227.61845	G	1365.671	683.33957	9			
541.26165	271.13446	S	1308.650	654.82884	8			
688.33007	344.66867	F	1221.618	611.31283	7			
787.39848	394.20288	V	1074.549	537.77862	6			
884.45124	442.72926	Р	975.48155	488.24441	5			
985.49892	493.25310	Т	878.42879	439.71803	4			
1099.541	550.27456	Ν	777.38111	389.19419	3			
1200.589	600.79840	Т	663.33818	332.17273	2			
		K-Ben	562.29050	281.64889	1			
	ь+ 114.09134 229.11828 326.17105 397.20816 454.22962 541.26165 688.33007 787.39848 884.45124 985.49892 1099.541 1200.589	b ⁺ b ²⁺ 114.09134 57.54931 229.11828 115.06278 326.17105 163.58916 397.20816 199.10772 454.22962 227.61845 541.26165 271.13446 688.33007 344.66867 787.39848 394.20288 884.45124 442.72926 985.49892 493.25310 1099.541 550.27456 1200.589 600.79840	b* b ²⁺ Seq. 114.09134 57.54931 L 229.11828 115.06278 D 326.17105 163.58916 P 397.20816 199.10772 A 454.22962 227.61845 G 541.26165 271.13446 S 688.33007 344.66867 F 787.39848 394.20288 V 884.45124 442.72926 P 985.49892 493.25310 T 1099.541 550.27456 N 1200.589 600.79840 T	b* b2* Seq. y* 114.09134 57.54931 L 1 229.11828 115.06278 D 1648.788 326.17105 163.58916 P 1533.761 397.20816 199.10772 A 1436.708 454.22962 227.61845 G 1365.671 541.26165 271.13446 S 1308.650 688.33007 344.66867 F 1221.618 787.39848 394.20288 V 1074.549 884.45124 442.72926 P 975.48155 985.49892 493.25310 T 878.42879 1099.541 550.27456 N 777.38111 1200.589 600.79840 T 663.33818	b+ b ²⁺ Seq. y+ y ²⁺ 114.09134 57.54931 L	b* b ²⁺ Seq. y* y ²⁺ #2 114.09134 57.54931 L 13 229.11828 115.06278 D 1648.788 824.89798 12 326.17105 163.58916 P 1533.761 767.38451 11 397.20816 199.10772 A 1436.708 718.85813 10 454.22962 227.61845 G 1365.671 683.33957 9 541.26165 271.13446 S 1308.650 654.82884 8 688.33007 344.66867 F 1221.618 611.31283 7 787.39848 394.20288 V 1074.549 537.77862 6 884.45124 442.72926 P 975.48155 488.24441 5 985.49892 493.25310 T 878.42879 439.71803 4 1099.541 550.27456 N 777.38111 389.19419 3 1200.589 600.79840 T 663.33818		

References

- 1. Chan, W. C.; White, P. D. Fmoc solid phase peptide synthesis: A practical approach (Oxford Univ. Press, New York, 2000).
- Swaminathan, J.; Boulgakov, A.A.; Hernandez, E. T.; Bardo, A. M.; Bachman, J. L.; Marotta, J.; *et al.* Highly parallel single-molecule identification of proteins in zeptomolescale mixtures. *Nat. Biotechnol.* **36**, 1076–1082 (2018).