Splice site	Primer	Sequence $(5' \rightarrow 3')^a$
mCherry	mCherry-F	5'- <u>acgcgt</u> cctagcgctaccggtcgccaccatggtgagcaagggcgaggaggataac-3' (MluI)
	mCherry-R	5'-caaaattcaaagtctgtttcactccggacttgtacagctcgtccatgccgccggtg-3'
F2A	F2A-F	5'-tccggagtgaaacagactttgaattttgaccttctgaagttggcaggagacgttgag-3'
	F2A-R	5'-caaggcggtcactggtaaggccatgggcccagggttggactcaacgtctcctgcca-3'
CD8α signaling	SP-F	5'-atggccttaccagtgaccgccttgctcctgccgctggccttgctgctccacgccg-3'
peptide	SP-R	5'-cagactccaacagctgcacctccggcctggcggcgtggag-3'
	dASGR1-F1	5'-gaggtgcagctgttggagtctgggggggggtccctgcgtc-3'
	dASGR1-R1	5'-gccatcgcatacttctcaaaggtgaatccggaggctgcacaggagagacgcagggaccc-3'
	dASGR1-F2	5'-gaagtatgcgatggcgtgggtccgccaggccccagggaagggtctggagtgggtctcac-3'
anti-ASGR1	dASGR1-R2	5'-cggagtctgcgtagtatgtcgtcacacccctcgccgaaatccgtgagacccactccag-3'
dAb(H)	dASGR1-F3	5'-ctacgcagactccgtgaagggccggttcaccatctcccgcgacaattccaagaacac-3'
	dASGR1-R3	5'-cggtgtcctcagcacgcaggctgttcatttgcagatacagcgtgttcttggaattg-3'
	dASGR1-F4	5'-gtgctgaggacaccgcggtatattactgtgcgaaacataagcggcacgagcatac-3'
	dASGR1-R4	5'-gctcgagacggtgaccagggttccctgaccccaggagtcaaaacgagtatgctcgtgcc-3'
CD8α hinge*	CD8-HF	5'-gtcaccgtctcgagcaccacgacgccagcgccgcgaccaccaacac-3'
	CD8-HR	5'-caaccaccagcacccaaaaatcacaggcgaagtccagc-3'
CD28 TM &	CD28-TF	5'-ttttgggtgctggtggtggtggtggtggagtcctg-3'
CD28/4-1BB	BB-endo-R	5'- <u>gtcgac</u> ctacagttcacatcctccttcttcttc-3'(SalI)
endo-domian ^b		
GPC3	GPC3-F	5'- <u>acgcgt</u> cctagcgctaccggtcgccaccatggccgggaccgtgcgcaccgcg -3' (MluI)
	GPC3-R	5'- <u>etcgac</u> ctatcagtgcaccaggaagaagaagaagcacaccaccgagatggccatg-3' (SalI)
ASGR1	ASGR1-F	5'- <u>acgcgt</u> cctagcgctaccggtcgccaccatgaccaaggagtatcaagaccttc-3' (MluI)
	ASGR1-R	5'-gtcgacctattaaaggagag gtggctcctggctggc-3' (Sall)

Supplementary Table 1. Primers used for the construction of the vectors in this study.

a. The underlined nucleotides are restriction sites of the enzymes indicated in the brackets at the ends. **b.** The PCR template is the previously constructed vector α GPC3-28BBZ CAR [1].

Supplementary Figure 1.

The H-score of GPC3 and ASGR1 staining in scatter plots. The scattering of H-scores for GPC3 and ASGR1 expression in hepatocellular carcinoma (HCC) and adjacent normal liver is illustrated in scatter plots. The mean and standard errors are indicated. **a** The overexpression of GPC3 was detected in tumor samples, and there was no differential expression among the HCC samples at different stages. **b** The H-scores [2] for ASGR1 of each category were not significantly different.

Supplementary Figure 2.

A schematic diagram depicting the mechanism of dual-targeted T cell activation. This dual-targeted strategy mimics the natural activation process of T cells. T cells only completely activate when they recognize GPC3 and ASGR1 simultaneously. If either GPC3 or ASGR1 is absent, as occurs in normal tissue, the T cells will not undergo optimal activation.

Supplementary Figure 3.

T cells were effectively transduced with the αASGR1-28BB- or/and αGPC3-Z-encoding vectors. Representative green fluorescence (eGFP) and red fluorescence (mCherry) photomicrographs (scale bar, 50 μm) of GZ, A28BB and GZ+A28BB T cells after gene transfer.

Supplementary Figure 4.

The *in vitro* expansion of T cells after re-stimulation with irradiated α K562-64/86. On day 14, at the end of one cycle of activation, T cells were then re-stimulated by irradiated α K562-64/86 cells. The arrows indicate re-stimulation of T cells using freshly irradiated α K562-64/86 cells every week.

Supplementary Figure 5.

The *in vivo* growth of MHCC-97L cells was not significantly affected by the introduction of GPC3 and/or ASGR1. 2 \times 10⁶ MHCC-97L-vec, MHCC-97L-G⁺, MHCC-97L-A⁺, or MHCC-97L-G⁺A⁺ cells were injected subcutaneously into the right flank of NOD/SCID mice (n=5). **a** The tumor weight of xenografts treated with saline. The adoptively transferred human T cells in subsequent animal experiments were re-suspended in saline. **b** Growth curve of the vector- and gene-transduced MHCC-97L cells (P> 0.05).

References

1. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, Kong J, Wang H, Yang S, Gu J, Li Z (2014) Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20 (24):6418-6428. doi:10.1158/1078-0432.CCR-14-1170

2. Shi B, Abrams M, Sepp-Lorenzino L (2013) Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J Histochem Cytochem 61 (12):901-909. doi:10.1369/0022155413503662