

Supplemental Figure 1. Dose-response of PSK-induced IFN- γ production in $\gamma\delta$ and $\alpha\beta$ T cells. Freshly isolated splenocytes from neu-tg mice were treated with PSK (0, 10, 50, or 100 µg/mL) for 48 hrs. Brefeldin A was included during the last 16 hours of the incubation. Then the level of intracellular IFN- γ was measured by FACS. (A) Representative dot plots of IFN- γ expression in $\gamma\delta$ or $\alpha\beta$ T cells from one experiment. (B) Bar graph of PSK-induced IFN- γ production in $\gamma\delta$ and $\alpha\beta$ T cells. Each bar represents mean±sem of three independent experiments. *, p<0.05, **, p<0.01, ***, p<0.001.

Supplemental Figure 2. <u>PSK induces CD107a expression in $\gamma\delta$ T cells.</u> (A) Representative dot plots showing the expression of CD107a in control PBS and PSK-treated $\gamma\delta$ T cells in different culture systems: $\gamma\delta$ T cell alone, $\gamma\delta$ +DC trans-well culture, or $\gamma\delta$ +DC co-culture. (B) Bar graph summarizing the percentage of CD107a⁺ $\gamma\delta$ T cells in PBS and PSK-treated $\gamma\delta$ T cells in different culture systems. Each bar represents mean±sem of four independent experiments. *, p<0.05, by Student *t* test.

Supplemental Figure 3. <u>PSK-induced $\gamma\delta$ T cell activation is dependent on TLR2.</u> $\gamma\delta$ T cells and BMDC from TLR2^{-/-} mice or wild type (wt) C57/BL6 mice were stimulated with PSK (100 µg/ml) for 48 hours. Then the culture supernatant was collected and the level of IFN- γ was measured by ELISA. The level of IFN- γ in control (wt $\gamma\delta$ T cells and wt BMDC) was set to 100% and the levels of IFN- γ in other culture conditions were shown as the percentage of control. Data shown are representative of 5 independent experiments (mean±sem). *, p<0.05 from control, by Student t test.