Supplementary Table s1: Primers' sequences

Gene	Forward primer 5'-3'	Reverse primer 5'-3'	Tm	Reference
Arg-1	AACACGGCAGTGGCTTTAACC	GGTTTTCATGTGGCGCATTC	59	(1)
Pd-1	TTCAGGTTTACCACAAGCTGG	TGACAATAGGAAACCGGGAA	58	Designed by us
IL-9	GGCATCAGAGACACCAATTACCT	TGGCATTGGTCAGCTGTAACA	59	(2)
II-1Ra	CAAGCTGTGCCTGTCTTGTGC	TGCTCAGATCAGTGATGTTAA	58	Designed by us
Ccl5	GCTGCTTTGCCTACCTCTCC	TCGAGTGACAAACACGACTGC	60	(3)
Ido	CGGACTGAGAGGACACAGGTTAC	ACACATACGCCATGGTGATGTAC	61	(4)
II-10	ATTTGAATTCCCTGGGTGAGAAG	CACAGGGGAGAAATCGATGACA	58	(5)
Tnf-a	CTGTAGCCCACGTCGTAGC	TTGAGATCCATGCCGTTG	58	(6)
Tgf-в1	TGCTAATGGTGGACCGCAA	CACTGCTTCCCGAATGTCTGA	62	(7)
Gapdh	GTGTTCCTACCCCCAATGTG	GTCATTGAGAGCAATGCCAG	59	(8)

References:

1. Zhang T, Guo W, Yang Y et al. (2013) Loss of SHP-2 activity in CD4+ T cells promotes melanoma progression and metastasis. Scientific reports. 3: 2845. doi: 10.1038/srep02845

2. Stordeur P, Poulin LF, Craciun L, Zhou L, Schandene L, de Lavareille A, Goriely S, Goldman M (2002) Cytokine mRNA quantification by real-time PCR. Journal of immunological methods. 259: 55-64.

3. Shukla PK, Chaudhry KK, Mir H, Gangwar R, Yadav N, Manda B, Meena AS, Rao R (2016) Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC cancer. 16: 189. doi: 10.1186/s12885-016-2180-x

4. Lee KJ, Moon JY, Choi HK et al. (2010) Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance. Clinical and experimental immunology. 161: 298-305. doi: 10.1111/j.1365-2249.2010.04170.x

5. Yee CS, Yao Y, Xu Q, McCarthy B, Sun-Lin D, Tone M, Waldmann H, Chang CH (2005) Enhanced production of IL-10 by dendritic cells deficient in CIITA. J Immunol. 174: 1222-9.

6. Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM, O'Mahony L, Shanahan F (2012) Bifidobacterium infantis 35624 protects against salmonellainduced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clinical and translational gastroenterology. 3: e15. doi: 10.1038/ctg.2012.9

7. Copple BL (2010) Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver international : official journal of the International Association for the Study of the Liver. 30: 669-82. doi: 10.1111/j.1478-3231.2010.02205.x

8. Katsara O, Mahaira LG, Iliopoulou EG et al. (2011) Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem cells and development. 20: 1549-61. doi: 10.1089/scd.2010.0280

Supplementary Table s2: Statistical comparisons between clones and lines regarding diameter, the ratio mass/diameter and diameter.

DIAMETER							
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,500*	0,195	0,017	0,155	0,450	0,010
15	0,500		0,134	0,017	0,154	0,450	0,010
17	0,195	0,134		0,420	0,277	0,154	0,232
22	0,017	0,017	0,420		0,226	0,058	0,045
mix	0,155	0,154	0,277	0,226		0,152	0,041
B16.F1	0,450	0,450	0,154	0,058	0,152		0,018
B16.F10	0,010	0,010	0,232	0,045	0,041	0,018	
	MASS/DIAMETER						
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,170	0,056	0,206	0,171	0,095	0,016
15	0,170		0,043	0,365	0,100	0,142	0,043
17	0,056	0,043		0,023	0,360	0,340	0,450
22	0,206	0,365	0,023		0,016	0,004	0,004
mix	0,171	0,100	0,360	0,016		0,277	0,095
B16.F1	0,095	0,142	0,340	0,004	0,277		0,018
B16.F10	0,016	0,043	0,450	0,004	0,095	0,018	
			MAS	6S			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,100	0,016	0,360	0,032	0,032	0,057
15	0,100		0,016	0,278	0,032	0,032	0,029
17	0,016	0,016		0,008	0,274	0,274	0,500
22	0,360	0,278	0,008		0,004	0,016	0,056
mix	0,032	0,032	0,274	0,004		0,500	0,278
B16.F1	0,032	0,032	0,274	0,016	0,500		0,278
B16.F10	0,057	0,029	0,500	0,056	0,278	0,278	

* P values, Mann Whitney t test.

Pd-1							
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,014*	0,365	0,056	0,014	0,095	0,008
15	0,014		0,278	0,277	0,014	0,008	0,008
17	0,365	0,278		0,111	0,032	0,028	0,008
22	0,056	0,277	0,111		0,008	0,008	0,004
mix	0,014	0,014	0,032	0,008		0,365	0,056
B16.F1	0,095	0,008	0,028	0,008	0,365		0,421
B16.F10	0,008	0,008	0,008	0,004	0,056	0,421	
			// -1	0			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,100	0,142	0,277	0,014	0,278	0,368
15	0,100		0,095	0,365	0,014	0,056	0,056
17	0,142	0,095		0,075	0,556	0,345	0,154
22	0,277	0,365	0,075		0,008	0,154	0,210
mix	0,014	0,014	0,556	0,008		0,032	0,032
B16.F1	0,278	0,056	0,345	0,154	0,032		0,500
B16.F10	0,368	0,056	0,154	0,021	0,032	0,500	
			//-9	9			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,100	0,056	0,452	0,242	0,500	0,277
15	0,100		0,365	0,206	0,171	0,365	0,278
17	0,056	0,365		0,345	0,095	0,273	0,155
22	0,452	0,206	0,345		0,500	0,420	0,500
mix	0,242	0,171	0,095	0,500		0,500	0,452
B16.F1	0,500	0,365	0,273	0,420	0,500		0,421
B16.F10	0,277	0,278	0,155	0,500	0,452	0,421	
			T nf-	-α			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,242	0,008	0,206	0,242	0,277	0,095
15	0,242		0,032	0,095	0,242	0,206	0,095
17	0,008	0,032		0,377	0,095	0,210	0,154
22	0,206	0,095	0,377		0,206	0,345	0,421
Mix	0,242	0,242	0,095	0,206		0,452	0,365
B16.F1	0,277	0,206	0,210	0,345	0,453		0,500
B16.F10	0.095	0.095	0 154	0 421	0 365	0 500	

Supplementary Table s3: Statistical comparisons between clones and lines regarding different gene expression levels

Ccl5								
Clone/line	13	15	17	22	mix	B16.F1	B16.F10	
13		0,242	0,032	0,277	0,014	0,277	0,043	
15	0,242		0,016	0,206	0,014	0,095	0,016	
17	0,032	0,016		0,075	0,095	0,273	0,500	
22	0,277	0,206	0,075		0,032	0,420	0,154	
Mix	0,014	0,014	0,095	0,032		0,032	0,056	
B16.F1	0,277	0,095	0,273	0,420	0,032		0,173	
B16.F10	0,043	0,016	0,500	0,154	0,056	0,173		
			<i>II-1</i>	ra				
Clone/line	13	15	17	22	mix	B16.F1	B16.F10	
13		0,442	0,095	0,206	0,100	0,500	0,160	
15	0,442		0,277	0,277	0,171	0,452	0,142	
17	0,095	0,277		0,154	0,365	0,420	0,500	
22	0,206	0,277	0,154		0,095	0,154	0,048	
mix	0,100	0,171	0,365	0,095		0,206	0,500	
B16.F1	0,500	0,452	0,420	0,154	0,206		0,104	
B16.F10	0,160	0,142	0,500	0,048	0,500	0,104		
			Arg	g				
Clone/line	13	15	17	22	mix	B16.F1	B16.F10	
13		0,171	0,230	0,206	0,342	0,452	0,365	
15	0,171		0,277	0,360	0,057	0,095	0,032	
17	0,230	0,277		0,345	0,056	0,155	0,210	
22	0,206	0,360	0,345		0,095	0,345	0,274	
mix	0,342	0,057	0,056	0,095		0,452	0,278	
B16.F1	0,452	0,095	0,155	0,345	0,452		0,210	
B16.F10	0,365	0,032	0,210	0,274	0,278	0,210		
a l (1)			Tgf	<u>-в</u>				
Clone/line	13	15	17	22	mix	B16.F1	B16.F10	
13		0,041	0,206	0,402	0,500	0,095	0,032	
15	0,041	0 0 7 7	0,277	0,365	0,057	0,278	0,278	
1/	0,206	0,277	0.500	0,500	0,277	0,450	0,345	
22	0,402	0,365	0,500	0 45 2	0,452	0,421	0,345	
	0,500	0,057	0,277	0,452	0.200	0,206	0,055	
B16.F1	0,095	0,278	0,450	0,421	0,206	0.074	0,274	
B10.F10	0,032	0,278	0,345	0,345	0,055	0,274		
Cione/line	13	15	1/	22	MIX	B10.F1	B16.F10	
15	0 0 2 0	0,028	0,095	0,095	0,342	0,277	0,452	
15	0,026	0.452	0,452	0,500	0,057	0,250	0,095	
17	0,095	0,452	0 500	0,500	0,050	0,210	0,111	
	0,095	0,00	0,000	0.206	0,200	0,275	0,155	
R16 E1	0,342	0,057	0,050	0,200	0 500	0,300	0,300	
B16 E10	0,277	0,230	0,210	0,273	0,500	0 272	0,273	
D10.F10	0,452	0,095	0,111	0,155	0,500	0,273		

* P values, Mann Whitney t test

CD45							
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,243*	0,278	0,143	0,057	0,095	0,032
15	0,243		0,143	0,452	0,014	0,008	0,008
17	0,278	0,143		0,111	0,008	0,004	0,004
22	0,143	0,452	0,111		0,008	0,040	0,040
mix	0,057	0,014	0,008	0,008		0,278	0,278
B16.F1	0,095	0,008	0,004	0,040	0,278		0,210
B16.F10	0,032	0,008	0,004	0,040	0,278	0,210	
			CD	3			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,243	0,452	0,143	0,057	0,056	0,032
15	0,243		0,143	0,278	0,014	0,008	0,008
17	0,452	0,143		0,155	0,008	0,004	0,004
22	0,143	0,278	0,155		0,008	0,004	0,004
mix	0,057	0,014	0,008	0,008		0,365	0,278
B16.F1	0,056	0,008	0,004	0,004	0,365		0,345
B16.F10	0,032	0,008	0,004	0,004	0,278	0,345	
			CD	4			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,243	0,365	0,365	0,029	0,032	0,056
15	0,243		0,206	0,278	0,014	0,008	0,008
17	0,365	0,206		0,421	0,008	0,004	0,008
22	0,365	0,278	0,421		0,007	0,004	0,004
mix	0,029	0,014	0,008	0,007		0,452	0,365
B16.F1	0,032	0,008	0,004	0,004	0,452		0,421
B16.F10	0,056	0,008	0,008	0,004	0,365	0,421	
			CD	8			
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,243	0,452	0,143	0,057	0,056	0,032
15	0,243		0,206	0,500	0,014	0,008	0,008
17	0,452	0,206		0,048	0,008	0,004	0,004
22	0,143	0,500	0,048		0,008	0,004	0,004
mix	0,057	0,014	0,008	0,008		0,500	0,143
B16.F1	0,056	0,008	0,004	0,004	0,500		0,210
B16.F10	0,032	0,008	0,004	0,004	0,143	0,210	
CD4/CD8							
Clone/line	13	15	17	22	mix	B16.F1	B16.F10
13		0,500	0,500	0,143	0,343	0,453	0,032
15	0,500		0,500	0,133	0,243	0,452	0,143
17	0,500	0,500		0,210	0,278	0,500	0,075
22	0,143	0,133	0,210		0,452	0,155	0,004
mix	0,343	0,243	0,278	0,452		0,278	0,032
B16.F1	0,453	0,452	0,500	0,155	0,278		0,048
B16.F10	0,032	0,143	0,075	0,004	0,032	0,048	

Supplementary Table s4: Statistical comparisons between clones and lines regarding CD45, CD3, CD4, CD8 infiltration and the ratio of CD4/CD8

* P values, Mann Whitney t test.