
SI 1.1 Method replication and validation 
For each task in the HCP dataset, we compared PC time series to the task block regressors (SI 
Figure 1A-B), as was performed in Shine et al., 20191. We created these subject-specific 
regressors by noting the start and stop times for each task block and convolving the block 
structure with the canonical hemodynamic response function defined in SPM12. Critically, the 
LANGUAGE task did not have any “rest” blocks, so we chose the auditory language task to 
serve as the rest time points and the math portion to serve as the task block, in line with Shine 
et al., 20191. We constructed task block regressors for each task scan, split by phase encoding. 
We also concatenated all task block regressors for a given phase encoding in each subject to 
get the “All Tasks” regressor. Lastly, we took the absolute value of the derivative of the “All 
Tasks” regressors. One subject was missing task regressor information and was excluded from 
this analysis. 
  



 
SI Figure 1: PCA replication and validation. (A) PCs were constructed by concatenating all task scans for every 
subject in the HCP dataset and performing PCA. Time series associated with the first and fifth PCs were correlated 
with task block regressors. Colors represent which PC time series was used in the correlation. The bars represent the 
mean correlation (across phase encodings and all subjects) for each correlation pair with error bars indicating one 
standard deviation. (B) Time series associated with the second, third, and fourth PCs were correlated with task block 
regressors. Colors represent the mean correlation across phase encodings and subjects. (C) PCs were constructed 
either in task scans for all HCP subjects (Full Dataset) or in 1000 subsamples of subjects from 10 families 
(Subsample). Their respective line plots indicate the cumulative variance explained by the first five PCs in the full 
dataset. The Subsample line also has an error band around it indicating the standard deviation of the measure across 
the 1000 iterations. (D) The full concatenated time series was projected away from the top five full-dataset PCs. 
Then, for each of the 1000 iterations, the amount of additional variance explained by the top five subsample-derived 
PCs was calculated. Points represent these values and the violin plot visualizes their distribution with the 1st, 2nd, 
and 3rd quartiles shown. The dashed line indicates the amount of variance explained by the sixth full-dataset PC. 
 
When evaluating connectome quality in the same dataset in which we constructed the PCs, we 
used a subsampling procedure whereby subjects from 10 families (to control for family 
structure) were used to construct the PCs and the remaining subjects were used in the 
downstream analyses. This procedure was repeated 1000 times with different left-out families to 
ensure robust results without the risk of data leakage. To validate our subsampling procedure, 



we sought to verify that the top five subsample-derived PCs spatially and statistically 
recapitulated the top five full-dataset PCs. Here, we considered the full-dataset PCs as a ground 
truth and the subsample-derived PCs as estimates of the ground truth. For each iteration of the 
subsampling procedure, we calculated the cumulative percentage of variance explained by the 
top five subsample-derived PCs in the full concatenated dataset. Similarly, we calculated the 
cumulative percentage of variance explained by the top five full-dataset PCs in the same 
dataset. The cumulative percentage of variance explained by the subsample-derived PCs was 
similar to the percentage of variance explained by the full-dataset PCs (SI Figure 1C). This 
suggests that they behave in a statistically similar manner. Next, we considered whether the 
subsample-derived PCs and the full-dataset PCs explained variance from the same sources. 
We first projected the full concatenated dataset away from the top five full-dataset PCs. We then 
calculated the amount of variance explained in the projected time series by the top five 
subsample-derived PCs and compared it to the variance explained by the sixth full-dataset PC 
(SI Figure 1D). We observed that the variance explained by the sixth full-dataset PC was 
significantly higher than that explained by the top five subsample-derived PCs after the 
projection (p=0.002). Since, by construction, the sixth subsample-derived PC explains the next 
most amount of variance after the first five in the full dataset, this observation indicates that the 
top five subsample-derived PCs are a good spatial estimate of the ground truth. 
 
The test used in SI Figure 1D was a paired, one-way non-parametric subtraction test. We 
tested in both directions. The distribution of variance explained was subtracted from the 
variance explained by the sixth full-dataset PC. One minus the proportion of differences that are 
greater than 0 is the resulting p-value. Thus, to be significant, a test must produce an 
uncorrected p-value less than 0.025. 
 
 
  



 
SI Figure 2. Task block regressor overlap with PC time series. Task block regressors were created by convolving the 
HRF with the block structure of each task, and these were compared to the PC time series. Results are shown for the 
LR phase encoding in the subject whose PC1 time series was most correlated with the full concatenated task block 
regressor. Here, this is broken down by task type and PC number to show how each PC tracks each task individually. 
All PC time series are normalized to range from 0 to 1 for visualization purposes. 



 
SI Figure 3. PC spatial distribution. Each figure shows the weight for every node for a given PC, where red indicates 
a positive weight and blue indicates a negative weight. PC weights were scaled by 100 to have a fuller color bar. 
Visualization was performed using BioImage Suite at https://bioimagesuiteweb.github.io/webapp/. 



 
SI Figure 4. Example connectomes. To show how the PC projection procedure affects the resting-state 
connectomes, we show standard and caricatured connectomes for three subjects. All connectomes are reorganized 
and plotted by subnetwork2,3. 
 
SI 1.2 Multivariate reliability improves using multiple datasets 
As some of the multivariate reliability analyses resulted in single numbers, we provide tables to 
display the results. Fingerprinting was performed in the HCP dataset with PCs constructed in 
the CNP dataset (SI Table 1). Using CaricaturedCNP connectomes resulted in a 42% increase in 
accuracy compared to standard connectomes. 
 



Scan Condition Connectome Type Fingerprinting Accuracy (%) 

 
REST 

Standard 34.95 

CaricaturedCNP 48.18 

 
REST2 

Standard 33.21 

CaricaturedCNP 48.34 

SI Table 1. HCP fingerprinting in Standard vs CaricaturedCNP connectomes. Fingerprinting was performed using pairs 
of LR and RL phase-encoded scans for each condition. The resulting accuracy is the average across using each 
phase-encoding as the ‘Database’ and ‘Target Set’. 
 
Perfect separability rate (PSR) was calculated in the TRT dataset with PCs constructed for 
projection in both the HCP and CNP datasets (SI Table 2). Using CaricaturedHCP connectomes 
resulted in a 633% increase in PSR, and using CaricaturedCNP connectomes resulted in a 383% 
increase in PSR. 
 

Dataset Connectome Type PSR 

 
 

TRT 

Standard 1.5% 

CaricaturedHCP 11% 

CaricaturedCNP 7.25% 

SI Table 2. PSR analysis in the TRT dataset. PSR was calculated using all 20 scans available per subject. 
 
Likewise, discriminability analysis was performed in the HCP dataset with PCs constructed in 
the CNP dataset and in the TRT dataset with PCs constructed either in the HCP or CNP dataset 
(SI Table 3). In the HCP dataset, using CaricaturedCNP connectomes resulted in a 4% increase 
in discriminability. In the TRT dataset, using Caricatured connectomes resulted in a 1% increase 
in discriminability. 
  



Dataset Connectome Type Discriminability 

 
HCP REST 

Standard 0.9074 

CaricaturedCNP 0.9414 

 
HCP REST2 

Standard 0.9063 

CaricaturedCNP 0.9453 

 
 

TRT 

Standard 0.9704 

CaricaturedHCP 0.9842 

CaricaturedCNP 0.9800 

SI Table 3. Discriminability using an external dataset to construct PCs. Discriminability analysis was performed in the 
HCP dataset using LR and RL phase-encoded scans for each condition and in the TRT dataset using all 20 scans 
available per subject. 
 
SI 1.3 CPM mean squared error (MSE) accuracy and feature space quality 
To complement the CPM accuracy analyses using correlation for the continuous phenotypes, 
we also assessed model accuracy via MSE (SI Figure 5), where a lower MSE indicates a 
superior model. For age prediction in the HCP dataset using CaricaturedHCP connectomes (SI 
Figure 5A; left panel), the MSE decreased by 2% (p’s<0.0001; Bonferroni corrected). For IQ 
prediction (SI Figure 5B; left panel), the MSE decreased by 1% (p’s<0.0001; Bonferroni 
corrected). We repeated both of these analyses instead using CaricaturedCNP connectomes. For 
age prediction (SI Figure 5A; right panel), MSE decreased by 1% when using Caricatured 
connectomes. The difference between Standard and Caricatured performance was significant 
(p’s<0.0001; Bonferroni corrected). Likewise, for IQ prediction (SI Figure 5B; right panel), MSE 
decreased by 1%. This difference was significant (p’s<0.004; Bonferroni corrected). P-values 
were calculated using the same corrected paired t-test used to evaluate correlation-based 
accuracy. Corrections for multiple comparisons were applied analogously. 
 



 
SI Figure 5: CPM mean squared error (MSE). Models were built for age (A) and IQ (B) in the HCP LR data in 1000 
iterations. For the left panels, a subset of subjects were left out in each iteration to construct the PCs onto which 
resting-state scans of the remaining subjects were projected. For the right panels, the PCs were constructed using 
the CNP dataset. Models were assessed via MSE. The dots represent individual MSE for a given iteration, and the 
violin plots demonstrate the distribution of those points. P-values are shown for all relevant comparisons. We chose 
0.0001 as the lowest bound above which to report p-values. 
 
We also investigated the quality of the models built for each phenotype by observing properties 
of the feature space. Specifically, we assessed whether the selected features had substantial 
multicollinearity, which would indicate a less interpretable model (SI Figures 6-7), as well as 
how many features were selected (SI Figure 8). To assess multicollinearity, we used PCA on 
the feature space and calculated both the percentage of PCs needed to explain 80% of the 
feature space variance (SI Figure 6) as well as the normalized Shannon entropy using the 



percentage of variance explained by each PC as the probability distribution (SI Figure 7). In 
both cases, lower values would indicate less multicollinearity among the features.  
 

 
SI Figure 6: Feature multicollinearity measured by percentage of feature space PCs needed to explain 80% of the 
variance. To estimate the features used in each of the 1000 models built in the CPM process, we iterated through 
each of the subsamples and found the p-value for the association between the phenotype and each edge across 
subjects. As the p-value threshold for the models was 0.05, only edges with lower p-values were selected as 
features. Vectors of edge values across subjects were created for the features surviving the threshold. These were 
then z-scored and input into PCA such that the PCs were coefficients for linear combinations of features. Each point 
represents the percentage of PCs needed to explain 80% of the feature space for that iteration, and the violin plots 
show the distributions. This process was done for phenotypes age (A), IQ (B), and sex (C). 



 

 
SI Figure 7: Feature multicollinearity measured by entropy of feature space PCs. To estimate the features used in 
each of the 1000 models built in the CPM process, we iterated through each of the subsamples and found the p-value 
for the association between the phenotype and each edge across subjects. As the p-value threshold for the models 
was 0.05, only edges with lower p-values were selected as features. Vectors of edge values across subjects were 
created for the features surviving the threshold. These were then z-scored and input into PCA such that the PCs were 
coefficients for linear combinations of features. From the feature PCA for each iteration, we calculated the fraction of 
variance explained by each PC. Since these fractions sum to 1 and are non-negative, we treated them as a 
probability distribution and used them to calculate the normalized Shannon entropy. Each point represents the 
entropy value with the violin plots showing the distributions. This process was done for phenotypes age (A), IQ (B), 
and sex (C). 



 

 
SI Figure 8: Number of features in each model. To estimate the features used in each of the 1000 models built in the 
CPM process, we iterated through each of the subsamples and found the p-value for the association between the 
phenotype and each edge across subjects. As the p-value threshold for the models was 0.05, only edges with lower 
p-values were selected as features. Here, the number of features that survived the threshold in each iteration were 
noted by the points on the graph, with the violin plot showing the distribution. This process was done for phenotypes 
age (A), IQ (B), and sex (C). 
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