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SUPPLEMENTAL FIGURES 1-9 
 

 
Supplemental Figure 1: Treatment of tumor cells with IFNg causes profound metabolic and 
inflammatory molecular processes that influence T cell killing. A-C) CyTOF staining of B16F10 
tumor cells either cultured with or without the presence of IFNg. A) IdU and H2Kb staining shown 
for all cells. B) pHH3-S10 and H2Db staining shown for cells positive for IdU. C) G6PD staining 
shown for all cells. D) Percent killing of cognate tumor cells over time by expanded therapeutic T 
cells pre-incubated with IFNg or not. Tumor and T cells were incubated at a 1:1 ratio (mean of 
n=3 replicates with error bars showing SEM), is an extended timeline of Figure 2C. 
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Supplemental Figure 2: Schematic of the tumor/T cell microenvironment model's Vivarium 
interface, illustrating the simulation's formal structure. A) Vivarium's basic elements. The process, 
shown as a rectangular flowchart symbol, is a modular model that contains the parameters, an 
update function, and ports. The store, shown as the flowchart symbol for a database, holds the 
state variables and schemas that determine how updates are handled. B) Agents are bundles of 
processes and stores wired together (called composites in Vivarium terminology) across a single 
level. The figure shows the main tumor process wired with processes called local field (for reading 
the external concentrations), divide (for dividing the cell), and death (for removing the cell from 
the simulation). C) Cell agents are compartments embedded in a hierarchy depicted here as a 
hierarchical network with discrete layers. Outer compartments are shown above and inner 
compartments below. The cells all exist under "agents" and the external fields are held in an 
adjacent store called "fields". 
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Supplemental Figure 3: Representation and development of individual components of the 
multiscale agent-based model. A) T cell process is composed of two T cell states. PD-1- CD8+ T 
cells become PD-1+ T cells upon chronic stimulation and both PD-1+ T cells and PD-1- T cells can 
downregulate TCR. Both T cell types express TCR, IFNg, and produce cytotoxic packets. 
Molecular regulation is governed by activation and stimulation of tumor cells. B) Representative 
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output of simulating only the T cell process. Each graph represents a specific molecule or 
molecular process that is being tracked within the simulation, and the first word describes the 
level in which that molecular process is connected to other pieces of the simulation. Starting with 
top-to-bottom and right-to-left, neighbors present PD-1 measures the surface level ligand 
expression of the molecule PD-1 on a T cell; internal total cytotoxic packets measures the total 
number of cytotoxic granules within a T cells over time; neighbors present TCR measures the 
surface level ligand expression of the T cell receptor on a T cell; internal refractory count 
measures the total number of times T cells have been activated and entered a refractory state 
post stimulation; neighbors transfer cytotoxic packets measures the total number of cytotoxic 
granules a T cells is outputting to tumor cells over time; internal TCR timer measures the total 
time that T cells have been activated for. C) Tumor cell process is composed of two tumor cell 
states. Ki67+ PDL1- MHCI- tumor cells can become Ki67- PDL1, MHCI+ tumor cells upon exposure 
to IFNg. Both tumor cell types express IFNgR. Molecular regulation is governed by interaction with 
T cells. D) Representative output of simulating only the tumor cell process. Starting with top-to-
bottom and right-to-left, neighbors present PDL1 measures the surface level ligand expression of 
the molecule PDL1 on a tumor cell; internal IFNg measures the total number of IFNg molecules a 
tumor cell has taken up over time; neighbors present MHCI measures the surface level ligand 
expression of MHC-I on a tumor cell.  E) The T cell compartment extends the T cell process by 
adding division and death processes that can be asymmetric. F) Representative output of 
simulating the T cell compartment. Starting with top-to-bottom, boundary PD-1p divide count 
measures the number of times the PD-1+ CD8+ T cells have divided in the course of the simulation; 
boundary PD-1n divide count measures the number of times the PD-1- CD8+ T cells have divided 
in the course of the simulation. G) The tumor cell compartment adds proliferation and death 
processes. H) Representative output of simulating the tumor cell compartment, such as boundary 
PDL1n divide count measures the number of times the PDL1- tumor cells have divided in the 
course of the simulation. 
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Supplemental Figure 4: Conditions used to initialize the T cell phenotype in the multiscale model. 
A) Average amount of IFNg produced by T cells after restimulation post-10 day culture period as 
measured by an ELISA assay (n=2 technical replicates). B) Nearly 80% of restimulated T cells 
used for the in vitro killing assay express PD-1 (CD279) as plotted versus CD44 as measured by 
CyTOF. This condition was used to initialize the T cell phenotype for the agent-based model. C) 
Percent of memory versus effector cells determined post stimulation by CyTOF for both the 75% 
PD-1+ T cell condition and the 25% PD-1+ T cells condition (stimulated in presence of 2HC). 
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Supplemental Figure 5: Agent-based modeling results of treatment with 25% PD-1+ T cells, 75% 
PD-1+ T cells, or no T cells. A) Total number of tumor cell deaths quantified for T cell-induced 
killing and apoptotic events over 60-h simulation of treatment with 25% PD-1+ T cells, 75% PD-1+ 
T cells, or no T cells (mean of n=4 replicates with shading showing SEM). B) Number of T cells 
during 60-h simulation of treatment with 25% PD-1+ and 75% PD-1+ T cells (mean of n=4 
replicates with shading showing SEM). 
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Supplemental Figure 6: Therapeutic T cells cause tumor phenotype conversion which is 
dependent on initial T cell phenotype. A) Average target molecule expression in either Tumor 
Ki67+ or Tumor PDL1+ MHCI+ cells as measured by CODEX multiplexed imaging following 
treatment with T cells (n=17 tumors, and >1 million cells). B) Correlation plots of percent of PD-
1+ CD8+ T cells (green), PD-1- CD8+ T cells (orange), PDL1- Tumor (salmon), and PDL1+ Tumor 
(blue) cells in tumor samples after 3 days of T cell therapy for CODEX multiplexed imaging of in 
vivo experiments versus in silico simulations (n=4 replicates per group). C) Total number of T cell 
deaths grouped by type in tumors treated with 25% PD-1+ T cells or 75% PD-1+ T cells (mean of 
n=4 replicates with shading showing SEM). D) Number of total T cell deaths in tumors treated 
with 25% PD-1+ T cells or 75% PD-1+ T cells (mean of n=4 replicates with shading showing SEM). 
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Supplemental Figure 7: Results from agent-based modeling simulations initialized with CODEX 
multiplexed imaging data. A) Total number of tumor cell deaths in simulations of treatment with 
25% PD-1+ T cells, 75% PD-1+ T cells, or no T cells. B) Tumor cell deaths due to T cell-induced 
killing and apoptotic events in simulations of indicated treatments. C) Numbers of PDL1+ and 
PDL1- tumor cells for each of the three treatment groups across the simulation. D) Number of T 
cells across the duration of the agent-based model for 25% PD-1+ and 75% PD-1+ T cell treatment 
conditions. For all panels: mean of n=4 replicates with shading showing SEM. 
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Supplemental Figure 8: Initialization of therapeutic T cells outside the tumor bed allows T cell 
phenotype preservation and greater numbers of T cells but faster tumor growth. A) Number of T 
cells by phenotype (PD-1+ and PD-1-) quantified across the duration of the agent-based model 
for 25% PD-1+ initialized outside and 25% PD-1+ T cell initialized inside conditions. B) Total 
number of T cell deaths quantified for 25% PD-1+ initialized outside and 25% PD-1+ T cell 
initialized inside conditions. C) Total number of tumor cells deaths by T cell-induced killing and 
apoptotic events by tumor cell phenotypes in simulations with 25% PD-1+ initialized outside and 
25% PD-1+ T cell initialized inside conditions. In all panels: mean of n=4 replicates with shading 
showing SEM. D-F) Different initializations of location of cells within the modeling frame for 75% 
PD-1+ T cell CODEX multiplexed data, with D) snapshots of initial and later timepoints in the 
modeling, E) Number of tumor cells and F) number of T cells compared between the same 
treatment group started in the bottom or center as a function of simulation time (mean of n=5 
replicates with shading showing SEM). 
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Supplemental Figure 9: Adding dendritic cells and lymph nodes to the tumor and T cell 
simulations enables greater numbers of sustained T cells over time and better control of tumor 
growth. A-D) Comparing simulations with added dendritic cells and LN processes versus 
simulations without LN and dendritic cells for: A) Number of T cells separated by phenotype, B) 
Total number of T cells within the tumor microenvironment over time quantified for 25% PD-1+ 
with and without lymph node (and dendritic cell) processes. C) Total number of T cell deaths 
quantified for 25% PD-1+ with and without lymph node (and dendritic cell) processes. D) Total 
number of tumor cells deaths by T cell-induced killing and apoptotic events by tumor cell 
phenotypes in simulations with 25% PD-1+ with and without lymph node (and dendritic cell) 
processes. In all panels A-D: mean of n=8 replicates with shading showing SEM. E-F) Comparing 
simulations of tumors treated with 25% PD-1+ T cells or 75% PD-1+ T cells simulated with a 
probabilistic T-cell activation and refractory timing mechanism and showing E) Total number of 
tumor cells and F) total number of subtype of the tumor cells over simulation time (n=3-5 replicates 
with shading showing SEM).  
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SUPPLEMENTAL TABLES 
Supplemental Table 1: Key model parameters and the source from the literature.  
 

Model name Value Source Location Rationale/Explanation 
bounds Vary Multiplexed 

Imaging Data 
main.py Size of tumor  

Depth 15 µm Based on an average 
single cell diameter 

n_tumors Vary Number of tumors 
found 

n_tcells Vary Number of T cells 
found 

n_dendritic Vary Number of T cells 
found 

dendritic_state_act
ive 

Vary Number of activated 
dendritic cells found 

diameter 7.5 µm Multiplexed 
Imaging Data 

t_cell.py Diameter of average T 
cell 

initial_PD-1n, 
cell_state 

Vary Multiplexed 
Imaging Data, 
CyTOF data 

Based on percentage 
of cells that are PD-1- 
when transferred in 

Location [x, y] Vary Multiplexed 
Imaging Data 

Spatial position of T 
cells in simulation 

PD-1 Vary Multiplexed 
Imaging Data 

Total protein 
expressed of PD-1 

IFNg Vary CyTOF Data Number of IFNg that 
are produced per T 
cell upon activation 

PDL1_critical_num
ber, 

ligand_threshold 

1e4 (count/cell) 1 Threshold for 
neighboring cell to 
engage PD-1 on T 

cells 
TCR_downregulat

ed 
0 Number of TCR that 

are on a T cell post 
downregulation 

TCR_upregulated 50000 (count/cell) Number of TCR that 
are on a T cell 

refractory_count_t
hreshold 

3 (assuming 
stimulated 2 

during in vitro 
activation) 

Number of times that 
T cells become 

stimulated before 
becoming exhausted 

PD-
1n_divide_threshol

d 

5 Number of times that 
T cells divide before 
becoming exhausted 

activation_time 21600 s 2,3 Activation enables 6 
hours of activation and 

production of 
cytokines before 

enters refractory state  
activation_refracto

ry_time 
43200 s refractory period of 18 

hours (plus original 6 
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 h activation time 
counted) after 

activation period with 
limited ability to 

produce cytokines and 
cytotoxic packets and 
to interact with MHCI 

death_PD-
1p_14hr 

0.35 (within 
50400 s) 

4 Likelihood of T cell 
death for PD-1+ T cell 

death_PD-
1n_14hr 

0.1 (within 50400 
s) 

Likelihood of T cell 
death for PD-1- T cell 

death_PD-
1p_next_to_PDL1

p_14hr 

0.475 (within 
50400 s) 

5,6 Likelihood of T cell 
death for PD-1+ T cell 
when engaging with 

PDL1+ cell 
PD-

1n_IFNg_producti
on 

1.62e4 
molecules/cell/s 

7,8 Number of molecules 
of IFNg a PD-1- T cell 

produces 
PD-

1p_IFNg_producti
on 

1.62e3 
molecules/cell/s 

Number of molecules 
of IFNg a PD-1+ T cell 

produces 
PD-

1n_growth_28hr 
0.9 (within 
100800 s) 

4,9 Likelihood of T cell 
division for PD-1- T 

cell 
PD-

1p_growth_28hr 
0.2 (within 
100800 s) 

Likelihood of T cell 
division for PD-1+ T 

cell 
PD-1n_migration 10 µm/min 10 Migration speed for 

PD-1- T cell 
PD-1p_migration 5 µm/min Migration speed for 

PD-1+ T cell 
LymphNode_delay

_growth 
32400 sec 11 T cells in lymph node 

divide 5-6 times in 24 
hours 

migration_MHCIp_
tumor_dwell_veloc

ity 

0 µm/min 12 T cells slow down 
when engaging with 

MHCI+ on tumor cells 
PD-

1n_migration_MH
CIp_tumor_dwell_t

ime 

25 min Duration for which PD-
1- T cells slow down 
during engagement 

with MHCI+ on tumor 
cells 

PD-
1p_migration_MH
CIp_tumor_dwell_t

ime 

10 min Duration for which PD-
1+ T cells slow down 
during engagement 

with MHCI+ on tumor 
cells 

PD-
1n_migration_refra

ctory_time 

35 min Duration for which PD-
1- T cells do not 

interact with tumor 
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cells following an 
engagement with 

MHCI+ tumor cell (10 
minutes) 

PD-
1p_migration_refra

ctory_time 

20 min Duration for which PD-
1- T cells do not 

interact with tumor 
cells following an 
engagement with 

MHCI+ tumor cell (10 
minutes) 

cytotoxic_packet_
production 

40 /min 13,14 Number of cytotoxic 
packets produces per 

T cell 
PD-

1n_cytotoxic_pack
ets_max 

10000  Maximum number of 
cytotoxic packets a 

PD-1- T cell can 
produce 

cytotoxic_transfer_
rate 

400 /min1 Maximum transfer rate 
of cytotoxic packets 
from T cell to Tumor 

PD-
1p_cytotoxic_pack

ets_max 

1000 (counts) 7 Maximum number of 
cytotoxic packets a 
PD-1+ T cell can 

produce 
MHCIn_reduction_

production 
400 15,16 4-fold reduction in 

production in T cells in 
contact with MHCI- 

tumor* 

diameter 15 µm Multiplexed 
Imaging Data 

tumor.py Average diameter of a 
tumor cell 

initial_PDL1n, 
cell_state 

Vary Multiplexed 
Imaging Data 

Based on percentage 
of cells that are PDL1- 

when transferred in 
Location [x, y] Vary Multiplexed 

Imaging Data 
Spatial position of 

tumor cells in 
simulation 

MHCI Vary Multiplexed 
Imaging Data 

Total protein 
expressed of MHCI on 

tumor cells 
PDL1 Vary Multiplexed 

Imaging Data 
Total protein 

expressed of PDL1 on 
tumor cells 

IFNg Vary Multiplexed 
Imaging Data 

Total IFNg received in 
tumor cells 

 
1 Note that cytotoxic packets are all multiplied by 100 to deal with timestep of 60 seconds since actual value is 
0.4/minute 
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death_apoptosis 0.5 (within 
432000 s) 

17 Likelihood of tumor 
cell death based on 

apoptosis 
cytotoxic_packet_t

hreshold 
128 (counts) 13,14 Number of cytotoxic 

packets required for a 
tumor cell to receive to 

induce death 
PDL1n_growth 0.6 (within 86400 

s) 
18 Likelihood of tumor 

cell division for PDL1- 
tumor cell 

Max_IFNg_interna
lization 

31 molecules/min 19 Maximum number of 
IFNg molecules a 

tumor cell can 
internalize 

IFNg_threshold 15000 molecules 12,20 Number of IFNg 
molecules needed to 

induce phenotype 
switching in tumor 

cells 
IFNg_MW 17000 g/mol  IFNg molecular weight 

reduction_IFNg_in
ternalization 

2 21,22 Fold reduction in 
uptake by PDL1+ 

tumor cells 
tumor_debris_amo

unt 
1.4e15 (counts 

for HGB1) 
23 Number of apoptotic 

molecules released by 
dying tumor cells 

Diameter 10 µm 24 dendritic_
cell.py 

Average diameter of a 
dendritic cell 

Location [x, y] Vary Multiplexed 
Imaging Data 

Spatial position of 
dendritic cells in 

simulation 
velocity 3 µm/min 25 Cell migration speed 

for dendritic cells 
death_apoptosis 0.5 (within 4 

days) 
26 Likelihood of dendritic 

cell death based on 
apoptosis 

divide_prob 0.5 (within 5 
days) 

In vitro data Likelihood of tumor 
cell division for 
dendritic cell 

divide_time 5 days Period over the 
likelihood of dendritic 

cell division 
internal_tumor_de

bris_threshold 
415,000 (counts) 27 Number of apoptotic 

molecules required for 
dendritic cell activation 

tumor_debris_upta
ke 

300 
molecules/cell/hr 

Maximum number of 
apoptotic molecules a 

dendritic cell can 
internalize 
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tumor_debris_MW 29,000 g/mol 
(assuming for 

HGMB1) 

23 Apoptotic molecule 
molecular weight 

(used for diffusion) 
n_tcells_in_lymph

_node 
3 (assume size 
for 1200 tumor) 

Multiplexed 
Imaging Data 

lymph_no
de.py 

Number of antigen-
specific T cells found 
within the lymph node 

tcell_find_dendritic
_time 

0.95 (within 
14400 s) 

28,29 Percentage of T cells 
that will find dendritic 
cells within expected 

interval period 
expected_dendritic

_transit_time 
28800 s Average amount of 

time it takes for a 
dendritic cell to travel 
from tumor to lymph 

node 
expected_interacti

on_duration 
28800 s Average amount of 

time T cells interact 
and get activated by 

dendritic cells in lymph 
node 

expected_delay_b
efore_migration 

43200 s Average amount of 
time that T cells reside 

in lymph node post 
dendritic cell 
engagement 

expected_tcell_tra
nsit_time 

3600 s 30 Average amount of 
time that it takes for 
activated T cells to 
migrate from lymph 
node to the tumor 

DIFFUSION_RAT
ES: IFNg 

1.25e-3 cm2/day 31 fields.py Diffusion rate for IFNg 

DIFFUSION_RAT
ES: tumor_debris 

0.0864 cm2/day 33 Diffusion rate for 
apoptotic tumor debris 

molecules 
decay: IFNg 4.5 hr  32 Decay rate for IFNg in 

the tumor environment 
 
Supplemental Table 2: Excel file with CyTOF and CODEX antibody panels for characterizing 
cellular metabolism and spatial cellular distributions.  
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Supplemental Text  
Here we provide more extensive background about the model development, parameters, 
processes, deployment, and the Vivarium software infrastructure. This document is organized to 
reflect how the python files are organized within the repository in order to improve readability and 
associated documentation. The code is freely available at this GitHub repository: 
https://github.com/vivarium-collective/tumor-tcell. Throughout this supplemental text we will 
describe the different files, objects, and methods that encode the different model processes, 
composites and simulation experiments.  All of the diagrams in this supplement were 
programmatically generated from the source experiment, and the code can be found in a 
“diagrams.ipynb” notebook in the tumor-tcell GitHub repository: https://github.com/vivarium-
collective/tumor-tcell/blob/master/jupyter_notebooks/diagrams.ipynb 
 
Vivarium Overview 
Vivarium is a versatile software tool that offers an interface for simulation “process” modules (Fig. 
S1A), which can be connected to stores that hold the system states, which could be of any 
datatype (float, array, or more complex structure). These can be combined into composite hybrid 
simulations, parallelized across computing nodes, and co-simulated across multiple spatial and 
temporal scales. Its hierarchical structure (Fig. S1B) supports nesting and multi-scale 
representations, including agent-based models. These are co-simulation by Vivarium’s discrete-
event simulation engine (Fig. S1C). Distinguished from monolithic simulators, Vivarium’s modular 
approach promotes interoperability, reusability, and composability. Its plug-in system reduces the 
barrier to contribution, making it simpler to integrate novel processes. This supplement introduces 
the specific Vivarium processes and composites used for the Tumor/ T cell simulation. For details 
on the Vivarium methodology, see the Vivarium paper1 and accompanying documentation. 
 
 

 
Figure S1. Vivarium basic concepts. A) Vivarium’s units are processes and stores. Processes 
wrap around simulation modules, exposing an interface made of ports. Stores hold the system 
variables and allow for easy linking with other processes – these can include any type of data, 
whether it is a stream of numbers of more complex data. These are structured in a hierarchy, 
which allows for multiscale representation. B) A Composite is a hybrid simulator, defined by a 
wiring specification and constructed by the Vivarium engine. This one shows a simple agent-
based model schema with cells that have their own processes, in an environment that has one 
process. C) The engine the orchestrates the processes, using a discrete-event simulation 
algorithm to trigger the processes according to their preferred synchronization time steps. 

 
 

https://github.com/vivarium-collective/tumor-tcell
https://github.com/vivarium-collective/tumor-tcell/blob/master/jupyter_notebooks/diagrams.ipynb
https://github.com/vivarium-collective/tumor-tcell/blob/master/jupyter_notebooks/diagrams.ipynb
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Tumor-Tcell ABM 
The rest of the supplement goes into the specific implementations used for the paper. First, we 
look at the full simulation experiment as a composite, then we look at sub-composites and their 
individual processes, including equations and parameters. This is done first for environmental 
processes, and then cellular processes. 
 

- The main simulations can be found at: tumor_tcell/experiments/main.py 
- All processes can be found at: tumor_tcell/processes/ 
- All composites can be found at: tumor_tcell/composites/ 

 
Experiments 
 
A Vivarium diagram of the final simulation configuration is shown in Fig S2, collapsing the internal 
state of the lymph node and in_transit stores for visual simplification, the tumor_environment 
includes only three cells which are also simplified by removing many internal states. But as you 
can see the graph is already fairly complex. Fig S3 shows an even further simplified simulation 
configuration, with only one cell and many collapsed nodes. This is constructed programmatically 
from an experiment generated within the “main” python file, which can be found at the path: 
tumor_tcell.experiments.main.py 
 
The main file includes all the configurations and functions used to generate and run the paper’s 
simulation experiments. The main method is ̀ tumor_tcell_abm()`, which takes various system 
inputs, including the size of the tumor microenvironment, time step, initial agent counts (tumors, 
T cells, dendritic cells) and phenotype with ratios, agent interactions and environmental factors. 
Agents are placed within the simulation environment, and their states are initialized. Simulation 
results, including agent states and environmental factors, is returned by the method. The file 
includes functions for generating plots and visualizing simulation results, including multi-
generation timeseries plots for T cells and tumors, snapshots of the simulation at different time 
points, and video generation. Different workflows define sets of experiments and plots that can 
be triggered from the command line or as imports into a different python file. 
 

 
S2. A simulation with only three cells in the tumor_environment store –`tcell_0`, `dendritic_0`, 
and `tumor_0’. No cells are shown in the lymph_node or in_transit as it would have made this 
figure even harder to read – imagine the complexity of a full simulation with hundreds to 
thousands of cells across all three locations. The figure S3 below simplifies the structure further 
for legibility and adds more descriptions.  
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Fig S3. A piece of the full agent-based model used in this paper, collapsing some details. Top-
level stores, shown in orange, include the tumor_microenvironment, in_transit and 
lymph_node, these are updated by the lymph_node_transfer process, which is described 
below. Within the tumor_environment there are store agents, fields, and dimensions, which are 
updated by diffusion_field and neighbors_multibody in spatial environmental simulation. Within 
the agents there are three cells, shown in purple, tumor_0 and dendritic_0 are fully collapsed, 
while tcell_0 shows some detail but also this is incomplete for simplicity. Some of the T cell top-
level internal state are shown in green – neighbors, internal, and boundary. There are a number 
of internal processes, but the main one – t_cell – is shown outlined in red. States initialized from 
data are shown outlined in yellow. For more detailed information of what data was used as 
parameters or input see the parameter tables within each section.  

 
 
Probability functions 
Many actions are underpinned by time-bound probability functions. For instance, rates of cell 
death and division—barring deaths caused by T cells’ cytotoxic packets—are determined by 
expected values sourced from lab findings and literature, contingent upon environmental cues. 
The two functions are common across processes for this: 
 
1. P	 will represent the method get_probability_timestep(probability_parameter, 

timescale, timestep) found in the code. It computes the transition probability for a 
specific timestep based on an initial probability and a defined timescale. The parameters 
are: 

- probability_parameter: The initial probability of an event occurring within the 
defined timescale. 

- timescale: The observation period for the transition probability. 
- timestep: The specific time interval for calculating the transition probability. 

 
Using these, the function first determines the rate of the exponential decay, and  then the transition 
probability at the desired timestep 𝛿 using the formula: 
 



Hickey et al. Integrating Multiplexed Imaging and Multiscale Modeling Identifies Tumor Phenotype 
Transformation as a Critical Component of Therapeutic T Cell Efficacy 
 

 4 

𝑃(𝛿) = 1 − 𝑒! "#(%!&)∗
)
* 

 
where e is the base of natural logarithms, p is the probability parameter, T is the timescale, and δ	
is the timestep.  
 
2. U		will represent the method `probability_of_occurrence_within_interval( 

interval_duration, expected_time)` found in the code, which computes the 
probability that an event will occur at least once within a specified time interval, assuming 
the event adheres to a Poisson process. The parameters are: 

- `interval_duration`: The time duration over which you wish to determine the 
likelihood of an event happening at least once. 

- `expected_time`: The mean time between successive events, representing the 
average duration for the event to transpire. 

 
From these inputs, the function derives the rate parameter λ by the relation:  
 

λ = +#,-./0"	
-23-4,-5_,+7-

  
 
indicating the mean number of events expected within the interval. It then evaluates the probability 
of no events within the interval as  

P8 = e!9 
 
where e is the base of natural logarithms. The probability of at least one event within the specified 
interval 𝛿 is given by:  

𝑈(𝛿) = 1 − 𝑃8	 
 
Environmental Processes 
First, we look at the composites and processes the simulate the environment.  
 
Lymph node process  
(tumor_tcell.processes.lymph_node.py) 
 

 
This process simulates the movement between 3 main compartments – a tumor environment, a 
lymph node, and the transit route (vasculature) between the tumor and lymph node. The process 
also simulates interaction of dendritic and T cells within the lymph node.  
 
This model assumes there are some number of T cells in the lymph node that are antigen-specific 
for the tumor. If there are any dendritic cells present within the lymph node, then the probability 
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of the T cell initializing an interaction with dendritic cells is determined. This probability is based 
on the expected time for T cells to find dendritic cells. A random number will determine if the event 
happens, triggering T cell transitions to the 'interacting' state, simulating the start of an interaction 
with dendritic cells. Similarly, if the T cell is in the 'interacting' state, it represents an ongoing 
interaction with dendritic cells that is terminated once at a given probability and transitions to a 
'delay' state, which then also follows this same procedure to then move to ‘in_transit.’ Both T cells 
and dendritic cells spend time ‘in_transit’, which captures the migration time of dendritic cells from 
the tumor microenvironment within lymphatics and T cells to the tumor through the vasculature.  
 

Lymph Node Behavior: For T cells within the lymph node, the 
`get_probability_timestep`	method,	P, is used with the parameters below to determine the 
probability of completion if they are in an 'interacting' state, whether they begin migration to the 
tumor if they are in a ‘delay’ state, and the T cell's probability of interacting with available 
dendritic cells if they are not ‘interacting’ or in ‘delay’. 

Tumor Environment Behavior: If dendritic cells turn into the 'active' state, they move to 
in transit. 

In Transit Behavior: Cells that are “in transit” are considered to be going through the 
vasculature, either from the lymph node to the tumor or the other way around. Dendritic cells' 
probability of arriving at the lymph node and T cells' probability of arriving at the tumor all use 
the `probability_of_occurrence_within_interval` method U with the expected time 
durations listed in the parameter table below.  
 
Here are parameters loaded within lymph_node.py and the source of where they are coming 
from and whether they were varied within the experiments: 
 

Parameter name Value Source Location 
n_tcells_in_lymph_node 3 (assume size 

for 1200 tumor) 
Multiplexed 

Imaging 
Data 

lymph_node.py 

tcell_find_dendritic_time 0.95 (within 
14400 s) 

2,3 

expected_dendritic_transit_time 28800 s 
expected_interaction_duration 28800 s 

expected_delay_before_migration 43200 s 
expected_tcell_transit_time 3600 s 4 

 
Tumor microenvironment composite 
(tumor_tcell.composites.tumor_microenvironment.py) 
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This is composite simulates a 2D environment with agents that can move around in space, 
exchange molecules with their neighbors, and exchange molecules with a molecular field. This 
includes a `Neighbors` process, which tracks the locations of individual agents and handles 
their exchanges, and a diffusion `Fields` process, which operates on the molecular fields. In 
the full simulation, it lives only within the “tumor environment” store – the lymph node uses a non-
spatial environment.  
 
Neighbors Process  
(tumor_tcell.processes.neighbors.py) 
 

 
 
This process represents a multibody physics process with neighbor tracking, simulating collisions 
between cell bodies and managing the exchange of molecules between these cells.  
 
The physics component of the process has each agent (cell) characterized by its physical 
properties, including location, diameter, mass, and velocity. `diameter`, `mass` and 
`velocity` can be updated by individual cells internal processes, which ̀ location` is handled 
by the neighbors process alone as determined by the physics simulation. For the physics, this 
process uses pymunk (http://www.pymunk.org/), which models individual cell agents as circular 
rigid bodies that can move, grow, and collide. This includes random jitter to model Brownian 
motion, and friction to model cell-cell adhesion. For more information on the meaning of the 
elasticity and friction parameters, see the pymunk documentation. The use of pymunk was also 
described in the Vivarium paper1. 
 
In addition to physics, the Neighbors process handles the exchange of molecules between cells, 
through the ports `transfer`, `receive`, `accept`, and `present`, each of which 
represents a different aspect of intercellular communication. For soluble signaling molecules, 
`transfer` and `receive` represent giving and receiving molecules from neighboring cells, 
respectively. For membrane-bound signaling molecules, `accept` represents the biological 
response to the binding action. `present` signifies the ligand, which triggers a biological 
response for cells with matching `accept`. We define neighboring cells with the function called 
`get_neighbors`, which takes cell coordinates and cell radius and finds neighboring cell ID 
with its radius. 
 
Fields process  
(tumor_tcell.processes.fields.py) 
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This process models the diffusion and decay of molecular concentrations in a 2D field. The ‘Fields’ 
class is initialized with various parameters that define the characteristics of the field, such as its 
size, resolution, and the properties of the molecules being simulated. It has previously been 
described1. 
 
The key parameters used in the process include: 
- `bounds`: specifies the size of the environment in micrometers along the x and y dimensions. 
- `n_bins`: defines the resolution of the environment by the number of bins in both x and y 
directions within the environment bounds. 
- `depth`: represents the depth of the field. 
- `molecules`: A list of the types of molecules being simulated. 
- `default_diffusion_dt`: The time step used for diffusion calculations. 
- `default_diffusion_rate`: The default diffusion rate for molecules. 
- `diffusion`: Specific diffusion rates for individual molecules. 
- `decay`: Specific decay rates for molecules, determines how molecules degrade over time. 
 
Diffusion and decay: For each molecular type, the concentration undergoes an exponential decay 
based on a decay rate k. The decayed concentration F’ after a time step Δt is given by: 
 

𝐹′ = 𝐹8 × 𝑒!:;<  
 
Diffusion is achieved by applying the 2D Laplacian kernel over a field post decay, F’, representing 
molecular concentration. This convolution captures the spatial variation of molecules within the 
field. The field is then updated to	 its	final	state,	F’’, by multiplying the outcome with a diffusion 
constant D and a time step	Δt.	
 

𝐹== = 𝐹′ + 𝐷Δt ∙ F′ ∗ G
0 1 0
1 −4 1
0 1 0

J 

 
Here are parameters loaded within fields.py and the source of where they are coming from 
and whether they were varied within the experiments: 
 

Parameter name Value Source Location 
DIFFUSION_RATES: IFNg 1.25e-3 

cm2/day 
5 fields.py 

DIFFUSION_RATES: tumor_debris 0.0864 cm2/day 6 
decay: IFNg 4.5 hr  7 

 
 
Local Field Process  
(tumor_tcell.processes.local_field.py) 

 



Hickey et al. Integrating Multiplexed Imaging and Multiscale Modeling Identifies Tumor Phenotype 
Transformation as a Critical Component of Therapeutic T Cell Efficacy 
 

 8 

 
`LocalField` belongs to individual cells but is placed here along with the environmental 
processes because it serves as an adapter between two-dimensional array for the environment 
to each cell’s local environment state representation. It allows individual cell agents to uptake and 
release molecules at their specific locations within the field.  
 
Cell Processes 
Cell composites (Fig S4) are integrated models with multiple initialized processes, which can plug 
into the environment’s “agents” state as cellular agents. Each cell composite has a core cell 
process combined with additional helper processes such as death, division, and local field. The 
division process waits for the division flag and then carries out division, the death process waits 
for a death flag and then removes the agent, and a local field, which was described above, 
interfaces the external environment to support uptake and secretion. This section focuses on the 
core cell processes for T cells, dendritic cells, and tumor cells. 
 
Each composite cell agent can be found at these locations: 

- tumor_tcell.composites.t_cell_agent.py 
- tumor_tcell.composites.dendritic_agent.py 
- tumor_tcell.composites.tumor_agent.py 

 

 
Fig S4. A T Cell Agent Composite. The T cell core process is shown with a red border. 
Additional helper processes are local_fields, death, and division. These connect the t_cell agent 
to the higher-scale agents and fields stores, here shown as disconnected ports pointing up. 
 
 
T cell process  
(tumor_tcell.processes.t_cell.py) 
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The model illustrates the lifecycle and behavior of T cells, which predominantly exist in two states: 

1. PD1n (PD1-negative): In this state, T cells are active and have a high capacity to interact 
with tumor cells and other antigens. 

2. PD1p (PD1-positive): Here, T cells are less active and their functionality might be 
suppressed due to prolonged activation or interactions with PDL1. 

 
T cells transition between these states based on conditions like the duration of their activation 
and the number of divisions they've undergone. They can undergo apoptosis, especially when 
they've been activated for too long or have been suppressed by interactions with PDL1 on tumor 
cells. T cells can kill tumor cells if they release enough cytotoxic packets upon them. 
 
Mechanisms: 
1. Death by Apoptosis for PD1, and for PDL1 are both determined by the 
get_probability_step method, P, using the parameters “death_PD1n_14hr” and 
“death_PD1p_next_to_PDL1_14hr”. These parameters are reported probabilities, the method 
gives us the probability of occurrence within the given timestep 𝛿. A random number in the range 
(0, 1) determines death. 
2. IFNγ Production: T cells produce interferon-gamma (IFNγ) when activated. The rate of IFNγ 
production is constant based on which state it is in, based on whether it is interact with MHCI 
molecules on tumor cells.  
 
Here are parameters loaded within t_cell.py and the source of where they are coming from 
and whether they were varied within the experiments: 
 

Parameter name Value Source Location 
diameter 7.5 µm Multiplexed 

Imaging Data 
t_cell.py 

initial_PD1n, cell_state Vary Multiplexed 
Imaging Data, 
CyTOF data 

Location [x, y] Vary Multiplexed 
Imaging Data 

PD1 Vary Multiplexed 
Imaging Data 

IFNg Vary CyTOF Data 
PDL1_critical_number, ligand_threshold 1e4 (count/cell) 8 

TCR_downregulated 0 
TCR_upregulated 50000 

(count/cell) 
refractory_count_threshold 3 (assuming 

stimulated 2 
during in vitro 

activation) 
PD1n_divide_threshold 5 

activation_time 21600 s 9,10 
activation_refractory_time 

 
43200 s 

death_PD1p_14hr 0.35 (within 
50400 s) 

11 
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death_PD1n_14hr 0.1 (within 
50400 s) 

death_PD1p_next_to_PDL1p_14hr 0.475 (within 
50400 s) 

12,13 

PD1n_IFNg_production 1.62e4 
molecules/cell/s 

14,15 

PD1p_IFNg_production 1.62e3 
molecules/cell/s 

PD1n_growth_28hr 0.9 (within 
100800 s) 

11,16 

PD1p_growth_28hr 0.2 (within 
100800 s) 

PD1n_migration 10 µm/min 17 
PD1p_migration 5 µm/min 

LymphNode_delay_growth 32400 sec 18 
migration_MHCIp_tumor_dwell_velocity 0 µm/min 19 

PD1n_migration_MHCIp_tumor_dwell_time 25 min 
PD1p_migration_MHCIp_tumor_dwell_time 10 min 

PD1n_migration_refractory_time 35 min 
PD1p_migration_refractory_time 20 min 

cytotoxic_packet_production 40 /min 20,21 
PD1n_cytotoxic_packets_max 10000  

cytotoxic_transfer_rate 400 /min 
PD1p_cytotoxic_packets_max 1000 (counts) 14 
MHCIn_reduction_production 400 22,23 

 
 
Tumor cell process  
(tumor_tcell.processes.tumor.py) 

 
 
The model depicts the lifecycle and behavior of tumor cells, which exist primarily in two states: 

1. Proliferative state: Here, the tumor cells have a low presence of immune molecules 
(MHCI and PDL1). 

2. Quiescent state: In this state, the tumor cells exhibit elevated levels of immune molecules 
(MHCI and PDL1). 

 
Tumor cells transition between these states based on their exposure to IFNg from T cells. 
Furthermore, they can be removed either through natural processes like apoptosis or when 
attacked by T cells, given the release of cytotoxic packets. 
 
Mechanisms: 
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1. Death by Apoptosis: which represents the chance of a tumor cell undergoing natural death	 
uses get_probability_step method, P, using the parameters “death_apoptosis” for timescale 
5 days. If this is triggered, the tumor cell dies and releases debris.	
2. Death by T-cell: Tumor cells can be killed by immune cells called T cells. If the number of 
cytotoxic packets received from T cells surpasses a threshold, the tumor cell is killed and sheds 
debris. 
3. IFNg Uptake: The model calculates available IFNg by determining how far it can diffuse in a 
timestep and then computing the volume it can reach around the tumor. This volume helps 
determine how much IFNg the tumor can access. 

Diffusion_Radius=Diffusion_Rate×Timestep	
Available_Volume=>

?
π×(Tumor_Radius	+	Diffusion_Radius)3	

Available_IFNg=External_IFNg×Available_Volume	
 
Here are parameters loaded within tumor.py and the source of where they are coming from and 
whether they were varied within the experiments: 
 

Parameter name Value Source Location 
diameter 15 µm Multiplexed 

Imaging Data 
tumor.py 

initial_PDL1n, cell_state Vary Multiplexed 
Imaging Data 

Location [x, y] Vary Multiplexed 
Imaging Data 

MHCI Vary Multiplexed 
Imaging Data 

PDL1 Vary Multiplexed 
Imaging Data 

IFNg Vary Multiplexed 
Imaging Data 

death_apoptosis 0.5 (in 5 days) 24 
cytotoxic_packet_threshold 128 (counts) 20,21 

PDL1n_growth 0.6 (within 86400 s) 25 
Max_IFNg_internalization 31 molecules/min 26 

IFNg_threshold 15000 molecules 19,27 
IFNg_MW 17000 g/mol  

reduction_IFNg_internalization 2 28,29 
tumor_debris_amount 1.4e15 (counts for 

HGB1) 
30 

 
Dendritic cell process  
(tumor_tcell.processes.dendritic_cell.py) 
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Dendritic cells (DCs) are pivotal in the immune system, primarily facilitating antigen presentation 
and steering the immune response. The model captures diverse behaviors of DCs, including 
apoptosis, division, state transitions, and their interactions with tumor debris, T cells, and 
migration patterns towards lymph nodes. Key aspects include: 

- Inactive-to-Active Transition: DCs shift from "inactive" to "active" upon accumulating 
sufficient internal tumor debris. 

- Tumor Debris Uptake: DCs consume tumor debris present in their surroundings, 
released upon tumor cell death. The uptake mechanism parallels the “IFNg uptake” 
approach detailed in the tumors.py. 

- Protein Expression: Similar to tumor cells, DCs can express PDL1 and MHCI proteins. 
Activated DCs engage with T cells and, upon activation, gravitate towards lymph nodes to 
stimulate T cells. For specifics, refer to the lymph_node.py process. 

 
Mechanisms: 
1. Death by apoptosis: represents the chance of a dendritic cell undergoing apoptosis	 uses 
get_probability_step method, P, with the parameter “death_apoptosis” for timescale 10 days. 	
2. Cell Division (for active cells): If the cell is active, a division probability is calculated for the 
given timestep and division time. If a random number is less than this, the the cell divides.  
3. State Transition (for inactive cells): If the cell is inactive and has internal tumor debris count 
above a certain threshold, it becomes active.  
4. Tumor Debris Uptake: The cell takes up tumor debris from the environment up to a limit 
defined by a rate and the timestep, or until available debris is exhausted.  
5. Active Cell Behavior: If the cell is active, it expresses certain proteins at equilibrium levels.  
 
Here are parameters loaded within dendritic_cell.py and the source of where they are 
coming from and whether they were varied within the experiments: 
 

Parameter name Value Source Location 
Diameter 10 µm 31 dendritic_cell.py 

Location [x, y] Vary Multiplexed 
Imaging Data 

velocity 3 µm/min 32 
death_apoptosis 0.5 (within 4 days) 33 

divide_prob 0.5 (within 5 days) In vitro data 
divide_time 5 days 

internal_tumor_debris_threshold 415,000 (counts) 34 
tumor_debris_uptake 300 molecules/cell/hr 

tumor_debris_MW 29,000 g/mol 
(assuming for HGMB1) 

30 
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